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Abstract: Background: Peroxynitrite (ONOO−) is an oxidant linked with several human patholo-
gies. Apigenin, a natural flavonoid known for its health benefits, remains unexplored in relation
to ONOO− effects. This study investigated the potential of apigenin to structurally protect fibrino-
gen, an essential blood clotting factor, from ONOO−-induced damage. Methods: Multi-approach
analyses were carried out where fibrinogen was exposed to ONOO− generation while testing the
efficacy of apigenin. The role of apigenin against ONOO−-induced modifications in fibrinogen was
investigated using UV spectroscopy, tryptophan or tyrosine fluorescence, protein hydrophobicity,
carbonylation, and electrophoretic analyses. Results: The findings demonstrate that apigenin sig-
nificantly inhibits ONOO−-induced oxidative damage in fibrinogen. ONOO− caused reduced UV
absorption, which was reversed by apigenin treatment. Moreover, ONOO− diminished tryptophan
and tyrosine fluorescence, which was effectively restored by apigenin treatment. Apigenin also
reduced the hydrophobicity of ONOO−-damaged fibrinogen. Moreover, apigenin exhibited pro-
tective effects against ONOO−-induced protein carbonylation. SDS-PAGE analyses revealed that
ONOO−treatment eliminated bands corresponding to fibrinogen polypeptide chains Aα and γ, while
apigenin preserved these changes. Conclusions: This study highlights, for the first time, the role
of apigenin in structural protection of human fibrinogen against peroxynitrite-induced nitrosative
damage. Our data indicate that apigenin offers structural protection to all three polypeptide chains
(Aα, Bβ, and γ) of human fibrinogen. Specifically, apigenin prevents the dislocation or breakdown of
the amino acids tryptophan, tyrosine, lysine, arginine, proline, and threonine and also prevents the
exposure of hydrophobic sites in fibrinogen induced by ONOO−.

Keywords: apigenin; peroxynitrite; fibrinogen; biochemical studies; oxidative damage; nitrosative stress

1. Introduction

Fibrinogen is a crucial protein, which plays an important role in blood clotting. It is
produced in the liver and circulates in the blood plasma. When a blood vessel is damaged,
a series of biochemical reactions known as the coagulation cascade is initiated. Fibrinogen
is crucial to the last step of this cascade, converting into fibrin, which forms a sticky protein
meshwork that acts as the framework for a blood clot. The clot serves as a plug to prevent
excessive bleeding and promotes wound healing [1,2] Fibrinogen plays a crucial role in
tissue regeneration by providing mechanical support for the migration and proliferation of
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cells. It helps in maintaining the integrity of blood vessels [1,3]. Alterations in fibrinogen
levels or its structural characteristics can disrupt the delicate balance of hemostasis, leading
to thrombotic events, such as deep vein thrombosis or arterial clot formation, as well as
bleeding disorders [3,4]. It is worth noting that fibrinogen also performs its protective
function against inflammation. During tissue injury or inflammation, circulating fibrinogen
interacts with inflammatory cells and mediators, acting as an adhesive molecule that assists
in recruiting immune cells to the site of injury or infection [5]. It is crucial to recognize that
changes in fibrinogen structures, levels, or functional properties are connected to various
pathological conditions [6,7]. Elevated fibrinogen levels have been observed in acute
and chronic inflammatory diseases, cardiovascular disorders, and specific types of cancer.
Imbalances in fibrinogen levels or alterations in its structure can result in clotting disorders
or heightened vulnerability to bleeding, and they have been linked to various inflammatory
diseases, cardiovascular disorders, and certain cancers [4,6,7]. In addition, fibrinogen
measurements are valuable diagnostic and prognostic indicators for assessing the risk of
thrombotic events and monitoring disease progression [8,9]. Therefore, understanding
the significance of fibrinogen is vital in the fields of hematology, cardiovascular medicine,
molecular immunology, and inflammation.

