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Abstract: In recent years, there has been growing interest in olive genotypes (Olea europaea L.)
suitable for super-high-density (SHD > 1200 trees/hectare) orchards. To date, only a few cultivars
are considered fitting for such cultivation system. In this study, the first results on the architectural
characteristics of the canopy of ten new olive genotypes are presented. Their suitability for SHD
orchards was evaluated and compared with the cultivar ‘Arbequina’, which is considered suitable for
SHD olive orchards and, for this reason, was used as the control. Several canopy measurements were
taken, and some architectural parameters, such as branching frequency, branching density, and branch
diameter/stem diameter ratio were calculated. The branching frequency value was greater than 0.20
in ‘Arbequina’ and in only four of the genotypes. The branching density in five genotypes was similar
to ‘Arbequina’. ‘Arbequina’ had the lowest value for the branch diameter/stem diameter ratio, and
only three genotypes had similar values. These initial results showed that only one genotype has all
canopy architectural characteristics comparable to those of the cv. ‘Arbequina’. Further studies are
needed to evaluate the production traits of these new genotypes and complete their characterization.

Keywords: tree architecture; branching frequency; branching density; branch insertion angle; diameter
ratio; olive orchard; cross-breeding

1. Introduction

The cultivated olive (Olea europaea subsp. europaea, var. europaea) is the second most
worldwide oil fruit tree crop species. Extra virgin olive oil, EVOO, is one of the most
valuable foods due to its high content of healthy fatty acids and minor constituents [1–3].
The genotype plays an important role in influencing the bioactive compound profile of olive
fruits [4,5], and breeding programs can provide beneficial variability for EVOO quality, but
also for agronomical characters useful for olive cultivation [6–9]. Therefore, it would be
very useful to use breeding programs to find genotypes that combine high oil quality with
agronomic characteristics that make them suitable for the new planting models that are
being increasingly applied in olive growing.

In the last years, there has been increased interest in super-high-density (SHD) culti-
vation systems that have some important advantages, such as rapid achievement of full
production, efficient mechanization of olive harvesting, and partial/full mechanization
of pruning [9–12]. SHD orchards are characterized by close planting distances (the most
used is 4 m × 1.5 m), thus requiring the use of low vigor and compact varieties [11–14].
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In this regard, the study of tree architecture, which describes the habit of growth of trees,
is crucial to understand the suitability of a genotype for the cultivation in high-density
systems [15]. Indeed, the few studies carried out on the architectural features of the olive
tree highlight that there is a great variability among genotypes [16]. Rosati et al. [13]
provided a detailed description of the structural/architectural characteristics of trees which
make them suitable for cultivation in SHD orchards and indicated the parameters that
should be considered when evaluating the tree architecture. In particular, the proposed
parameters include diameter and node number of the main stem (central leader) and num-
ber, as well as diameter and angle of insertion, of the main branches inserted in the central
leader. These parameters allow us to characterize the growth habit of the genotype. In
particular, the branching density (i.e., the number of lateral ramifications per unit length of
the central axis) is especially important because it strongly affects the compactness of the
canopy [17]: a high branching density, coupled with small shoot diameter, gives a higher
compactness than low branching with thicker shoots. In this regard, it is also important to
consider that branching seems also to be influenced by the propagation method utilized:
micro-propagated olive trees showed a higher number of primary branches on the central
axis than trees obtained by cutting [18]. Therefore, high branching and small diameters of
the vegetation seem like important architectural characteristics that make cultivars suitable
for SHD orchards.

At the time, there are very few cultivars that meet the requirements of the SHD
system [12]. Therefore, it would be very useful to have more genotypes suitable for this
kind of orchard. They could be identified and selected by investigating/evaluating the
architectural characteristics of the available olive germplasm, also including minor varieties,
and/or new genotypes produced by breeding.

The aim of the present work was to evaluate the architectural characteristics of some
new genotypes obtained from a breeding program in order to assess their potential for
cultivation in SHD orchards.

