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Abstract: Aerosol–cloud–precipitation interactions (ACI) are a known major cause of uncertainties in
simulations of the future climate. An improved understanding of the in-cloud processes accompany-
ing ACI could help in advancing their implementation in global climate models. This is especially the
case for marine stratocumulus clouds, which constitute the most common cloud type globally. In this
work, a dataset composed of satellite observations and reanalysis data is used in explainable machine
learning models to analyze the relationship between the cloud droplet number concentration (Nd),
cloud liquid water path (LWP), and the fraction of precipitating clouds (PF) in five distinct marine
stratocumulus regions. This framework makes use of Shapley additive explanation (SHAP) values,
allowing to isolate the impact of Nd from other confounding factors, which proved to be very difficult
in previous satellite-based studies. All regions display a decrease of PF and an increase in LWP with
increasing Nd, despite marked inter-regional differences in the distribution of Nd. Polluted (high
Nd) conditions are characterized by an increase of 12 gm−2 in LWP and a decrease of 0.13 in PF on
average when compared to pristine (low Nd) conditions. The negative Nd–PF relationship is stronger
in high LWP conditions, while the positive Nd–LWP relationship is amplified in precipitating clouds.
These findings indicate that precipitation suppression plays an important role in MSC adjusting to
aerosol-driven perturbations in Nd.

Keywords: aerosol–cloud–precipitation interactions; cloud droplet number concentration; machine
learning; marine stratocumulus; remote sensing; satellite observations

1. Introduction

Marine stratocumulus clouds (MSC) are known as the most common cloud type,
covering more than 20% of the global oceans in the annual mean with local coverage over
subtropical and midlatitude oceans sometimes above 50% [1]. MSC have a strong impact
on the Earth’s radiative budget by increasing the planetary albedo, as they are brighter than
the ocean surface below. Comparatively small changes in the radiative properties of such
marine boundary layer clouds can, therefore, lead to large changes in global shortwave
reflectivity [2,3]. Changes in cloud properties in response to aerosol emissions and climate
change can, thus, lead to large uncertainties in predictions of future climate [4–6].

The cloud shortwave radiative effect (CREs) of MSC is dependent on the clouds’
properties, such as effective droplet radius (re), cloud droplet number concentration (Nd),
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liquid water path (LWP), and cloud fraction (CLF), which in turn depend on environ-
mental conditions. Nd is related to the availability of aerosols, which function as cloud
condensation nuclei (CCN) during cloud formation. Increases in Nd with constant liquid
water will lead to a lower re, resulting in an increase in the CREs known as the Twomey
effect [7]. In addition to this immediate effect on the CREs, subsequent effects from aerosol–
cloud–precipitation interactions (ACI) through resulting cloud adjustments further alter
the radiative forcing.

For polluted clouds (characterized by higher CCN), the more numerous and smaller
droplets lead to subsequent LWP adjustments within the cloud through two counteracting
pathways: precipitation suppression and entrainment feedback [8,9]. The initial droplet
formation process in MSC through condensation of liquid water on CCN can produce
droplets up to a size of ∼20 µm [1]. Further growth to droplets large enough to precipitate is
realized through coalescence (the merging of cloud droplets), either by collision of multiple
small droplets (termed “autoconversion” [10]) or by a larger droplet that collects smaller
droplets (“accretion”). Under conditions with elevated Nd and a resulting decrease in re the
process of collision–coalescence is inhibited due to its strong dependence on the droplet size
([1]). The subsequent decrease in precipitation is expected to lead to an increase in LWP and
cloud lifetime [11] due to a less stable boundary layer and the weakened cloud liquid water
sink [12]. However, the extent to which the process of precipitation suppression impacts
clouds is unclear. Previous studies that use observations of natural and anthropogenic
aerosol emission events to estimate the impact of indirect ACI on clouds suggest there is
no or only a negligible LWP adjustment in clouds as a response to Nd perturbations [9,13],
calling into question the impact of precipitation suppression on a global scale. In contrast,
in a recent study, Gupta et al. [14] showed the importance of precipitation suppression
in environments with elevated levels of aerosol for the Southeast Atlantic Ocean (SEA)
with observation data acquired in the NASA ObseRvations of Aerosols above CLouds
and their intEractionS (ORACLES) campaign [15,16]. In addition to the suppression of
precipitation, the reduced droplet radius is also hypothesized to lead to a decrease in
droplet sedimentation speed [17,18] and an increased evaporation–entrainment rate at the
cloud top acting as a LWP sink [19–21], which is further enhanced in less stable situations
with a lower humidity above the cloud top.