Peroxynitrite is an extremely reactive compound consisting of oxygen and nitrogen
atoms categorized as a reactive oxygen and nitrogen species (RONS) and represented by the
chemical formula ONOO−. It exhibits strong oxidizing and nitrating properties, leading to
damage in biomolecules across various biological systems [10]. Peroxynitrite is produced
in humans in response to various internal and external stressors, including toxins, UV light,
and stressors, in different pathological scenarios [11]. It is widely accepted that the harmful
effects of nitric oxide primarily arise from peroxynitrite, which has high reactivity and
reacts readily with different biomolecules like proteins, lipids, and nucleic acids [12–14].
Apart from causing oxidative harm to biomolecules, peroxynitrite also triggers several
cell-signaling pathways leading to oxidative injury and cell death through necrosis or
apoptosis [15,16]. Moreover, peroxynitrite is implicated in the aberrant activation of molec-
ular pathways associated with numerous inflammatory and neurodegenerative conditions,
and cancer [15,16]. Furthermore, peroxynitrite, along with other reactive nitrogen species
(RNS), is involved in initiating and advancing autoimmune responses [17,18]. Apigenin is
a naturally occurring flavonoid found in various fruits, vegetables, and herbs. It belongs to
the flavone subclass of flavonoids and is recognized for its unique chemical structure and
diverse biological activities [19]. Chemically known as 4′,5,7-trihydroxyflavone, apigenin is
a yellow crystalline solid with the molecular formula C15H10O5 (PubChem CID: 5280443).
Its distinctive features include two aromatic rings connected by a central three-carbon
bridge, as well as hydroxyl groups at positions 4′, 5, and 7 of the C-ring, which contribute to
its unique biological properties [20]. Notably, apigenin acts as a potent antioxidant by scav-
enging free radicals and inhibiting oxidative stress. It suppresses the formation of oxidative
radicals and enhances the activity of endogenous antioxidant enzymes [21,22]. However,
despite its known antioxidant properties, the effects of apigenin on ONOO−-induced
oxidative damage to fibrinogen have not yet been investigated.

The study was conducted to examine the potential protective effect of apigenin on
structural damage to human fibrinogen caused by peroxynitrite. Our findings provide novel
insights into the potential therapeutic uses of apigenin in treating disorders associated with
ONOO−-induced damage. This novel information may hold significant implications for
the development of innovative therapeutic approaches targeting ONOO−-related human
metabolic and inflammatory pathological conditions.

2. Materials and Methods
2.1. Preparation of Human Fibrinogen and Apigenin Solutions

Human fibrinogen was procured from Sigma-Aldrich (Saint Louis, MO, USA) and
further purified through ammonium sulfate precipitation (up to 25%) followed by cen-
trifugation and suspension in PBS (10 mM, pH 7.4). Apigenin (4′,5,7-trihydroxyflavone)
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was purchased from R&D Systems (Minneapolis, MN, USA) and suspended in dimethyl
sulfoxide to prepare 100 mM of stock. A working solution of apigenin was diluted in PBS
(10 mM, pH 7.4).

2.2. Treatment of Fibrinogen UsingApigenin and Peroxynitrite

Human fibrinogen was subjected to simultaneous treatment with apigenin and perox-
ynitrite anion (ONOO−) in PBS (10 mM, pH 7.4) following the methodology described by
Rasheed et al., 2018 [12]. Briefly, human fibrinogen at a concentration of 2.9412 µM was
treated with apigenin at varying concentrations (50–100 µM). The treatment also involved a
mixture containing sodium nitroprusside (0.5 mM; Sigma, MO, USA), pyrogallol (0.5 mM;
Sigma, MO, USA), and diethylenetriaminepentaacetic acid (0.5 mM; Sigma, MO, USA),
which was carried out at 37 ◦C for 24 h. To remove excess salts, the reaction mixture was
dialyzed against PBS. Negative controls consisted of fibrinogen without apigenin, sodium
nitroprusside, or pyrogallol (referred to as native fibrinogen), while positive controls in-
cluded fibrinogen without apigenin but with sodium nitroprusside and pyrogallol (referred
to as Fibrinogen-ONOO−).