2. Results

The average length of the main branches was the shortest (around 36 cm) in ‘I-79 free
pollinated’ (G) (identification letters of the different genotypes are reported in Table 1),
which was similar to ‘Arbequina’, while it was the longest (about 64 cm) in ‘Fs-17 × Bouteil-
lan’ (A) (Figure 1). All other genotypes had values ranging from 40 to 50 cm in length.

Table 1. Identification letter of the genotypes under investigation.

Breed/Cultivar Name Identification Letter N◦ of Plants

Fs-17 × Bouteillan A 12
I-77 self-pollinated B 12

Nucalia 1 × Nostrale di Rigali C 12
Bouteillan × Nostrale di Rigali D 7

Fs-17 × Cipro E 7
I-77 × Kalamata F 12

I-79 free pollinated G 12
Nociara free pollinated 1 H 12
Nociara free pollinated 2 I 12
Nucalia 1 × Don Carlo L 12

Arbequina Arb 12

The length of the internode evaluated on the same main branch varied from about
1.4 cm in ‘Bouteillan × Nostrale di Rigali’ (D) to just over 2 cm in the genotypes ‘Nociara
free pollinated 1’ (H) and ‘Nucalia 1 × Don Carlo’ (L) (Figure 2).
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Figure 1. Length of the main branches in ten new olive genotypes and the ‘Arbequina’ cultivar. The 
letters on the X axis correspond to the breeds/genotypes listed in Table 1. Data represent averages 
and standard errors (bars). Different letters above the columns indicate significant differences 
between genotypes. Averages were compared using Fisher’s LSD test (p < 0.05). 

The length of the internode evaluated on the same main branch varied from about 
1.4 cm in ‘Bouteillan × Nostrale di Rigali’ (D) to just over 2 cm in the genotypes ‘Nociara 
free pollinated 1’ (H) and ‘Nucalia 1 × Don Carlo’ (L) (Figure 2).  
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The angle of insertion of the main branches on the central leader was low (i.e., more 
vertical) for the genotypes ‘I-79 free pollinated’ (G), ‘Nociara free pollinated 1’ (H), and 
‘Nociara free pollinated 2’ (I), with average values just under 50 degrees. This was lower 
than that of the cultivar ‘Arbequina’, while it was highest (i.e., more horizontal) for the 
genotype ‘I-77 × Kalamata’ (F), which showed values around 70 degrees (Figure 3).  
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Figure 1. Length of the main branches in ten new olive genotypes and the ‘Arbequina’ cultivar. The
letters on the x axis correspond to the breeds/genotypes listed in Table 1. Data represent averages and
standard errors (bars). Different letters above the columns indicate significant differences between
genotypes. Averages were compared using Fisher’s LSD test (p < 0.05).
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Figure 2. Internode length in ten new olive genotypes and the ‘Arbequina’ cultivar. The letters on the
x axis correspond to the breeds/genotypes listed in Table 1. Data represent averages and standard
errors (bars). Different letters above the columns indicate significant differences between genotypes.
Averages were compared using Fisher’s LSD test (p < 0.05).

The angle of insertion of the main branches on the central leader was low (i.e., more
vertical) for the genotypes ‘I-79 free pollinated’ (G), ‘Nociara free pollinated 1’ (H), and
‘Nociara free pollinated 2’ (I), with average values just under 50 degrees. This was lower
than that of the cultivar ‘Arbequina’, while it was highest (i.e., more horizontal) for the
genotype ‘I-77 × Kalamata’ (F), which showed values around 70 degrees (Figure 3).

