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Abstract: In this paper, an irregular octagonal two-port MIMO patch antenna is designed specifically
for New Radio (NR) 5G applications in the mid-band sub-6 GHz. The proposed antenna comprises an
irregularly shaped patch antenna equipped with a regular 50-ohm feed line and a parasitic strip line
antenna, and is partially grounded. Jeans material serves as a substrate with an effective dielectric
constant of 1.6 and a thickness of 1 mm. This material is studied experimentally. The proposed
antenna design undergoes analysis and optimization using the ANSYS HFSS tool. Furthermore,
the design incorporates the influence of the slot on both the ground plane and the parasitic strip
line to optimize performance, enhance isolation, and improve impedance matching among antenna
elements. The dimensions of the jeans substrate are 40 mm × 50 mm. The simulated impedance
bandwidth ranged from 3.6 GHz to 7 GHz and the measured bandwidth was slightly narrower,
from 4.35 GHz to 7 GHz. The simulation results demonstrated an isolation level greater than 12 dB
between antenna elements, while the measured results reached 28.5 dB, and the peak gain for this
proposed antenna stood at 6.74 dB. These qualities made this proposed antenna suitable for various
New Radio mid-band 5G wireless applications within the sub-6 GHz band, such as N79, Wi-Fi-5/6,
V2X, and DSRC applications.

Keywords: MIMO; jeans; irregular octagon; return loss; substrate; HFSS

1. Introduction

The utilization of the multiple-antenna approach has been widely adopted in contem-
porary times. In particular, patch antennas have gained renown due to their simplistic
design and exceptional performance in mobile communication systems. Over the past few
decades, antennas have assumed a paramount role in wireless communication systems.
Notably, extensive research efforts have demonstrated that employing multiple anten-
nas, as opposed to a solitary unit, yields improvements in overall system performance
encompassing data throughput, security, and transmission efficiency between transmitters
and receivers. The past few decades have witnessed prolific research endeavors and a
proliferation of publications in this field, resulting in the rapid emergence of a variety
of antenna systems. Various New Radio mid-band 5G wireless applications within the
sub-6 GHz band have been presented, such as N79 (4.4–5 GHz), Wi-Fi-5/6 (5.15–5.85 GHz/
5.925–7.125 GHz), and V2X/DSRC (5.85–5.90 GHz) applications.

In [1], an innovative design for an extremely compact and wideband monopole an-
tenna was described. This antenna is constructed on an elastic substrate made of Kapton-
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polyimide, and the radiating element is contained in a square plane. It comprises two rhom-
bic elements. Attaining a wide bandwidth is essential to overcoming potential performance
limitations when using wearable technology on the body. We therefore created a MIMO
antenna designed specifically for wearable devices which has both a large spectrum and
low mutual interference; using jeans fabric as its base provides optimal efficiency and
compatibility when wearing it. To improve the performance of antennas, two I-shaped
structures were joined via adhesive copper sheets that were fixed on a dielectric substrate
in the two patches [2]. Recently, a customized microstrip patch antenna specially designed
for 5G was designed by using polyethylene terephthalate, and the thickness of the antenna
substrate was 0.125 mm [3]. A novel technique was presented to create Global Positioning
System (GPS) patch antennas by gluing adhesive copper tape directly onto jeans [4]. This re-
search examined the development of wearable antennas which included dual-band (UWB)
single-band (SC) and meta material variants for maximum efficiency [5]. As mentioned
in [6], the forward-thinking approach to research led to the development of an ant-fabric
MIMO antenna specifically designed to be workable [7]. In [8], the need for an effective
MIMO solution with minimal mutual coupling between its constituent antenna elements
was highlighted. In the literature, various papers have attempted to understand the func-
tion of wearable antennas under different conditions for various applications [9–16]. In [17],
a dual-band antenna was presented for 5G NR applications. SAR analysis for dual-band
wearable antenna for WLAN was presented in [18]. In [19], wearable textile antennas
utilizing ultra-wideband (UWB) technology were created to strengthen wireless body area
networks for use with telemedicine and mobile health systems. In [20], an innovative textile
multiple input multiple output (MIMO) antenna design inspired by reflective artificial
surfaces (RIS) and electromagnetic band gap gaps (EBG) was introduced, made using
viscose wool felt materials.