2.3. Ultraviolet Spectroscopy

The UV absorption spectra of untreated and treated fibrinogen protein samples were
assessed using the PerkinElmer Spectrophotometer (PerkinElmer Ltd., Beaconsfield, UK).
The calculation of hypochromicity percentage at 280 nm was carried out following the
methodology outlined by Rasheed et al., 2022 [23].

% Hypochromicity = [Native fibrinogen OD280 nm − Modified fibrinogen OD280nm)/Native fibrinogen OD280 nm] × 100

2.4. Tryptophan and Tyrosine Fluorescence Emission Studies

Alterations in tryptophan or tyrosine–tryptophan amino acid residues were examined
by exciting the protein samples at 295 nm and 280 nm, respectively, following the previously
described method by Möller and Denicola, 2022 [24]. The fluorescence intensities (FI) were
measured using a plate reader (AnthosZenyth, Salzburg, Austria). The percentage change
in FI was determined using the previously described equation by Rasheed et al., 2006 [25].

% Reduce of FI = [FIuntreated fibrinogen − FImodified fibrinogen)/FI untreated fibrinogen] × 100

or

% Increase in FI = [FImodified fibrinogen− FI untreated fibrinogen)/FImodified fibrinogen] × 100

2.5. bis-ANS-Binding Fluorescence Studies

The protein hydrophobicity was studied by probing with bis-ANS-binding fluores-
cence in all protein samples of fibrinogen, as described previously [26]. The ANS–fibrinogen
complexes were excited at 380 nm, and FI were quantified as in a published procedure [27].

2.6. SDS-PAGE

The treated and untreated fibrinogen samples (35 µg) along with the Life Technologies
Precision Plus Protein Markers (Carlsbad, CA, USA) were subjected to electrophoresis.
To observe all three fibrinogen chains, all fibrinogen protein samples were denatured
through SDS, and its inter-chain disulfide bonds were reduced using β-mercaptoethanol.
The electrophoresis was conducted using a 10% resolving gel with a 2.5% stacking with
an applied voltage of 80 V. The gel was visualized using Coomassie Brilliant Blue R-250
(Sigma-Aldrich, Merck Group, St. Louis, MO, USA).

2.7. Protein Carbonyl Content Estimation

The levels of oxidation in fibrinogen protein samples were assessed using the Protein
Carbonyls Colorimetric Assays Kit (Cayman Chemical, Ann Arbor, MI, USA).
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3. Results

Human fibrinogen underwent treatment with ONOO− and apigenin, and the resulting
changes were analyzed. The UV spectral studies of ONOO−-treated fibrinogen showed a
35.7% decrease in absorption intensity at 280 nm, indicating hypochromicity (Figure 1A,B).
Importantly, the addition of apigenin (50–100 µM) to the protein reaction solution signifi-
cantly reduced the hypochromicity induced by ONOO− (p < 0.05). These results are given
in Figure 1C–E. The role of apigenin against ONOO−-induced impairment to fibrinogen
was demonstrated by overlapping of all samples of UV spectra (Figure 1F). The degree
of protection provided by different doses of apigenin was quantified by comparing the
hypochromicity of each protein sample. The results showed that apigenin at 50 µM pro-
vided 32.8% protection against peroxynitrite-induced hypochromicity at 280 nm, while
higher doses of apigenin (75 µM and 100 µM) offered increased protection levels of 42.6%
and 80.9%, respectively (Table 1).
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Figure 1. Ultraviolet (UV) absorption spectroscopic studies. (A) UV absorption spectrum of native
fibrinogen. (B) UV absorption spectrum of peroxynitrite (ONOO−)-treated fibrinogen (ONOO−-
fibrinogen). (C) UV absorption spectrum of apigenin (AP, 50 µM) + ONOO−-fibrinogen. (D) UV
absorption spectrum of apigenin (AP, 75 µM) + ONOO−-fibrinogen. (E) UV absorption spectrum
of apigenin (AP, 100 µM) + ONOO−-fibrinogen. (F) Overlapping of all studied fibrinogen protein
samples. The concentrations of all protein samples were 1.47 µM, dialyzed using 10 mM PBS
(pH = 7.0).