The branching frequency value was greater than 0.20 in ‘Arbequina’ and in the geno-
types ‘Nucalia 1 × Don Carlo’ (L), ‘Nociara free pollinated 2’ (I), ‘I-79 free pollinated’ (G),
and ‘I-77 self-pollinated’ (B). The genotypes ‘Fs-17 × Bouteillan’ (A), ‘Nucalia 1 × Nostrale
di Rigali’ (C), and ‘Bouteillan × Nostrale di Rigali’ (D) showed a branching frequency value
significatively lower than Arbequina and of the three genotypes ‘Nucalia 1 × Don Carlo’
(L), ‘Nociara free pollinated 2’ (I), and ‘I-79 free pollinated’ (G) (Figure 4).
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Figure 3. Branch insertion angle on the central leader in ten new olive genotypes and the ‘Arbequina’
cultivar. The letters on the x axis correspond to the breeds/genotypes listed in Table 1. Data
represent averages and standard errors (bars). Different letters above the columns indicate significant
differences between genotypes. Averages were compared using Fisher’s LSD test (p < 0.05).
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Figure 4. Branching frequency in ten new olive genotypes and the ‘Arbequina’ cultivar. The letters
on the x axis correspond to the breeds/genotypes listed in Table 1. Data represent averages and
standard errors (bars). Different letters above the columns indicate significant differences between
genotypes. Averages were compared using Fisher’s LSD test (p < 0.05).

The order of genotypes for branching density was slightly different. In fact, ‘Nociara
free pollinated 2’ (I) dropped compared to the others, while ‘Fs-17 × Cipro’ (E) gained
(Figure 5). The genotypes ‘I-77 self-pollinated’ (B), ‘Fs-17 × Cipro’ (E), ‘Nucalia 1 × Don
Carlo’ (L), ‘I-77 × Kalamata’ (F), and ‘I-79 free pollinated’ (G) had values statistically similar
to that of ‘Arbequina’. The total branching density (obtained by summing the branching
density as in Figure 5 and the branching density of second-order, expressed as the number
of lateral shoots more than 5 cm long inserted along the main branches, per cm of the
central leader), was high in ‘I-77 self-pollinated’ (B), and ‘Fs-17 × Cipro’ (E) and with values
statistically similar to that of ‘Arbequina’ (Figure 6).
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Figure 5. Branching density in ten new olive genotypes and the ‘Arbequina’ cultivar. The letters on
the x axis correspond to the breeds/genotypes listed in Table 1. Data represent averages and standard
errors (bars). Different letters above the columns indicate significant differences between genotypes.
Averages were compared using Fisher’s LSD test (p < 0.05).
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Figure 6. Total branching density in ten new olive genotypes and the ‘Arbequina’ cultivar. In the y
axis, we considered the main branches and the shoots inserted on the main branches. The letters on
the x axis correspond to the breeds/genotypes listed in Table 1. Data represent averages and standard
errors (bars). Different letters above the columns indicate significant differences between genotypes.
Averages were compared using Fisher’s LSD test (p < 0.05).

The ratio between the diameter of the main branch and the diameter of the central
leader (diameter ratio) was equal to 0.48 in ‘Arbequina’ (the lowest of all), while the highest
value (0.64) was found in ‘Bouteillan × Nostrale di Rigali’ (D) (Figure 7). ‘Nucalia 1 × Don
Carlo’ (L), ‘Nociara free pollinated 2’ (I), and ‘Fs 17 × Bouteillan’ (A) had values similar to
that of ‘Arbequina’.
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Figure 7. Diameter ratio (i.e., average ratio between main branch diameter and central leader diameter
under the branch insertion) in ten new olive genotypes and the ‘Arbequina’ cultivar. The letters on
the x axis correspond to the breeds/genotypes listed in Table 1. Data represent averages and standard
errors (bars). Different letters above the columns indicate significant differences between genotypes.
Averages were compared using Fisher’s LSD test (p < 0.05).

The ratio between the length of the main branch and its basal diameter ranged from
92 for ‘Arbequina’, to 66 for ‘Nociara free pollinated 2’ (I), about 29% less than the Spanish
cultivar (Figure 8). Five genotypes (A, B, C, E, and L) had values similar to ‘Arbequina’.
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Figure 8. Branch length to diameter ratio (i.e., average ratio between main branch length and the
diameter of the same branch measured at the insertion with the central leader) in ten new olive
genotypes and the ‘Arbequina’ cultivar. The letters on the x axis correspond to the breeds/genotypes
listed in Table 1. Data represent averages and standard errors (bars). Different letters above the
columns indicate significant differences between genotypes. Averages were compared using Fisher’s
LSD test (p < 0.05).

