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Abstract: In the realm of commercial trade, the appearance quality of wheat is a crucial metric for
assessing its value and grading. Traditionally, evaluating wheat appearance quality is a manual pro-
cess conducted by inspectors, which is time-consuming, laborious, and error-prone. In this research,
we developed an intelligent detection system for wheat appearance quality, leveraging state-of-the-
art neural network technology for the efficient and standardized assessment of wheat appearance
quality. Our system was meticulously crafted, integrating high-performance hardware components
and sophisticated software solutions. Central to its functionality is a detection model built upon
multi-grained convolutional neural networks. This innovative setup allows for the swift and precise
evaluation and categorization of wheat quality. Remarkably, our system achieved an exceptional over-
all recognition accuracy rate of 99.45% for wheat grain categories, boasting a recognition efficiency
that was approximately five times faster than manual recognition processes. This groundbreaking
system serves as a valuable tool for assisting inspectors, offering technical support for customs
quarantine, grain reserves, and food safety.

Keywords: appearance quality assessment; fine-grained classification model; intelligent detection system

1. Introduction

With the development of the economy and the improvement of people’s living stan-
dards, the global supply of crops is becoming increasingly tight due to the increased
demand [1,2]. The international trade of crops through the global market not only helps
balance the market demand of crop-deficient countries but also enhances the income level
of farmers in crop-exporting countries, stimulating agricultural production and rural eco-
nomic growth in major crop-producing nations [3]. A prior assessment of the quality of
crops before import and export is crucial to ensuring grain security, as well as serving
as the basis for crop grading and is an essential safeguard for food safety. Among them,
the appearance assessment of granular crops (such as wheat, soybeans, etc.) is one of
the main methods for evaluating crop quality. Typically, a crop item is considered high
quality if the rate of unsatisfactory appearance is less than 2%, while a rate exceeding
12% makes it unsuitable for human consumption and can only be used for animal feed or
ethanol processing [4,5]. In practice, the visual quality assessment of granular crops often
requires inspectors to conduct manual sampling and sensory inspections for each kernel [6].
This method is labor-intensive, time-consuming, and cumbersome, far from meeting the
actual needs of crop reserves, production processing, and expedited customs clearance.
Moreover, issues such as subjective differences in inspection standards among inspectors
and increased error rates due to fatigue make it difficult to achieve uniform standards across
different countries and laboratories [7]. Therefore, developing an efficient and standardized
intelligent system for the visual quality assessment of crops is highly necessary.
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With the advancement of computer vision in recent years, researchers are exploring
the use of image processing techniques to replace manual detection. The objective is
to enhance detection accuracy and efficiency while minimizing labor costs. Researchers
employ conventional image processing methods to extract and refine features from gathered
crop images (taking wheat as an example, including broken grains, insect grains, moldy
grains, blemished grains, etc., as depicted in Figure 1), and subsequently analyze and
process them to derive the classification outcomes of imperfect grains [8–10]. However,
due to subtle visual feature discrepancies among different categories of imperfect grain
images, such as blemished grains and black-tipped grains, as well as potentially significant
visual feature differences within the same category, like broken grains, traditional image
processing methods often encounter challenges in achieving satisfactory results regarding
accuracy, repeatability, and generalization [11]. The robust feature learning capability of
deep learning effectively addresses this issue [12–14]. Through extensive data training,
the model grasps subtle feature distinctions and intricate relationships within the data,
enabling better generalization to new, previously unseen data, and yielding more precise
predictions [15–17].
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Figure 1. Images of various categories of wheat.