Table 1. Protective effect of apigenin on peroxynitrite-induced hypochromic alterations in aromatic
amino acids of fibrinogen.

SN. Comparative Assessment of Hypochromicity Alteration at λmax
(Hypo or Hyper-Chromicity)

% Protection on
Hypochromicity by AP

1. Native Fibrinogen v/s ONOO−-Fibrinogen 35.7% hypochromicity -

2. AP50-ONOO−-Fibrinogen v/s Native Fibrinogen 23.9% hypochromicity 32.8

3. AP50-ONOO−-Fibrinogen v/s ONOO−-Fibrinogen 6.9% hyperchromicity -

4. AP75-ONOO−-Fibrinogen v/s Native Fibrinogen 20.5% hypochromicity 42.6
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Table 1. Cont.

SN. Comparative Assessment of Hypochromicity Alteration at λmax
(Hypo or Hyper-Chromicity)

% Protection on
Hypochromicity by AP

5. AP75-ONOO−-Fibrinogen v/s ONOOv-Fibrinogen 8.9% hyperchromicity -

6. AP100-ONOO−-Fibrinogen v/s Native Fibrinogen 6.8% hypochromicity 80.9

7. AP100-ONOO−-Fibrinogen v/s ONOOv-Fibrinogen 31.0% hyperchromicity -

Abbreviation: ONOO−, peroxynitrite; AP50, Apigenin at 50 µM; AP75, Apigenin at 75 µM; AP100, Apigenin at
100 µM; AP, Apigenin.

Further investigation of the structural protection provided by apigenin against ONOO−

was carried out using tryptophan fluorescence excitation studies. When fibrinogen was
treated with ONOO− alone, a significant decrease in tryptophan fluorescence intensity was
observed (p < 0.001; Figure 2A). However, the addition of apigenin significantly enhanced
tryptophan fluorescence intensity (p < 0.05). Similar alterations in the fluorescence intensity
of both tryptophan and tyrosine residues were observed when fibrinogen samples were
excited at 280 nm (Figure 2B). The percentage of protection of tryptophan residues provided
by different doses of apigenin was determined, showing that apigenin at 50 µM offered
27.3% protection against ONOO−-induced damage, with higher doses of apigenin (75 µM
and 100 µM) providing 49.0% and 54.2% protection, respectively (A) in Table 2. Similar
protection percentages were observed for the tyrosine–tryptophan residues (B) in Table 2.
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Figure 2. Tryptophan and tyrosine fluorimetry. (A) Effect of apigenin on peroxynitrite (ONOO−)-
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# p < 0.001 versus native fibrinogen; @ p < 0.05 versus #.
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Table 2. (A) Protective effect of apigenin on peroxynitrite-induced alterations in tryptophan residues
of fibrinogen. (B) Protective effect of apigenin on peroxynitrite-induced alterations in tyrosine and
tryptophan residues of fibrinogen.

A. Protective Effect of Apigenin on Peroxynitrite-Induced Alterations in Tryptophan Residues of Fibrinogen.

SN. Comparative Assessment of Trp Residues Trp-Fluorescence Alterations % Protection by AP

1. Native Fibrinogen v/s ONOO−-Fibrinogen 55.3% FI. decreased -

2. AP50-ONOO−-Fibrinogen v/s Native Fibrinogen 40.2% FI. decreased 27.3

3. AP50-ONOO−-Fibrinogen v/s ONOO−-Fibrinogen 25.2% FI. increased -

4. AP75-ONOO−-Fibrinogen v/s Native Fibrinogen 28.2% FI. decreased 49.0

5. AP75-ONOO−-Fibrinogen v/s ONOO−-Fibrinogen 37.7% FI. increased -

6. AP100-ONOO−-Fibrinogen v/s Native Fibrinogen 25.3% FI. decreased 54.2

7. AP100-ONOO−-Fibrinogen v/s ONOO−-Fibrinogen 44.0% FI. increased -

B. Protective Effect of Apigenin on Peroxynitrite-Induced Alterations in Tyrosine and Tryptophan Residues of Fibrinogen

SN. Comparative Assessment of Tyr-Trp Residues Tyr-Trp-Fluorescence Alterations % Protection by AP

