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Abstract: Our study employs multi-level agent-based modeling and computational techniques
to explore education as a complex system. With an underlying focus that education should be
underpinned by a scientific understanding of student learning, we created computational models that
simulated learning dynamics in classrooms, integrating both quantitative and qualitative insights.
Through these models, we conducted experiments aligned with real classroom data to address
key questions, such as “How can we effectively support the academic progress of underperforming
students, who are disproportionately from low socio-economic status (SES) backgrounds, to close their
multi-year achievement gap in mathematics?” Our study analyzes various instructional approaches
for mathematical learning, and our findings highlight the potential effectiveness of Productive Failure
as an instructional approach. Considerations of the broader applicability of computational methods
in advancing educational research are also provided.

Keywords: productive failure; multi-mediator modeling; agent-based modeling; systems dynamics;
pedagogical strategies

1. Conceptual Rationale and Aims

In our study, we embarked on an exploratory journey to illuminate the dynamics of
education through the lens of a multi-level agent-based model (ML-ABM) created within
the NetLogo language and environment [1]. This research is driven by a recognition
of the complex, dynamic, multifaceted nature of classroom learning, which can best be
understood through sophisticated computational techniques that can simulate the nuanced
interplay between student cognition, collaborative learning endeavors, and the broader
socio-economic contexts in which education unfolds. Our approach aligns with advocacy
for embedding computational methods within educational research, aiming to bridge
the gap between theoretical models and practical classroom applications [2,3]. Through
this, our study aims to contribute to a deeper and more comprehensive understanding
of educational dynamics, offering potential insights for enhancing learning outcomes in
diverse educational settings.

The justification for employing computational methods in our study is twofold. Firstly,
these methods allow for the simulation and analysis of complex educational phenomena
that are difficult to observe and measure in traditional research settings. An example of this
might include the simulation and analysis of multiple perspectives, complex collaborations,
and interactions across multiple actors in a school environment, such as those between pre-
service teachers and in-service teachers [4]. By creating detailed models that can represent
the dynamics of classroom learning, researchers can manipulate variables in ways that
would be difficult in real-life contexts, providing valuable insights into the mechanisms
driving educational outcomes [5]. Secondly, computational models can serve as a powerful
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tool for predicting real-world system behavior and the consequences of changes, such as
the effects of educational interventions before their implementation in actual classrooms [6].
This predictive capacity enhances the efficiency and effectiveness of educational research by
guiding the development of more targeted interventions. Also, it supports evidence-based
decision making in educational policy and practice. We propose the use of computational
models as a complement to existing research methods. By exploring and integrating
computational methods, our study contributes to developing a more rigorous, nuanced
understanding of educational processes, facilitating the translation of theoretical insights
into actionable strategies for improving student learning.

Central to our investigation are the following two innovative concepts: “Productive
Failure” [7] and “Multi-Mediator Modeling” (MMM) [8]. The former challenges traditional
instructional methodologies by engaging students in complex problem solving before
formal instruction, while the latter integrates agent-based modeling (ABM) and Systems
Dynamics to offer a comprehensive view of educational phenomena across multiple di-
mensions. This combination of methodologies allows us to explore intricate processes
that underlie learning outcomes, with a focus in this article on enhancing the academic
trajectory of low-performing students.

By detailing our model’s assumptions, parameter configurations, and the processes
by which it has been empirically validated, we aim to provide a transparent and replica-
ble framework that not only simulates real-world educational dynamics but also invites
further scholarly inquiry and empirical testing. Through our consideration of the model’s
limitations and a comparative analysis with existing educational theories and frameworks,
we seek to underscore our model’s unique contributions as well as highlight areas for
potential integration and improvement. Ultimately, our objective is to foster a collabora-
tive research environment where models such as ours serve as a foundation for ongoing
dialogue, refinement, and innovation in understanding educational dynamics.

The practical implications of our work extend beyond the academic realm, offering
educators, policymakers, and fellow researchers valuable insights into effective, equitable
educational strategies and interventions. Moreover, we chart a course for future research,
pinpointing specific areas where computational methods can further enrich our under-
standing of educational systems and contribute to the ongoing effort to bridge educational
disparities. Ultimately, our study advocates for a paradigmatic shift towards a more inte-
grated and computationally informed perspective in educational research, one that not only
embraces the complexity of learning environments but also strives to ensure educational
equity and excellence for all students [9,10].