In this study, we developed an intelligent wheat appearance quality detection system
that integrates advanced hardware equipment and software technologies to ensure effi-
cient and precise detection results. On the hardware side, the system was equipped with
high-performance industrial computers, wireless touch displays, high-resolution cameras,
and other devices, ensuring the stability of system operations. Additionally, we designed
a specialized high-throughput sampling board for precise and comprehensive information
collection of wheat samples. On the software side, we utilized advanced deep learning
algorithms and AI technologies to construct a wheat appearance quality detection model
based on multi-grained convolutional neural networks. Through extensive data training
and analysis, the system can achieve rapid and accurate evaluation and classification of
wheat quality. Furthermore, we developed an intuitive and user-friendly interface to assist
operators in quickly picking up imperfect grains. Overall, our crop appearance quality de-
tection system integrates advanced hardware equipment, powerful software technologies,
and a user-friendly interface, providing users with a convenient and efficient experience.
This system serves as an effective tool to assist inspectors, facilitating efficient and fast
sorting operations, and providing technical support for customs quarantine, grain storage,
and food safety initiatives.

The main contributions of this study are as follows:

(1) We designed a high-throughput wheat sampling module to ensure comprehensive
image data acquisition, along with installing dual cameras in the system for capturing
images from both the top and bottom sides.
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(2) Initially, we harnessed AI technology to construct a versatile fine-grained network
classification model. To achieve fine-grained detection of wheat appearance quality,
we independently curated a high-quality dataset consisting of nearly 20,000 wheat im-
ages. Subsequently, we trained the network model using transfer learning techniques,
leading to an impressive 99.45% recognition accuracy rate.

(3) To assist in the manual sorting of imperfect grains, we created a sorting interaction
interface that assists users in swiftly and accurately locating and sorting imperfect
grains. This facilitates subsequent operations such as weighing and statistical analyses
of imperfect grains.

2. Materials and Methods
2.1. System Hardware Design

The overall structural design of the system, as depicted in Figure 2, primarily com-
prises two high-resolution cameras, four pairs of light sources (eight white light sources;
model number: MV-LLDS-192-28; power: 7.2 w (four), 9.0 w (four); color temperature:
6000–7000 K), a high-throughput sampling board and shelf, an external industrial computer,
a wireless electronic touchscreen, and a power supply module.
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2.1.1. Comprehensive Image Data Capture

• Image Acquisition Module

To minimize the impact of external light on the captured image, a sealed light-shielding
enclosure made of a metal material was devised for this study, featuring only one inlet and
outlet for sample insertion and retrieval (Figure 2A). Within this enclosure, a movable load-
ing platform was installed, capable of movement along the X and Y axes to accommodate
samples. This loading platform is operated by two stepper motors that control two pairs
of sliders, ensuring precise sample positioning. Positioned 18 cm above and below the
loading platform are two 2000 w high-resolution cameras (Nikon Corporation, Tokyo,
Japan) utilized for capturing wheat (or even other crop) image. Additionally, surrounding
the shooting plane approximately 10 cm above and below are four long incandescent light
sources, powered by the power supply module located beneath the enclosure.

• Design of high-throughput sampling board

The high-throughput sampling board developed for our research is a device designed
for arranging and placing granular crops. It features a composite double-layer structure
with sieve holes, as depicted in Figure 3A. The outer layer is a transparent square box
made of acrylic material, which enables the bottom camera to capture images of the back
side. Inside, there is a square sieve plate made of nylon material with hollows, securely
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fixed at the bottom of the sieve box. Nylon material was chosen due to its resistance to
discoloration from exposure to ultraviolet light, minimizing its impact on the captured
crop images. The size and shape of the bottom sieve holes were customized based on the
size and shape of the crop grains. For instance, using wheat as an example, we selected
olive-shaped sieve holes with a diameter that allowed only one normal-sized grain to fit
into each hole. Furthermore, the sieve holes were designed with double-sided chamfers,
with varying chamfer sizes (as shown in Figure 3B). Holes farther from the camera have
larger chamfers, while those closer to the camera have smaller chamfers. Holes directly
below the camera have no chamfers, and the chamfer angles are consistent on both sides.
This design effectively addresses edge obstruction issues, enabling the camera to capture
more comprehensive double-sided crop image information.
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Compared to existing technologies [18,19], our device features a composite double-
layer structure and a unidirectional double-sided chamfered sieve hole design, which
facilitates the capture of additional image information by the cameras. Additionally, this
design organizes crop grains in a regular pattern, simplifying image segmentation and the
pairing of front and back sides, thereby improving the crop detection efficiency.