1. Native Fibrinogen v/s ONOO−-Fibrinogen 51.6% FI. decreased -

2. AP50-ONOO−-Fibrinogen v/s Native Fibrinogen 24.8% FI. decreased 50.9

3. AP50-ONOO−-Fibrinogen v/s ONOO−-Fibrinogen 35.6% FI. increased -

4. AP75-ONOO−-Fibrinogen v/s Native Fibrinogen 22.4% FI. decreased 56.6

5. AP75-ONOO−-Fibrinogen v/s ONOO−-Fibrinogen 37.6% FI. increased -

6. AP100-ONOO−-Fibrinogen v/s Native Fibrinogen 9.8% FI. decreased 81.0

7. AP100-ONOO−-Fibrinogen v/s ONOO−-Fibrinogen 46.7% FI. increased -

Abbreviation: FI, fluorescence intensity; ONOO−, peroxynitrite; AP50, Apigenin at 50 µM; AP75, Apigenin at 75
µM; AP100, Apigenin at 100 µM; AP, Apigenin; Trp, tryptophan; Tyr, tyrosine.

The role of apigenin against ONOO−-induced alterations in hydrophobic sites was
investigated using the hydrophobic probe bis-ANS. Peroxynitrite significantly enhanced
fibrinogen hydrophobicity (p < 0.001; Figure 3), but the addition of apigenin reduced the
hydrophobicity of the protein (p < 0.01). The percentage of safety provided by apigenin
against ONOO−-induced hydrophobicity changes was determined, with apigenin at 50 µM
offering 38.7% protection and higher doses of apigenin (75 µM and 100 µM) providing
58.5% and 61.3% protection, respectively (Table 3).

Table 3. Protective effect of apigenin on peroxynitrite-induced hydrophobic patches in fibrinogen.

SN. Comparative Assessment of Hydrophobicity bis-ANS Binding Fluorescence % Hydrophobic
Protection by AP

1. Native Fibrinogen v/s ONOO−-Fibrinogen 21.2% FI. increased -

2. AP50-ONOO−-Fibrinogen v/s Native Fibrinogen 13.0% FI. increased 38.7

3. AP50-ONOO−-Fibrinogen v/s ONOO−-Fibrinogen 9.3% FI. decreased -

4. AP75-ONOO−-Fibrinogen v/s Native Fibrinogen 8.8% FI. increased 58.5

5. AP75-ONOO−-Fibrinogen v/s ONOO−-Fibrinogen 13.6% FI. decreased -

6. AP100-ONOO−-Fibrinogen v/s Native Fibrinogen 8.2% FI. increased 61.3

7. AP100-ONOO−-Fibrinogen v/s ONOO−-Fibrinogen 14.1% FI. decreased -

Abbreviation: bis-ANS, 4,4′-dianilino-1,1′-binaphthyl-5,5′-disulfonic acid; FI, fluorescence intensity; ONOO−,
peroxynitrite; AP50, Apigenin at 50 µM; AP75, Apigenin at 75 µM; AP100, Apigenin at 100 µM; AP, apigenin.
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To evaluate the role of apigenin, the protein carbonyl contents were analyzed (Figure 4).
The data revealed a significant rise in protein carbonyl formation in fibrinogen treated
with peroxynitrite alone (p < 0.001). However, the addition of apigenin resulted in a
remarkable decrease in protein carbonyl formation (p < 0.05) (Figure 4). The percentage
of protection provided by different doses of apigenin against protein carbonylation was
determined, and it is summarized in Table 4. Moreover, the therapeutic potential of
apigenin was evaluated using SDS-PAGE (Figure 5A). The untreated fibrinogen sample
exhibited three distinct bands corresponding to the three polypeptide chains FAα, FBβ,
and Fγ. However, upon treatment of fibrinogen with peroxynitrite, the bands representing
FAα and Fγ chains completely disappeared (Figure 5B,D), while the band intensity for the
FAα chain was significantly reduced, compared to the intensity at the beginning of the gel
(p < 0.05; Figure 5C), indicating it acquires altered mobility after chemical modification by
peroxynitrite.In contrast, the addition of apigenin to the reaction mixture resulted in almost
similar band intensities for all three polypeptides of fibrinogen, as seen in the untreated
fibrinogen (p > 0.05; Figure 5A–D).
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Table 4. Protective effect of apigenin on peroxynitrite-induced protein carbonylation in fibrinogen.