The diameter ratio was negatively correlated with branching frequency (Figure 9).
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Figure 9. Correlation between the diameter ratio and the branching frequency in ten new olive
genotypes and the ‘Arbequina’ cultivar. Each point is one of the genotypes listed in Table 1.

3. Discussion

The aim of the present study was to evaluate the architectural characteristics of the
canopy of the new olive genotypes, previously selected for high oil quality, in order to
determine their suitability for use in new SHD plantations. The cultivar ‘Arbequina’ was
used as control, as previous studies showed that it has tree architectural characteristics
very suitable for SHD orchards [13,14,19–21]. Indeed, ‘Arbequina’ has a high branching
frequency. This character is negatively correlated to the diameter of lateral branches as
well as to the diameter of one-year-old shoots, enabling the branch/shoot biomass to be
concentrated in a small volume (compact canopy). These are desirable characters for trees
to be used in SHD olive orchards [13].

The average branch length along the central leader is an important parameter when
planting olive trees at very high densities [22]. In fact, long branches create problems in
olive orchard systems with short distances between rows because the branches occupy too
much inter-row space. Furthermore, they can interfere with straddle machine harvesting,
as the long lateral branches, which exceed the limit compatible with the harvest tunnel
width, can be broken or damage the machine [21–23]. Therefore, for SHD olive orchards,
it is preferable to have genotypes that develop lateral branches that are not excessively
long. The average length of branches of the Arbequina cultivar was close to the average
value across all genotypes. The genotype ‘Fs-17 × Bouteillan’ (A) had an average branch
length much longer than all the other genotypes, on average 20 cm longer than those of
‘Arbequina’, while the genotype ‘I-79 free pollinated’ (G) had the shortest value, on average
9 cm less than Arbequina (Figure 1).

Rosati et al. [14] found that the branch insertion angle on the stem is not a relevant
parameter in the characterization of 21 cultivars grown in a SHD olive orchard, but it gives
an idea of the plant canopy habit. In the present study, ‘I-79 free pollinated’ (G), ‘Nociara
free pollinated 1’ (H), and ‘Nociara free pollinated 2’ (I) had branch insertion angles around
50 degrees, which indicate an upright canopy habit, while all the other genotypes had
higher angles, indicating an expanded canopy habit (Figure 3). In SHD olive orchards,
narrow branch insertion angles could reduce light penetration into the internal parts of
the canopy, with consequent reduction of the production efficiency and air circulation [23].
The branch insertion angle, in addition to being genotype dependent, is also affected by
the space between the trees, in turn affected by the plantation distances, with wider angles
found in wider distance plantations [24].

The branching frequency and the branching density are the most relevant parameters
to assess whether a genotype is suitable for planting density intensification [13]. High



Plants 2024, 13, 1399 8 of 11

values for these parameters imply a high ability to fill the available canopy volume with
potentially productive shoots. In this trial, the genotype ‘Nucalia 1 × Don Carlo’ (L) had a
branching frequency slightly higher, but not statistically different, than that of ‘Arbequina’
(Figure 4). The order of the genotypes according to the assumed value varied when
branching density was evaluated (Figure 5). This is because the branching density is strictly
dependent on the internode length. For instance, ‘Nucalia 1 × Don Carlo’ (L) no longer had
the highest value, but rather ‘I-77 self-pollinated’ (B); this was because branching density
indicates the number of branches per cm of the central axis length. The different internode
lengths, which for genotype ‘I-77 self-pollinated’ (B) was about 1.6 cm, for ‘Nucalia 1 × Don
Carlo’ (L) was about 2.0 cm, and for ‘Arbequina’ about 1.8 cm, help us to better understand
these variations (Figure 2). The total branching density is one way to evaluate the canopy
density, because it considers not only the main branches along the central leader but also
the second-order lateral shoots present along the main branches (Figure 6). This is an
interesting parameter to consider in establishing whether a genotype is suitable for super-
high-density olive orchards. In fact, high branching values indicate that a given genotype
can fill the available volume with numerous shoots, and therefore with potential fruiting
sites [13,25,26]. In this study, only two genotypes, ‘Nociara free pollinated 1’ (H) and
‘Bouteillan × Nostrale di Rigali’ (D), had values statistically different from ‘Arbequina’
(Figure 6).