2.1.2. Vision-Guided Human–Machine Interactive Sorting

The vision-guided human–machine interactive sorting module features a wireless
touch screen display device that provides the real-time sorting status for crops and high-
lights the position of grains to be picked up through flashing, as depicted in Figure 4.
On the left side of the display screen, details about the grains slated for picking up are
presented. Clicking on a specific type of grain triggers a color change from green to red
in the corresponding box, accompanied by flashing. Simultaneously, the top of the screen
displays “Please sort ** grains”, with images of the grains to be sorted shown on the left
side. The grid area on the right side corresponds to the sample box, with the flashing area
indicating the grains to be sorted. Inspectors utilize tweezers or a vacuum pickup pen to
extract grains from the flashing positions and deposit them into the corresponding category
containers. They repeat this process by clicking on the next button until all imperfect grains
have been sorted out.

It is worth mentioning that in our equipment, both the assistance sorting module and
the industrial computer are integrated into the entire system (Figure 2). The industrial
computer is positioned at the back, while the assistance sorting touchscreen is positioned
above the system. This integration allows for seamless operation and facilitates the work of
inspectors. Simultaneously considering ergonomic factors, we designed a specific angle
(approximately 25◦) for placing the display touch screen, enhancing the comfort of quality
inspectors when using the device.
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2.2. Dataset Annotation of Wheat Grains

The dataset annotation process in this study comprises several steps: the collection
of grain seeds, image acquisition, image preprocessing, and sample labeling. The grain
samples used were provided by the Shanghai Customs Technical Center in China and
covered 8 categories of samples including normal grains, broken grains, sprouted grains,
moldy grains, insect grains, blemished grains, black-tipped grains, and red enzyme grains,
as depicted in Figure 1. Each sample was identified and confirmed by technical experts
from customs, and the categories can be distinctly distinguished based on the surface
characteristics of the grains. After collecting the 8 categories of grain samples, we proceeded
to the image acquisition phase, capturing separate high-resolution images for each category
using the image acquisition module described in Section 2.1.1. Subsequently, the software,
built on Python 3.7, processes two images by extracting individual samples and pairs
them with their front and back images to create a sample set. Empty positions on the
sampling board were automatically excluded. Finally, the paired wheat images were
labeled using one-hot encoding [20] to establish a database with truth labels, as shown in
Figure 5. This labeling method is simple, intuitive, and easy to implement [21,22]. Following
data labeling, we invited two technical experts to validate the annotated images, making
corrections and deletions as necessary to ensure the data quality.
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The distribution of the various sample types in our dataset is shown in Table 1.

Table 1. The statistical count of various sample types.

Blemished Red
Enzyme Sprouted Blacktip Broken Mold Insect Intact Total

3188 2720 3014 2064 1648 1572 1854 2378 18,438
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2.3. System Software Design
2.3.1. Software Design

The software design workflow diagram of our system is depicted in Figure 6. Solid line
boxes denote tasks automated by the system, while unmarked areas require manual in-
tervention. Upon opening our system software, it enters the self-check mode, primarily
evaluating the operational status of the light source and cameras based on the light inten-
sity and image quality. If any anomalies are detected, manual intervention is needed for
repairs, such as checking for loose power lines, replacing light sources, and adjusting the
camera alignment. Once the self-check is passed, the system proceeds to the imperfect grain
detection phase for wheat. Initially, camera parameters and model hyperparameters can be
manually adjusted, or default settings from the software can be utilized. Subsequently, the
sampling plate is positioned on the shelf (Figure 2) and sample insertion into the system
is initiated by pressing the control button outside the device. Clicking the detection but-
ton on the software interface captures the final frame images from the upper and lower
cameras. Leveraging the segmentation and matching module introduced in this study, the
system extracts individual wheat grains from the images, followed by applying the trained
fine-grained classification model to detect imperfect grains one by one and annotating their
positions. Upon retrieving the sampling plate, the software automatically opens the sorting
interface (Figure 4), enabling the user to utilize the vision-guided human–machine inter-
active sorting module proposed in this study to pick up the imperfect grains. The system
then determines whether to proceed with the next batch; if yes, the process repeats, if no,
the weight of the picked up imperfect grains is measured. The system automatically reads
the weight results and presents them in a histogram on the interface for the operator to
view and save.
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The developed software interface is characterized by simplicity, clarity, strong consis-
tency, feedback capability, and ease of navigation. Its simplicity and clarity allow users
to quickly locate the functions and modules they require. Strong consistency ensures that
the layout, style, and interaction elements of our interface remain consistent, aiding users
in better understanding and utilizing the application. The feedback capability involves
providing timely feedback to users, such as indicating the acceptance of their actions
through progress bars and dialog boxes. Lastly, the ease of navigation ensures that users
can effortlessly access the information they need, thanks to clear navigation menus, labels,
and buttons.