2. Literature Review

The integration of computational science techniques is particularly relevant in the
context of mathematics education among low-performing student populations. Research
indicates a significant socio-economic status (SES)-related performance gap in mathematics
achievement, underscoring the need for targeted interventions [11]. Furthermore, the
relationship between executive function (EF)—key cognitive processes for goal-directed
behavior—and math problem-solving skills suggests that addressing cognitive develop-
ment is as crucial as mitigating socio-economic challenges [12]. Computational models may
serve as a powerful tool in this context, allowing researchers to simulate various instruc-
tional strategies and learning environments to uncover potential effective practices for en-
hancing both cognitive skills and mathematical understanding. This multifaceted approach,
informed by computational science, promises to deliver holistic strategies that address
intertwined cognitive and socio-economic challenges, paving the way for a comprehensive
improvement in educational outcomes for both low SES and broader student populations.

Jacobson, Levin, and Kapur [2] advocated for the incorporation of computational
science techniques—traditionally applied in physical, biological, and social domains—into
educational research. This integration is posited as a complement to conventional quantita-
tive and qualitative methods, offering a novel lens through which to view and analyze the
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complexities of educational systems. Among the methodologies discussed, agent-based
modeling (ABM) and Systems Dynamics stood out as particularly promising. ABM, as
explained by Wilensky and Rand [13], adopts a “bottom-up” approach, simulating indi-
vidual agent behaviors to understand collective system dynamics. Systems Dynamics,
outlined by [14], contrasts this by offering a “top-down” perspective, using equation-based
models to explore system interactions over time. Together, these methodologies provide
a rich analytical toolkit, enabling researchers to capture both micro-level behaviors and
macro-level trends within educational settings.

Our study adopts the Multi-Mediator Modeling (MMM) framework of Levin and
Datnow [8], which integrates elements from both ABM and Systems Dynamics. Using the
MMM approach, we developed a model that spans the following three critical domains:
the effectiveness of pedagogical strategies, the impact of SES on mathematics achievement,
and the interplay between EF and math problem-solving skills. By merging MMM with
ABM and Systems Dynamics, we aim to offer a multidimensional analysis that captures the
intricate dynamics of educational environments. This approach not only illuminates the
individual behaviors of learners and teachers but can also shed light on the overarching
policies and practices shaping educational outcomes.

Addressing educational disparities in mathematics for students from low socio-
economic status (SES) backgrounds is critically important, and one effective strategy is the
adoption of the ‘Funds of Knowledge’ approach. This pedagogical framework, as outlined
by Moll, Amanti, Neff, & Gonzalez [15], champions the recognition and integration of the
rich and diverse knowledge that students acquire from their family, culture, and commu-
nity experiences directly into the classroom environment. A body of research, including a
meta-analysis by Lawson, Hook, and Farah [16], highlights the presence of SES disparities
in EF, pointing to the need for inclusive and responsive teaching methods. Hammond [17]
further underscores this by detailing how culturally responsive teaching practices are
instrumental in supporting neurological development and fostering cognitive engagement
among students. By embedding learning experiences that resonate with students’ lived
realities, educators not only enhance engagement but also deepen students’ understanding
of mathematical concepts. The practical application of the Funds of Knowledge approach
in mathematical education, as demonstrated by Civil [18] and Moll et al. [15], significantly
increases the relevance and efficacy of teaching, bridging the gap between academic content
and the student’s own experiences.

Productive Failure, a concept introduced by Kapur [7], advocates for the educational
power of grappling with challenges before receiving Direct Instruction. This method, which
initiates learning by engaging students in difficult problem-solving tasks, serves to deepen
understanding by leveraging the cognitive struggles inherent in such challenges. It is partic-
ularly effective in mathematics education across diverse student demographics, enhancing
not just academic achievement but also leading to greater conceptual understanding and
students’ ability to transfer to novel problems [19]. This approach also has the potential to
synergize with culturally responsive pedagogy by valuing and weaving students’ cultural
and experiential backgrounds—what is known as their Funds of Knowledge—into the
fabric of their educational experience, thereby making learning more relevant and engaging.
Kapur and Bielaczyc [10] underscored the potential of Productive Failure to transform
learning environments into spaces that bridge the divide between students’ home and
school lives, encouraging the application of existing knowledge in new and challenging
contexts. This not only respects and activates students’ backgrounds but also positions
them to navigate and persist through complex problems, fostering an educational climate
that is ripe for exploration. Such a model not only contrasts with the commonly used Direct
Instruction approach but also offers a holistic, inclusive framework that empowers students
by acknowledging and utilizing their unique perspectives and experiences.