This paper describes an irregular octagonal two-port MIMO patch antenna developed
for use with 5G wireless applications in the sub-6 GHz band. It comprises an irregular
octagon-shaped patch antenna incorporating a 50-ohm feedline, a parasitic strip line, and
partial grounding [21–24]. The simulated impedance bandwidth ranged from 3.6 GHz to
7 GHz (64%, while the measured impedance bandwidth covered 47% (4.35 GHz to 7GHz).
The simulation results demonstrated isolation between antenna elements exceeding 12 dB
in simulations and reaching 28.5 dB during measurements, and the peak gain for our
proposed antenna stood at 6.74 dB. This paper’s structure is as follows: Section 1 introduces
wearable antennas, Section 2 details the antenna design methodology, Section 3 presents
the results, and Section 4 conducts parametric analyses. before concluding our paper in
Section 5.

2. Antenna Design Method

Figure 1 depicts a proposed antenna configuration as its top and back surfaces, respec-
tively. This antenna features an irregular octagonal MIMO patch antenna configuration
without any slots. This antenna is built upon an economical jeans substrate and powered
through a 50-ohm microstrip line, featuring jeans fabric with an ideal loss tangent of 0.02
and relative permittivity of 1.6, as measured through loss tangent measurement and relative
permittivity analysis. The dimensions for the antenna are 40 mm × 50 mm, while our
investigations also explore the ground plane slotting effects as well as the parasitic strip
lines between individual elements of its configuration, utilizing an ANSYS HFSS tool for
analysis and fine-tuning purposes. The dimensions of the irregular octagonal patch are
approximately equal to a quarter wavelength at operating frequency, i.e., 0.25λ at 4.6 GHz
frequency, as shown in Equation (1), is used to find the resonant frequency and dimensions
of the antenna.

fr ≈
c

4(P4 + P8)
√

1+εr
2

(1)
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Here, c is the speed of light, εr is the relative permittivity, and P4 and P8 are the
dimensions of the irregular octagonal patch.

A narrow slot is strategically incorporated into the ground plane to optimize antenna
performance by altering the electric length of the current density distribution in the par-
tial grounding. The investigation delves into the inter-element interactions, considering
the inherent challenges associated with the two-port MIMO antenna design. A parasitic
metallic strip line is located between the two irregular octagon-shaped patch antenna
elements to mitigate interference and to provide requisite isolation. The antenna elements
are strategically distributed with an inter element spacing of approximately 0.24 λ (λ being
wavelength related to operating frequency). Table 1 displays the dimensions for the irregu-
lar octagon two-port MIMO antenna proposed here. Notably, the proposed textile antenna’s
dimensions are compact, measuring 40 mm by 50 mm, demonstrating enhanced efficiency.
Extending a two-port wearable antenna design to include more ports requires careful
consideration of various factors, including coupling, geometry optimization, matching
networks implementation, feeding network setup, simulation testing, and comprehensive
simulation/testing.
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Table 1. Dimensions of the irregular octagon-shaped antenna.

Parameters Value (mm) Parameters Value (mm) Parameters Value (mm)

W 50 L 40 Lg 25
P1 8 P2 12 P3 1.5
P4 3.35 P5 3 P6 7
Sw 2 SL 8 W0 25
Pw 0.6 PL 13 P7 18.43
P8 10.5 D1 4 D2 4
D3 4 D4 4

An equivalent circuit for a patch antenna provides an accurate representation of its
electrical properties in an easily understood form, featuring components like capacitors,
inductors, and resistors to model its behavior and understand and analyze its performance,
such as impedance matching, radiation pattern, and bandwidth characteristics, without
complex electromagnetic simulations.