2.3.2. Fine-Grained Classification Model for Wheat Quality

• Model structure

In this study, we developed a weakly supervised neural network model named the
Attention-based Cropping and Erasing Network [23] (ACEN, the study has been published
in Neurocomputing) for model training, as depicted in Figure 7.
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Initially, we extracted feature maps from a basic CNN model and then generated
attention maps using a 1 × 1 convolution kernel on these feature maps. Subsequently,
we utilized a bilinear global pooling framework [24] to combine the feature maps and atten-
tion maps into a final feature-attention matrix. This matrix was fed into the classification
head to determine the wheat category. By imposing alignment constraints, our model can
create distinctive feature representations for each subclass using straightforward training
strategies and minimal computational costs. To encourage multi-attention learning and mit-
igate overfitting, we employed attention region cropping and erasing operations. Attention
cropping images highlight locally magnified discriminative object parts, while attention
erasing images eliminate information-rich regions from the original image, prompting the
model to focus on other informative regions. These enhanced images were fed into our
model to improve the robust fine-grained feature learning, offering an effective solution
for fine-grained classification compared to standard random data augmentation. During
testing, our network initially predicts the classification of the original image, known as the
coarse prediction. Based on the confidence value and attention map, we obtain the fine-
grained cropping image, and the model generates a fine-grained prediction. This prediction
is integrated with the coarse and fine predictions to form the final result.

• Performance of the ACEN model on the wheat dataset
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The ACEN model, known for its universal fine-grained classification capabilities,
has demonstrated high performance on three widely used fine-grained classification
datasets (CUB-200-2011 [25], FGVC-Aircrafts [26], and Stanford Cars [27]). As a result,
we sought to integrate it into our system. Given that our fine-grained classification task
lies between coarse-grained and typical fine-grained tasks in terms of complexity, we spec-
ulated that utilizing a simpler backbone model like ResNet-50 could meet the practical
requirements. To validate this speculation, we replaced the original ResNet-101 backbone
in ACEN with ResNet-50 and evaluated both models’ performance on our wheat fine-
grained classification dataset. Interestingly, both models achieved comparable recognition
accuracy (as depicted in Table 2). This suggests that our task’s inherent complexity does
not necessitate an intricate backbone to effectively learn data patterns and features.

Table 2. The performance of different backbones in ACEN based on our dataset.

Base Model Wheat Acc. (%)

ACEN(ResNet-50) 96.0
ACEN(ResNet-101) 95.9

Based on the aforementioned study, we compared the ACEN method with other
advanced fine-grained classification models (all utilizing ResNet-50 as the backbone) on
the wheat dataset, as demonstrated in Table 3. The results demonstrated the ACEN method
achieved a state-of-the-art performance compared to other fine-grained classification net-
work models. Consequently, we integrated the ACEN method into the software system for
detecting imperfect wheat grains.

Table 3. Different fine-grained classification methods’ performance on the wheat dataset.