Another interesting parameter is the diameter ratio that denotes, with respect to
the stem diameter, the thickness of the branch [13]. High diameter ratio values indicate
that the branch has a relatively large diameter and therefore presumably is also more
solid and above all rigid. This could be a drawback for continuous harvesting with
straddle machines [21]. Thicker and stiffer branches can be broken more easily than thinner
and more flexible ones. The diameter ratio also provides relevant information on how
much a genotype invests in structural wood (stem, branches), i.e., in woody structures for
supporting the potentially productive branches [14]. Having a low value of this parameter
means that the plant allocates fewer resources to unproductive structures, thus making
them available for other sites, such as reproductive ones [14,20]. ‘Arbequina’ was the
only one to have a value less than 0.5 (Figure 7). However, other genotypes, namely
‘Nucalia 1 × Don Carlo’ (L), ‘Nociara free pollinated 2’ (I), and ‘Fs 17 × Bouteillan’ (A), had
values statistically similar to ‘Arbequina’.

The ratio between branch length and its diameter can be considered an index of
susceptibility of the branch being damaged by the harvester machine [21] (Figure 8).
A high ratio indicates that a given genotype is potentially more suitable to resist the stresses
generated during harvesting operations. Lodolini et al. [21] reported a value for ‘Arbequina’
(about 82 ± 12) that was on average lower than ours (about 92). Five genotypes, namely
‘Fs-17 × Bouteillan’ (A), ‘I-77 self-pollinated’ (B), ‘Nucalia 1 × Nostrale di Rigali’ (C),
‘Fs-17 × Cipro’ (E), and ‘Nucalia 1 × Don Carlo’ (L), had values similar to ‘Arbequina’.

The correlation between diameter ratio and branching frequency (Figure 9) is consis-
tent with the results of Rosati et al. [13]. Moreover, the R2 of the present study showed even
better values. The correlation confirms that genotypes that form multiple main branches
along the central leader have branches that are relatively thinner. Therefore, genotypes
characterized by high branching frequency have thinner branches, while genotypes with
low branching have thicker branches. Hence, the correlation between diameter ratio and
branching frequency is very important for potential adaptability of new genotypes to
systems of plantation in SHD. Indeed, it is interesting to consider these aspects, because if
a plant branches extensively, it means it fills the available volume with a greater number
of potential productive sites. Additionally, thinner branches are more elastic and less
prone to breakage by machinery during the olive harvesting phase. Arbequina showed the
best correlation for the considered parameters together ‘Nociara free pollinated 2’ (I) and
‘Nucalia 1 × Don Carlo 1’ (L).
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4. Materials and Methods

The genotypes used in this investigation were obtained in a breeding complex program,
started around thirty-five years ago, which led to the establishment of the olive breeds
collection plantation in “Tuoro sul Trasimeno” (Italy) in 2006 (https://biomemory.cnr.it),
which comprises hundreds of breeds obtained from free and controlled pollination. In
recent years, the biochemical profile of the olive oils obtained from these genotypes was
carried out. Some results confirmed the possibility of improving and diversifying the
quality of olive oil by crossbreeding known cultivars [9]. The best genotypes showing good
biochemical composition of their VOOs in terms of beneficial compounds, such as fatty
acid methyl esters (FAMEs) and phenolic substances, were then propagated to evaluate
their agronomical characteristics and have been the object of the present study.

The trial was carried out in an olive orchard located in the Umbria region, in central
Italy (Lat. 43◦12′50′′ N, Long. 12◦03′20′′ E, Alt. 287 m a.s.l.). In this geographical area, the
annual average precipitation is around 870 mm, and annual average temperature is about
12.9 ± 5.7 ◦C [27].

Two-year-old olive trees, planted in 2020, were spaced 4 m × 2 m, with NE-SW row
orientation. The plants were arranged in the field in 8 groups of 12 and 2 groups of 7 plants
(genotypes E and D), each group containing plants of the same genotype. The trees were
trained to a central leader and were not pruned, except for removal of basal shoots below
20 cm from the ground.