The AWR Design Environment allows users to quickly determine the equivalent circuit
parameters of an antenna by selecting its components. The patch antenna with a series
inductor with an initial value of 0.01 pF is connected to a parallel RLC patch circuit featuring
extracted values Rp = 54 Ω, Lp = 8 nH, and Cp = 0.33 pF. Additionally, the CLC circuit
model for parasitic elements with inductance extracted as Ls = 4.42 nH and Cs = 16.85 pF
between antenna elements and the parasitic element [25] is shown in Figure 2a. Differences
between both S-parameters in the simulation are accepted and reasonable between the
simulation and model circuit simulation models in terms of both model S-parameter values,
as shown in Figure 2b.
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3. Bending Analysis

Bending analysis of a flexible jeans-based antenna involves a meticulous examination
of the antenna’s behavior when subjected to various curvatures or bends. This evaluation
is pivotal in assessing the antenna’s performance, durability, and signal integrity in real-
world scenarios. From an electromagnetic perspective, the bending analysis delves into
how curvature affects the antenna’s radiation pattern, resonant frequency, bandwidth, and
impedance matching. Moreover, the resonance frequency of the antenna can experience
deviations as the curvature induces variations in the electrical length of the radiating element.

Figure 3 depicts the flexible configuration of the antennas under consideration in case
(i) R = 60, theta = 40, and case (ii) R = 50, theta = 45. While the impedance matching remains
consistent during operation, the resonance frequency experiences a slight rightward shift
owing to the curvature of the structure. Notably, even with further bending, the antennas
consistently retain their higher frequency band across all scenarios. In conclusion, the
impedance, resonance frequency, and bandwidth of the novel bent antenna exhibit strong
performance, underscoring its suitability for real-world communication scenarios. Figure 4
depicts three scenarios concerning S-parameters.
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conducted while measurements using an Anritsu Model: S820E MS2038C Vector Net-
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Figure 4. Comparison of the S-parameters of bending analysis.

4. Results

Figure 5 displays a prototype of a proposed textile two-port irregular octagon MIMO
antenna design. It was constructed on a substrate composed of jeans textile and copper foil
with thicknesses of 1 mm and 0.07 mm, respectively. Modeling for performance assessment
using the finite element method (FEM) in HFSS software v21 was then conducted while
measurements using an Anritsu Model: S820E MS2038C Vector Network Analyzer were
performed within an anechoic chamber as demonstrated in Figure 6. Section 3 provides an
analysis of the bending characteristics that the proposed antennas possess and conducts an
experiment to verify them with slightly bending wearable antenna; this test validates their
bending properties and further establishes their effectiveness within their operating ranges.
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4.1. Reflection Coefficient Results

Figure 7a shows the reflection and transmission coefficients of the conventional two-
port antenna (i.e., an irregular octagonal antenna) and the proposed two-port irregular
octagon-shaped wearable antenna. In Figure 6b, the measured impedance bandwidth is
illustrated, showing values of 45.6% (4.35–7 GHz) for the 5G NR mid-band sub-6 GHz.
During the HFSS simulation, simulated results achieved an impedance bandwidth of 64.15%
(3.6–7 GHz). However, the HFSS simulation indicated some minor variations. Moreover,
the obtained results exhibit minor deviations attributed to fabrication errors and conductor
loss in cables encountered during the measurement analysis, as depicted in Figure 7b.
The simulated and measured isolation parameter provides good isolation between the
proposed two-port flexible MIMO antennas. The measured lowest isolation is found at
−28 dB and it is maintained over the entire sub-6 GHz band. The wearable jeans textile
irregular octagon-shaped two-port MIMO antenna covers sub-6 GHz frequencies includes
the N79 band (4.40–5 GHz), the Wi-Fi-5 band (5 GHz to 5.85 GHz), the V2X/DSRC bands
(585–590 GHz) and the Wi-Fi-6 band (5.925–7.125 GHz) for 5G communications. Due to the
symmetry of this two-port antenna design, only single antenna parameters are shown, and
this information applies directly to the other antenna as well. A similar antenna design was
tested successfully within [2], further validating its use. Comparing on-body effects with
off-body results revealed no deviation from the intended frequency bands, confirming the
reliability of this method. HFSS v21 simulation software enabled the thorough examination
of wearable antennae’s characteristics as well as a precision equivalent to testing conducted
on human beings for accurate and scientifically valid results.
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4.2. Surface Current Distribution