SN. Comparative Assessment of Carbonylation Alterations in Carbonyl Formation % Protection of
Carbonylation by AP

1. Native Fibrinogen v/s ONOO−-Fibrinogen 83.6% increased -

2. AP50-ONOO−-Fibrinogen v/s Native Fibrinogen 77.2% increased 7.6

3. AP50-ONOO−-Fibrinogen v/s ONOO−-Fibrinogen 28.1% decreased -

4. AP75-ONOO−-Fibrinogen v/s Native Fibrinogen 76.3% increased 8.7

5. AP75-ONOO−-Fibrinogen v/s ONOO−-Fibrinogen 30.9% decreased -

6. AP100-ONOO−-Fibrinogen v/s Native Fibrinogen 71.5% increased 14.5

7. AP100-ONOO−-Fibrinogen v/s ONOO−-Fibrinogen 42.5% decreased -

Abbreviation: ONOO−, peroxynitrite; AP50, Apigenin at 50 µM; AP75, Apigenin at 75 µM; AP100, Apigenin at
100 µM; AP, Apigenin.
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4. Discussion

This research presents the novel finding of apigenin’s protective effect on fibrinogen
protein structure against peroxynitrite-induced nitrosative damage. Nitric oxide’s harmful
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effects are primarily linked to peroxynitrite formation, which damages biomolecules such as
proteins, nucleic acids, and lipids, initiating oxidative structural harm and a chain reaction
of free radical generation [10,16,28,29]. Peroxynitrite is recognized as one of the most detri-
mental free radicals due to its lethal effects. Apigenin, a natural compound found in plants,
has garnered attention for its various health-promoting properties, including antioxidant,
anti-inflammatory, anticancer, antimicrobial, and neuroprotective effects [19,20,29–32]. It
has been shown to modulate redox homeostasis and regulate autophagy, further contribut-
ing to its anti-inflammatory effects [33]. Flavonoids, like apigenin, have been reported
to reduce oxidative stress and inflammatory cytokines, potentially preventing cardiac
injury from endotoxins [34–37]. Consequently, apigenin has become a subject of signifi-
cant interest for its potential theraputic applications, particularly in preventing various
human disorders, including cancer and cardiovascular diseases, where peroxynitrite plays
a pivotal role.

Abnormality in fibrinogen function caused the inappropriate formation of fibrin clots,
which can lead to arterial and venous thrombotic disorders, which can be life-threatening [4].
Thrombotic disorders often occur in the presence of inflammation and oxidative stress.
Fibrinogen is susceptible to oxidative modifications, which can impact its structure and
function and have been associated with disease development [38,39]. Oxidative modifica-
tions of fibrinogen can cause structural changes that impair its ability to form fibrin. [39].
However, the specific effects of peroxynitrite-induced damage on fibrinogen structure and
the apigenin role e against such damage have not yet been explored. For the first time,
we have discovered that apigenin has the potential to counteract peroxynitrite-induced
damage to fibrinogen in an invitro setting.

Our experiments involved treating human fibrinogen with both peroxynitrite and
apigenin and analyzing the structural changes using various techniques. We used UV
absorption spectroscopy to examine the alterations in the structure of fibrinogen. The
findings showed that peroxynitrite caused significant damage, as evidenced by a decrease
in absorption at 280 nm, which indicates changes in aromatic amino acids. However, the
addition of apigenin protected against these oxidative modifications induced by peroxyni-
trite. Similar protective effects of apigenin were observed through tryptophan and tyrosine
fluorescence studies. Peroxynitrite-induced damage led to reduced fluorescence intensity,
indicating structural changes in fibrinogen. However, the presence of apigenin increased
the fluorescence intensity of tryptophan and tyrosine residues, indicating protection against
nitrosative damage.