Soil management was carried out with tillage performed manually to avoid damage to
the roots, starting in April and then once a month until September. Weed control is crucial
to prevent weeds from competing with olive trees for nutrients and water. Plants were
irrigated twice a week with a drip irrigation system from May to September. Fertilization
was performed in April and May by using chemical fertilizers containing nitrogen, phos-
phorous, and potassium. The plantation was monitored for diseases and pests through
frequent visual inspection of the vegetation and phytosanitary treatments against pests and
diseases were performed when necessary.

Ten genotypes were selected and studied as well as peer-aged trees of ‘Arbequina’,
a cultivar suitable for SHD orchards, which was used as control. For the purposes of the
present work, each genotype was identified with a letter, as reported in Table 1. The charac-
teristics of cultivars from which the breeds are derived are described in Olea databases [26],
whereas ‘Nucalia 1’ and ‘Cipro’ are accessions of the “Consiglio Nazionale delle Ricerche,
Istituto per i Sistemi Agricoli e Forestali del Mediterraneo”, Perugia, Italy.

The plants were obtained by rooting of cuttings taken from the mother plants culti-
vated in the main breed collection field. Each genotype consisted of twelve trees, except
for two controlled crosses, ‘Bouteillan × Nostrale di Rigali’ (D) and ‘Fs-17 × Cipro’ (E),
for which it was possible to plant only seven self-rooted plants due to the lower rooting
aptitude of these two genotypes.

At the beginning of the trial, the average field value for the tree height was about
1.5 m and the number of main branches was 24. Measurements of architectural parameters
were carried out on three representative trees per genotype, on the ‘central leader’, which
is the main axis of the tree, the ‘main branches’, which are the ramifications inserted on
the central leader, and the ‘shoots’, which are those inserted on the main branches. In
particular, this study considered earlier research that suggests that small diameters and
high branching are essential architectural factors to have compact canopies and high yield
efficiency, which make genotypes potentially suitable for SHD orchards [13,15,19]. On the
whole length of the central leader (except for the basal portion below 20 cm from ground),
the following parameters were measured: height of central leader, number of nodes along
the central leader, number of main branches (≥10 cm in length), length of the same main
branches, node number along the main branches, and insertion angle of the branches. The
internode length was determined by dividing the main branch length by the number of
nodes on the same branch. This was performed for all branches. The branch insertion angle

https://biomemory.cnr.it
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was measured in relation to the central leader, thus placing the zero of the goniometer
parallel to the central leader of the tree.

Lateral shoots (>5 cm in length) were also counted along each of these branches.
Furthermore, the basal diameter of all branches inserted along the central leader was
measured (at the first internode) as well as the diameter of the central leader just below
the branch considered (at the first internode below the insertion). The ratio between these
two diameters was calculated [13]. The ratio between the length of the main branch and
the diameter at the point of insertion with the central leader was calculated. The number
of main branches is expressed as the number per bud or per cm of the central leader, as a
measure, respectively, of branching frequency and branching density.

All the measurements were carried out in September 2022, except for the insertion
angle, which was recorded in February 2023.

Data are presented as means ± standard errors. Genotype effects were analyzed by
one-way analysis of variance (ANOVA) performed after normality and homoskedasticity
tests. Averages were compared using Fisher’s LSD test (probability level < 0.05).

5. Conclusions

The results indicated that several genotypes have interesting architectural characteris-
tics, such as branching frequency and density and diameter ratio, which were similar to
those of the cultivar ‘Arbequina’. However, only the genotype ‘Nucalia 1 × Don Carlo’
(L) had values of all the considered architectural parameters similar to the cultivar ‘Arbe-
quina’, making this genotype the most interesting among those evaluated. Such findings
indicate that this genotype possesses architectural features making it potentially suitable
for SHD orchards.

Although these results are promising, the study should be continued to evaluate addi-
tional aspects, such as yield potential and resistance to biotic/abiotic adversities, to have a
complete characterization of the genotypes and, in particular, of ‘Nucalia 1 × Don Carlo’ (L).
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