At an operating frequency of 4.6 GHz, an irregular octagon-shaped wearable MIMO
antenna was subjected to testing of the current distortion. Figure 8 depicts the current
distribution and illustrates the coupling effect of the current between the proposed antennas
and the elements. When a slot is inserted in the ground, it alters the current distribution
between the ground planes, and the maximum current density is concentrated at the slot to
cancel the radiated and induced fields. The parasitic strip helps to achieve good impedance
matching and isolation between antenna elements. The combination of a slot within the
ground plane, as well as an extra strip of the parasitic element in between the radiating
components, was essential in achieving isolation and impedance matching simultaneously.
Hence, the isolation level is improved by −12 dB.
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4.3. Radiation Properties

In Figure 9, the proposed irregular octagonal two-port textile MIMO antenna’s radia-
tion performance in both the E and H planes is examined in depth. Figure 9a shows 2D
radiation patterns calculated at 5.2 GHz according to both the measured and simulated
results; these two-dimensional plots reveal that the antenna is radiating omnidirectionally.
Notably, both the measured and simulated radiation patterns demonstrate high degrees of
agreement in the E and H planes, respectively.
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Figure 9b illustrates both the simulated as well as the measured gains and radiation
efficiency of the irregular octagonal two-port textile MIMO antenna across frequencies from
3 GHz to 7 GHz. Our wearable textile irregular octagon-shaped two-port MIMO patch
antenna exhibits gains of up to 4.1 dB at frequencies as low as 4.6 GHz, with maximum
gains reaching 6.5 dB, and the efficiency is 96% when set to 6.75 GHz.

4.4. SAR Calculation

To better understand how radiation impacts our bodies, HFSS has integrated an
anatomically accurate body model into its antenna array for the easy simulation analysis of
its effects. This configuration enables simulations of radiation’s potential effects. The SAR
value was determined using Equation (2).

SAR = σ
|E|2

ρ
(2)



Micromachines 2024, 15, 651 10 of 14

Here, the σ, E and ρ refer to conductivity (s/m), field intensity (V/m), and the density
of biological tissue as a measure of mass in kg/m3. Below, Table 2 lists the properties of
tissues of the human body:

Table 2. Properties of tissues of the human body.

Tissue Type Skin Layer Fat Layer Muscle Layer Bone

Permittivity (εr) 42.1 5.3 52.8 18.5
Conductivity (S/m) 1.6 0.1 1.7 0.83

Loss tangent 0.28 0.15 0.25 0.26
Density (Kg/m3) 1108 910 1092 1010
Thickness (mm) 2 8 23 12

Because antennas emit backward radiation, it is imperative to assess their specific
absorption rate (SAR). To achieve this, a flat phantom representing body wear is used, in
line with the SAR research methodology; antennas are then mounted approximately 2 mm
above this human phantom. Figure 10a depicts cross-sectional views of human three-layer
models consisting of skin, fat, and muscle layers, while Figure 10b presents SAR analysis
conducted on proposed textile irregular octagonal patch MIMO antenna when placed onto
human bodies.
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5. MIMO Antenna Diversity Parameters
5.1. Envelope Correction Coefficient

Evaluating ECC in our MIMO antenna system is integral for measuring its diversity
performance, with ideal ECC values being below 0.5, and measuring how effectively this
prototype provides robust diversity based on this threshold. ECC measures isolation and
correlation across communication channels, as expressed by Equation (3).

ρ =

∣∣S*
11S12 + S*

21S22
∣∣2(

1 − |S11|2 − |S12|2
)(

1 − |S21|2 − |S22|2
) (3)

The determination of the error correction code (ECC) for the envisioned MIMO system
involves the utilization of the measured S-parameters. The ECC curve in Figure 11a dis-
tinctly reveals that the ECC value consistently maintains a level below 0.025 throughout the
entirety of N79, Wi-Fi-5/6, and V2X/DSRC in the sub-6 GHz band. This finding confirms
that the prototype excels in multiplexing performance, ultimately boosting data throughput.
This achievement holds significant importance in contemporary communication systems.
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5.2. Channel Capacity Loss

CCL is a crucial metric that plays a vital role in assessing MIMO channel capacity,
serving to quantify correlation among closely spaced patch elements within MIMO systems.
When working in multipath environments with a high signal-to-noise ratio, its calculation
requires using Equation (4a).