In a contrasting approach to Productive Failure, Direct Instruction focuses on design-
ing instructions with logically flawless communication, predicting its comprehension by
the learner, observing the actual learning outcomes, and tailoring subsequent instruction
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based on behavioral analysis if the initial outcomes indicate learning difficulties [20]. This
method supports the cognitive load theory proposed by Sweller [21], which argues that
reducing unnecessary cognitive load can enhance learning by allowing the working mem-
ory to focus on the relevant information [22]. Direct Instruction minimizes confusion and
misunderstanding by providing clear, immediate guidance, thereby managing cognitive
load and facilitating the efficient acquisition of specific skills and knowledge [21,23]. While
highly effective for imparting specific skills and knowledge, Direct Instruction may not
foster as strong connections between personal experiences and the curriculum as Produc-
tive Failure. Rosenshine’s principles of instruction emphasize the importance of clarity,
systematic presentation, and guided practice in improving student learning outcomes [23],
marking a clear departure from the exploratory, student-centered methodology of Produc-
tive Failure. Reflecting Sweller’s cognitive load theory, this juxtaposition suggests that
instructional strategies should be tailored to the learner’s stage of expertise, with Direct
Instruction being particularly beneficial for novices [22]. Research consistently shows that
Productive Failure not only significantly surpasses direct or explicit pedagogical methods
in developing deeper conceptual understanding and transferable problem-solving skills
but also yields comparable results in procedural knowledge to approaches that prioritize
Instruction followed by Problem Solving [24].

3. Method

Our research aimed to address the following research question: “How can we ef-
fectively support the academic progress of underperforming students, who are dispro-
portionately from low socio-economic status (SES) backgrounds, to close their multi-year
achievement gap in mathematics?”. To attempt to address this research question, we devel-
oped a Math Learning Model (see Appendix A for a link to the model). This model enabled
us to manipulate independent variable settings and run computational experiments. These
experiments were informed by a meta-analytic review by Sinha and Kapur [25], with
our initial focus on the potential impact of a Learning Activities independent variable on
student learning.

The Math Learning Model developed for this project utilizes the agent-based modeling
tool NetLogo [1]. This model represents educational challenges as complex systems [2],
with nodes (circles) symbolizing agents or elements and links (lines) denoting their inter-
actions. The model consists of the following three levels: a classroom level representing
Learning Activities and Math Results; a cognitive level with nodes for students’ Prior Math
Knowledge (conceptual structures) and Low EF and High EF processes; and a cultural level
depicting students’ socio-economic status (SES). Green lines represent positive interactions,
while red lines depict negative interactions. The more active a node is, the more active
another node will be that is connected to it by a positive link, and the less active a node
will be that is connected to it by a negative link. The activity values for all the nodes in the
network are updated as the model runs.

In the computational experiments, independent variable settings were adjusted using
sliders for each node, as shown in the upper right-hand table in Figure 1. With each step,
the sizes and numerical states of nodes representing dependent variables changed. Figure 1
displays the initial settings for independent variables, like the low SES level, low Prior Math
Knowledge, Low Math Knowledge, and no Learning Activities. Our model also supports
the ML-ABM through LevelSpace, which is a NetLogo extension to support the modeling
of cross-level interactions, the coupling of heterogeneous models, and the efficient resource
use of simulations through the (dynamic) adaptation of levels of detail [26].
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Figure 1. Math Learning Model Experiment Link/Node States. Screenshots of the Math Learning
Model link/node states for the Pretest and each experiment.

The study conducted four computational experiments, all starting from the initial
Pretest state and only varying the independent variable of Learning Activities. These
changes were informed by data from the meta-analytic review by Sinha and Kapur [25].
Activation values were assigned to the Learning Activities node based on their findings.
Sliders attached to the nodes enabled the initial manipulation of the activation values of
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each node. When running the model, interactions in the system were represented by node
sizes and their corresponding values. These nodes would either stay the same size or
increase or decrease in size. Requiring the visibility of these changes was an underlying
reason for selecting circle shapes as nodes. Node sizes categorized as “small” indicated “0”
activation (no instruction). An activation value of “0.2” corresponded to “I-PS” (Instruction
followed by Problem Solving), and Hedge’s g effect size of 0.20 was equivalent to one
year of instruction. A value of “0.36” represented the “PS-I” (Problem Solving followed by
Instruction) with Hedge’s g effect size of 0.36, equivalent to 2.8 years of instruction. Lastly,
“0.58” denoted the “PF” (Productive Failure) with Hedge’s g effect size of 0.58, equivalent
to 3.9 years of instruction.