To further investigate the potential of apigenin in preventing peroxynitrite-induced
damage, we conducted bis-ANS-binding fluorimetry studies. By assessing the fluores-
cence emitted by the hydrophobic probe bis-ANS, we can infer the presence of exposed
hydrophobic patches. Our data revealed that apigenin treatment significantly inhibited
peroxynitrite-induced hydrophobicity of fibrinogen, indicating its ability to prevent struc-
tural alterations in these hydrophobic sites. These findings demonstrate that apigenin has a
protective effect against peroxynitrite-induced damage to fibrinogen. This protective effect
was observed through the prevention of structural modifications, the preservation of tryp-
tophan and tyrosine residues, and the inhibition of peroxynitrite-induced hydrophobicity.
Protein carbonylation refers to the non-enzymatic irreversible oxidative modifications that
occurring in proteins as a manifestation of oxidative stress. These modifications primarily
target amino acid residues, such as lysine, arginine, proline, and threonine [38,40–42]. The
measurement of carbonyl contents has become a reliable biomarker for assessing oxidative
damage to proteins in various disorders [40,42,43]. Therefore, we analyzed the protein
carbonyl formation in both untreated and treated fibrinogen samples in this study. Our
novel findings indicate a noteworthy rise in protein carbonyl formation in fibrinogen
treated with peroxynitrite, as opposed to the untreated protein. Importantly, the inclu-
sion of apigenin in the reaction mixture successfully reversed this increase in carbonyl
formation. These results strongly suggest that apigenin provides protection to lysine, argi-
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nine, proline, and threonine residues in human fibrinogen, effectively guarding against
peroxynitrite-induced damage.

Human fibrinogen has three pairs of polypeptide chains, namely Aα, Bβ, and γ, with
66.5 kDa, 52 kDa, and 46.5 kDa, respectively [44]. To assess the impact of peroxynitrite-
induced damage on fibrinogen and the protective potential of apigenin on these polypeptide
chains, we performed an SDS-PAGE analysis on all fibrinogen samples. Untreated fib-
rinogen samples exhibited three distinct bands on SDS-PAGE, ranging from 50–75 kDa,
corresponding to the three pairs of polypeptide chains Aα, Bβ, and γ, which aligns with pre-
vious studies [44]. However, upon treatment with peroxynitrite, the bands for the Aα and
γ polypeptide chains completely disappeared, indicating severe structural damage caused
by these peroxynitrite. Importantly, the addition of apigenin to the fibrinogen samples
resulted in the reappearance of all three bands, representing the three polypeptide chains of
fibrinogen observed in the untreated samples. This strongly suggests that apigenin offers
structural protection to human fibrinogen against peroxynitrite generation. These findings
present new evidences that apigenin is a strong inhibitor of peroxynitrite-induced dent in
human fibrinogen, preserving the integrity of the three polypeptide chains.

5. Conclusions

This study demonstrates the potential of apigenin in protecting human fibrinogen
against nitrosative damage induced by peroxynitrite. The novel findings highlight that
apigenin offers structural protection to all three polypeptide chains of human fibrinogen:
Aα, Bβ, and γ. Furthermore, our data provide evidence that apigenin safeguards the
integrity of key amino acids, including tryptophan, tyrosine, lysine, arginine, proline,
and threonine, and provides protection of hydrophobic sites within the protein structure
of fibrinogen, preventing peroxynitrite-induced oxidative damage. These results are of
great significance and hold promise for developing novel therapeutic strategies aimed
at managing disorders where peroxynitrite plays a pivotal role. The protective effects
of apigenin on human fibrinogen may open new avenues for targeted interventions to
alleviate the detrimental effects of peroxynitrite and preserve the structural integrity of
fibrinogen in various pathological conditions.
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