Methods Accuracy (%)

Baseline [28] 93.0
NTS-Net [29] 95.0
WSDAN [24] 94.8

PMG [30] 95.7
API-Net [31] 95.8

ACEN 96.0

2.4. Testing and Evaluation Criteria

• System recognition accuracy

To validate the system’s effectiveness, we conducted an evaluation of its recognition
accuracy. We randomly selected 10 batches of wheat samples, each containing 50 g of seeds
(according to the National Standard of the People’s Republic of China GBT 5494-2019 [32],
50 g of medium-sized seeds (such as wheat, grain sorghum) in a batch). Our system detected
each batch of wheat samples, and the detection results were individually evaluated by
experienced inspectors for each grain. We calculated perfect grains, imperfect grains, and
the average recognition accuracy across all samples using Formulas (1)–(3), as well as the
system’s recognition accuracy for each type of imperfect grain (Formula (2)).

Perfect grain recognition accuracy = (NP/TP) × 100% (1)

Imperfect grain recognition accuracy = (NIP/TIP) × 100% (2)

Overall accuracy = (NP + NIP)/(TP + TIP) × 100% (3)

Here, NP represents the number of perfect grains correctly identified by the machine;
TP represents the total number of perfect grains identified by the machine; NIP represents
the number of imperfect grains correctly identified by the machine; and TIP represents the
total number of imperfect grains identified by the machine.
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• System Detection Time

The efficiency in detection is a crucial measure of system usability for an automated
intelligent detection system. To evaluate this, we compared the time taken for manual
inspection by experienced quality inspectors with the time required for our system to detect
samples in a single batch.

3. Results
3.1. System Recognition Performance

In this study, we utilized our operating system to analyze wheat samples from
10 batches to assess the system’s recognition accuracy (depicted in Figure 8). Figure 8A
represents the system’s recognition accuracy for each type of imperfect grain. There were
variations in the system’s accuracy in recognizing different categories of imperfect grains.
This discrepancy may stem from certain categories having distinct features that make them
easier for the model to identify (such as broken grains). Conversely, other categories of
imperfect grains may exhibit less conspicuous characteristics, leading to a lower accuracy
(like black-tipped grains). Moving forward, we plan to prioritize enhancing the model’s
ability to recognize categories with less distinct features. Figure 8B represents the system’s
average recognition accuracy results for perfect grains, imperfect grains, and all of the
test samples. Across all samples, the system exhibited an average recognition accuracy of
99.59% for perfect grains and 95.71% for imperfect grains. As for the entire set of wheat sam-
ples, the system achieved a comprehensive recognition accuracy of 99.45%. The recognition
accuracy for imperfect grains was slightly lower than that for perfect grains. This disparity
can be attributed to the fact that the model primarily focuses on the global information of
the entire sample during the discrimination of perfect grains. In contrast, the model must
accurately discern the local features of wheat for imperfect grains, which is influenced
by factors like lighting conditions, shooting angles of the samples, or subtle differences
between categories that are not easily distinguishable. These factors occasionally lead to
confusion and misinterpretations in the model’s recognition process.
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3.2. Efficiency of the Wheat Appearance Quality Intelligent Detection System

The purpose of designing this system in our study is to replace traditional manual
inspection with intelligent detection. Therefore, evaluating the system’s efficiency during
operation is essential. Table 4 presents a comparison of the time duration for each stage
using the system for 50 g of wheat (one sample batch, requiring two detection cycles) and
the time duration for manual operations. It is evident that an experienced quality inspector
takes approximately five times longer to complete a batch of wheat inspection compared to
the machine. Hence, the development of this intelligent detection system is crucial.
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Table 4. The time taken by the system compared to manual operations.

Function Time/min

Capture Image and Preprocessing
(Segmentation/Pairing) ~(0.5 × 2)

Automatic Detection ~(2.5 × 2)
Manually Picking up ~(3 × 2)
Total Duration ~12
Time Taken by Inspector ~60

Furthermore, it is important to highlight that our system is not limited to the intelligent
detection of wheat samples but can also be adapted for assessing the appearance quality of
various granular crops. The key difference is that when evaluating other crop categories,
we must design a high-throughput sampling plate tailored to the specific crop under
examination, along with gathering high-quality datasets for model training.