Nodes in the model were also connected with one of two types of arrows representing
different types of influences between nodes. Green arrows depicted a positive influence
from one node to another, while red arrows depicted a negative or suppressing influence.
To help reflect real-world dynamics, connections between nodes were also influenced
by a globally set attenuation figure. This adjusted the strength of the influence that one
node exerts on another, which in our model is attenuated by 0.67. This means any effect,
whether from an excite or inhibit link, is multiplied by 0.67 when transferred from one
node to another.

4. Results

The results of our computational experiments aimed to highlight potential pedagogical
interventions aimed to improve student learning. The computational experiments are
shown in the screenshots of the Math Learning Model link/node states for the Pretest and
each experiment in Figure 1. Table 1 shows the settings for independent variables and the
results for the Math Results and High EF dependent variables.

Table 1. Independent variable settings and dependent variable results for three computational
experiments.

Computational Experiment Data

Experiment Independent Variable Settings Dependent Variable
Results

Pretest
Math Results: 0.00

EF High: 0.00

1
Learning Activities: 0.20 Math Results: 4.00

EF Low: 0.40 EF High: 0.00

2
Learning Activities: 0.36 Math Results: 7.00

EF Low: 0.40 EF High: 0.00

3
Learning Activities: 0.58 Math Results: 42.00

EF Low: 0.40 EF High: 0.68

Both numerical values and the dimensions of the Math Knowledge, Math Results, and
High EF nodes in Figure 1 show minimal changes between the Pretest phase and Experi-
ments 1 and 2 for the I-PS and PS-I Learning Activities. However, Experiment 3, involving
the PF Learning Activity, displayed a significant surge in numeric values associated with
these dependent variables, reflected in the expanded size of each corresponding node.

5. Discussion

The preliminary outcomes from the initial version of the Math Learning Model align
with empirical evidence from Sinha and Kapur [25], particularly highlighting higher Math
Results for the Problem Solving followed by Instruction (PS-I) sequence over the Instruc-
tion followed by Problem Solving (I-PS) approach. This finding is consistent with the
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research conducted by Sinha and Kapur [25], which demonstrated the superior learning
outcomes achieved through the PS-I sequence. According to Sinha and Kapur [25], starting
the learning process with problem-solving activities before introducing formal instruction
significantly boosts student engagement, motivation, and, ultimately, the effectiveness
of learning. This method employs active learning principles, ensuring that students are
actively engaged in the learning process, which facilitates deeper cognitive processing.
Freeman et al. [27], in their comprehensive study on active learning, affirmed that such
strategies, by promoting active participation, significantly improve students’ understand-
ing and retention of information. By stimulating curiosity and providing context, the
initial problem solving in the sequence prepares students for the targeted instruction
that follows, addressing the gaps in their understanding identified during the problem-
solving phase. The alignment of the Math Learning Model with the empirical findings
of Sinha and Kapur [25], alongside the principles of active learning and cognitive load
management, underscores the importance of incorporating evidence-based practices in
educational strategies. This not only substantiates the theoretical underpinnings of the
model but also offers practical insights for improving math education through optimized
instructional sequencing.

One of the findings from running the Math Learning Model was the correlation be-
tween low executive function (EF) and reduced mathematical achievement for both the
Instruction followed by Problem Solving (I-PS) and Problem Solving prior to Instruction
(PS-I) interventions. These results also align with research on the importance of the relation-
ship between EF and general problem solving, suggesting that “to successfully solve life’s
complex problems, one must be able to identify the problem and set a goal for its solution,
generate alternative ideas, utilize prospective memory for predicting consequences based
on past experience, and shift from solutions that are not effective to ones that are. One
must also be able to inhibit automatic responses and take the time to think of more effec-
tive ones” [28]. This alignment of model results and EF research provides a preliminary
demonstration of the model’s validity.

In relation to this, an unexpected result in Experiment 3 found that the Productive
Failure learning treatment not only led to a substantial increase in Math Results but also
exhibited a non-linear rise in executive function. While this increase in EF might be a model
artifact (a possibility to explore in further research), research does indicate a connection
between EF components such as cognitive flexibility, working memory, and patterning
performance, where patterns are identified within a sequence of ordered units [29], and
cognitive flexibility and mathematic performance [30]. Considering the general lack of
published research on assisting students in learning or developing High EF skills, future
investigations could explore whether a highly effective math learning approach like PF
could potentially enhance students’ EF skills, potentially negating the need for specialized
EF-focused training. This is particularly salient, as research suggests that while training
in specific EF components may result in significant, medium-sized near-transfer effects,
there is no evidence to suggest far-transfer effects [12]. However, research in PF has shown
significant results on across domain far transfer problem solving [31].