Closs = −log|Ψ
R |

2 (4a)

Assuming that ΨR represents an n × n correlation matrix (i.e., n = 2), components of
MIMO systems can be described by using one of the three equations shown here, and are
expressed relative to S-parameters in Equations (4b)–(4e).

Ψ11 = 1 − |S11|2 − |S12|2 (4b)

Ψ22 = 1 − |S21|2 − |S22|2 (4c)

Ψ12 = −(S ∗
11S12 + S∗

21S22
)

(4d)

Ψ21 = −(S ∗
22S21 + S∗

12S11
)

(4e)

In MIMO systems, the primary objective is often to achieve a very low CCL to max-
imize channel capacity. For the specific MIMO antenna under consideration, the CCL
threshold is established at 0.4 bits/s/Hz. As depicted in Figure 11b, the CCL consistently
maintains a significantly low value (CCL < 0.13 bits/s/Hz) throughout the overall operat-
ing band. Consequently, the proposed irregular octagon-shaped MIMO antenna proves to
be well-suited for applications in wearable systems.

6. Comparison of Existing Systems and Proposed Antenna

Table 3 provides a comparison between various parameters of different antennae,
including size, frequency range, gain, and isolation, including the proposed system and
existing systems.

Table 3. Comparison of existing systems and the proposed antenna.

Reference Dimensions
(mm2)

Dielectric
Permittivity

(εr)

Operating
Frequency (GHz)

Peak
Gain
(dB)

Isolation
(dB)

[2] 40 × 70 1.6 2.4–8.0 4.4 Min 22
Max. 53

[8] 30 × 30 10.2 2.37–2.52 - >20
[9] 38.1 × 38.1 4.4 2.3–2.8 2.79 12

[10] 92.3 × 101.6 1.3 2.367–2.53
5.147–5.863 5.8 20

35

[11] 40 × 40 1.7 3.3–3.6
4.5–5 - >17

In this paper 40 × 50 1.6 3.6–7 (simulated)
4.35–7 (measured) 6.5 >12

>28.5

Regarding the existing MIMO antennas for portable wireless applications with specific
outcomes, each is different from the others in terms of its size or operating frequency range.
If we focus on one particular antenna parameter, then we might not even obtain ideal values
for other antenna parameters. There is an existing MIMO antenna that has dimensions of
40 × 70 mm and the gain achieved by this antenna is 4.4 dB in the sub-6 GHz band from
4.4 GHz to 8 GHz. Here, we propose a MIMO antenna with dimensions of 40 × 50 mm2,
and we achieved 6.74 dB of gain, which is greater than the average gain and provides
better return loss, at around −45 dB, and better directivity. With regard to antenna size,
this antenna is smaller, providing improved results within its target frequency range of
approximately 4.35 GHz to 7 GHz, making it well suited to 5G applications.
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7. Conclusions

This paper introduces an innovative MIMO antenna system designed to deliver su-
perior isolation and stable pattern characteristics suitable for wearable applications. This
antenna features a single conducting layer in the shape of an irregular octagon and can
be seamlessly integrated into wearable jeans. The design process is employed in an FEM-
based HFSS full-wave simulator. The compact MIMO antenna, measuring 50 mm × 40 mm,
was physically fabricated on 1 mm2 of jeans cloth material. This antenna system operates
across a wide bandwidth in sub-6 GHz, offering a fractional bandwidth of 45.6%, and has
been demonstrated to withstand bending and body movement without compromising its
performance. The antenna system achieves gain, radiation efficiency, and SAR values of
6.7 dB, 96%, and 1.93, respectively. The gains achieved by the proposed antenna system
ensure robust and dependable communication links for wearable devices operating within
the sub-6 GHz band, thus providing seamless connectivity for diverse applications for the
N79, Wi-FiFI-5, Wi-Fi-6, and V2X/DSRC bands.
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