4. Discussion
4.1. Discussion about the System Hardware Design

In this study, we implemented a high-throughput sampling plate with a chamfered
edge design (Section 2.1.1) to optimize the camera’s ability to capture detailed image in-
formation. For wheat appearance quality detection, even minor visual obstructions can
significantly impact the recognition accuracy. For example, a small obstruction like a hole
in an insect grain occurring in the camera’s blind spot, may be mistakenly identified as
a normal grain. Similarly, the unnoticed sharp tip of a black-tipped grain can also be
misidentified as a normal grain. Therefore, the targeted design of the sampling plate in this
study is crucial to ensuring the comprehensive capture of wheat information. Furthermore,
in a single batch of samples, the proportion of imperfect grains is pivotal for evaluating
the wheat batch quality. Hence, picking up and weighing the identified imperfect grains
becomes necessary. The sorting interface developed in this study, combined with the
densely arranged sampling plate, aids inspectors in swiftly identifying various imperfect
grain types and picking them efficiently (as depicted in Figure 4). Moreover, this study inte-
grated existing hardware into an intelligent system for wheat appearance quality detection.
The decision to use high-resolution cameras ensures that the captured wheat image pixels
meet the image recognition algorithm requirements, while also factoring in equipment costs.
The selection of sampling plate materials involved screening from numerous options and
considering factors like transport durability and resistance to discoloration from long-term
ultraviolet exposure. The sampling plate size underwent rigorous testing; a size too large
would hinder transport, while a size too small would necessitate multiple repetitions per
batch, affecting the system’s efficiency. Overall, our hardware design aimed to enhance
the practicality and effectiveness of the entire system. However, it is worth noting that
this study did not achieve fully automated wheat quality detection, picking, and weighing.
Future utilization of deep learning algorithms to directly map imperfect grain images with
their weight may pave the way for complete system automation.

4.2. Discussion about the System Software Design

The focus of this study was the overall system design. To ensure optimal performance
across all system modules, we developed corresponding software that was tailored to con-
trol the hardware components and execute specific functionalities through the integrated
algorithmic modules. Our software initiates a system self-check during startup, analyzing
the image quality captured by the camera to detect abnormalities in the light source or
camera. Once the self-check is passed, a quality inspection of wheat’s appearance can be
carried out. This phase incorporates segmentation and matching algorithms alongside a
fine-grained classification network, enabling the precise grain-by-grain detection of wheat
samples on the sampling board. Following this, our sorting interface guides inspectors
in identifying and picking up various types of imperfect grains. Upon manual weighing,
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the results are fed into the software, which automatically generates a user-friendly his-
togram for convenient viewing and analysis. Therefore, we interconnected the system’s
hardware via software, allowing it to execute detection tasks through human–machine
interactions.

5. Conclusions

This study harnessed deep learning-based AI technology to develop a classification
model for assessing wheat appearance quality, with the goal of categorizing and statistically
analyzing the appearance quality of wheat samples. The model demonstrates exceptional
accuracy, swift decision-making capabilities, robust generalization, and high repeatability.
The innovative design of dual cameras (top and bottom) and the high-throughput sampling
plate proposed in this study allows for comprehensive image capture from both sides of the
target object. Additionally, the double-sided chamfer design of the sieve holes enhances the
image capture comprehensiveness. Furthermore, the size and shape of the sieve holes can
be tailored to different crop varieties, thus broadening the system’s applicability. Moreover,
the incorporation of indicators for picking up imperfect grains streamlines the sorting
process for inspectors, enabling quick and efficient crop sorting. These advancements
collectively contribute to the efficacy and versatility of our system in intelligent crop quality
assessment. Overall, our study presents a robust solution for wheat appearance quality
assessment, leveraging cutting-edge technology to enhance the efficiency and accuracy of
crop quality evaluation processes.
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