6. Limitations

As this article discusses a preliminary study, several limitations are important to
consider. First, the generalizability of computational models to various educational con-
texts may be limited, which is a challenge noted by Blikstein and Wilensky [32] regarding
agent-based models’ applicability across different learning environments. Second, the
inherent simplifications required for computational modeling may not fully encapsulate
the complexity of human behavior and interpersonal classroom dynamics, which is an
issue Epstein [33] discusses in the context of social simulation models. This could impact
the model’s predictive accuracy and the relevance of its insights to real-world educational
practices. Furthermore, the reliance on existing datasets and the literature to parameterize
the models introduces potential biases, which is a critical concern raised by O’Neil [34],



Educ. Sci. 2024, 14, 551 8 of 10

pointing to the broader issue of data-driven models perpetuating inequalities. Additionally,
by focusing predominantly on outcomes such as mathematics achievement and execu-
tive function, important aspects like emotional and social intelligence, motivation, and
resilience—which significantly influence educational outcomes—are potentially sidelined,
as Durlak et al. [35] emphasized the crucial role of social and emotional learning fac-
tors. Lastly, Fullan [36] highlights the practical challenges of translating research findings
into actionable educational strategies, underlining the gaps in teacher training and policy
adaptations that are necessary for implementing innovative instructional approaches.

However, despite these limitations, we argue that computational models offer a valu-
able framework for hypothesis testing and theory development in educational research. By
simulating complex dynamic phenomena that are otherwise difficult to observe or experi-
ment with directly, these models can illuminate patterns and potential interventions that
might not be apparent through traditional research methods. This bridging of theoretical
and empirical insights enriches our understanding of educational dynamics and guides
practical innovations in teaching and learning strategies. Sengupta and Farris [37] under-
score this point by demonstrating how educational simulations, as a specific application
of computational modeling, can effectively engage students in learning about complex
systems, providing a robust tool for exploring and understanding intricate scientific phe-
nomena. These considerations suggest the need for future research to incorporate a wider
range of data sources, explore additional outcome variables, and develop more sophisti-
cated models that can accurately reflect the complexities of educational environments to
validate the applicability and efficacy of computational methods in educational research.

7. Conclusions

In this article, we discuss how computational modeling may be used to study edu-
cational complex systems. In particular, we developed the Math Learning Model, which
is a Multi-Mediator Model (MMM) [8] with the following three levels: a classroom level
representing Learning Activities and Math Results; a cognitive level for students’ Prior
Math Knowledge and for Low EF and High EF processes, and a cultural level for students’
socio-economic status (SES). The settings for the model parameters were based on effect
size data from the meta-analysis study of Sinha and Kapur [25], with the results of the
computational experiments largely consistent with their empirical data.

More generally, our innovative MMM approach allowed computational investigations
of the multi-level interactions between individual-level determinants, such as cognition
and motivation, and broader social influences, such as social and economic factors, which
would be difficult to study in real-world classroom settings. The utility of the MMM
approach for computational modeling extends beyond mere analysis; it can serve as a tool
in the formulation of research questions, such as those based on observed interactions, the
prediction of educational outcomes, and the design of experiments that span the diverse
domains of educational research.

We believe that the fusion of computational science techniques with culturally in-
formed pedagogical practices represents a new direction in educational research—one that
complements currently used quantitative and qualitative methods. By integrating these
approaches, we aim to expand the tools of educational research to richly investigate critical
issues. These issues include improving educational equity and excellence and identifying
educational activities that can ensure all learners have the opportunity to achieve their
fullest potential. This interdisciplinary approach not only facilitates a deeper understand-
ing of the complex dynamics within educational settings [2,13], but also ensures that these
insights are grounded in the real-world experiences and cultural contexts of students [38].

Future research is necessary to further explore and refine these methodologies and
to explore how computational approaches combined with quantitative and qualitative
research on cognitive and socio-cultural factors might advance the field of educational
research. Furthermore, we hope this research can stimulate further interest in the broader
educational research community to investigate the use of computational modeling as we
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collectively strive to advance our understanding of complex educational systems and shape
the future of learning through innovative, evidence-based practices, with the ultimate
goal of reducing educational inequalities and enhancing academic success across diverse
student populations.
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Appendix A

The Math Learning Model is available under the ‘Computational Educational Research’
section on this website: http://mmm.ucsd.edu/mmm.html, (accessed on 6 April 2024).
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