Accordingly, by way of the two opposing processes described above, the cloud LWP
adjustment in response to Nd perturbations could potentially be positive, negative, or even
absent [8]. Previous studies have shown that the LWP response to Nd perturbations is
dependent on the cloud state [3,22] with findings of a stronger increase in LWP with Nd
in precipitating clouds likely attributed to precipitation suppression [23]. If precipitation
suppression is the dominating process through which Nd controls the LWP sinks, it is to be
expected that there is a decrease in precipitation with increasing Nd. On the other hand,
a decrease in LWP in non-precipitating clouds with increasing Nd may be indicative of
enhanced entrainment feedback. The objective of this study is to analyze the impact of
changes in Nd on precipitation and liquid water path in MSC by utilizing statistical machine
learning models and data from satellite observation. While previous studies (e.g., [8,24,25])
have presented the Nd–LWP relationship using satellite data, it has proved very difficult or
impossible to disentangle the impact of changes in Nd alone as a causative factor due to
various other confounding factors. In this work, the use of machine learning models allows
these confounding factors to be controlled for, enabling the analysis of the impact of Nd in
isolation. This represents a step-change in the ability to use observations to quantify ACI
effects and provides a robust metric for testing and improving climate models.

2. Materials and Methods

This study is conducted for five marine regions that each cover 10° by 10° and are
characterized by a high annual occurrence of stratocumulus clouds as defined by Klein
and Hartmann [26]. The regions are named according to the closest eastward coastline
as displayed in Table 1. A machine learning model is fitted in each region based on a
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combination of satellite observations and reanalysis model data in order to asses the impact
of changes in cloud droplet number concentration (Nd) on precipitation and LWP, and
factors controlling these relationships.

Table 1. Locations of the study domains with the total number of observations (N) and the explained
variability for the PF (R2

p f ) and LWP (R2
lwp) models.

Region Name Latitude Longitude N R2
p f R2

lwp

Australia 25° S–35° S 95° E–105° E 16,504 0.63 0.61
California 20° N–30° N 120° W–130° W 18,919 0.71 0.65
Canaries 15° N–25° N 25° W–35° W 8431 0.65 0.67
Namibia 10° S–20° S 0°–10° E 20,337 0.68 0.66
Peru 10° S–20° S 80° W–90° W 23,512 0.63 0.66

2.1. Data

The dataset used here is a refined version of the data used in Zipfel et al. [23]. Satellite
observations of various cloud properties are taken from the CALIPSO-CloudSat-CERES-
MODIS Merged Release B1 (C3M) product, which is available for July 2006 to April 2011.
The C3M dataset is based on the Clouds and the Earth’s Radiant Energy System (CERES)
with a resolution of ∼20 km [27]. Observations from multiple additional sensors (Cloud-
Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO), Cloudsat, and
Moderate Resolution Imaging Spectroradiometer (MODIS)) are collocated for each of these
CERES “footprints”. A footprint, therefore, represents an individual observation with data
from all four instruments combined. Each CERES footprint is further segmented into a
maximum of 16 cloud groups (distinguished as unique entities as seen from above) and
up to 6 cloud layers (distinguished vertically) by utilizing the high resolution and vertical
profiles provided by CALIPSO and CloudSat.

Only CERES footprints with a single cloud layer are used in this study to exclude the
influence of superimposing clouds. Additionally only observations of low-level clouds are
selected by limiting the cloud top height (CTH) to 3 km [28]. CTH is defined as the median
of all cloud groups in a CERES footprint.

To analyze the impact of the cloud droplet number concentration on precipitation
formation, the CloudSat precipitation flag is used to calculate the precipitation fraction
(PF). The precipitation flag consists of four possible classes (no precipitation, liquid, solid,
or drizzle) and provides this classification for each cloud group. The PF is calculated for
each CERES footprint and is defined as the number of cloud groups where any form of
precipitation is detected by CloudSat, divided by the total number of cloud groups [23].
Drizzle is the prevalent class of precipitation detected over all regions (>88% of precipitat-
ing cloud groups). Only a total of two observations of solid precipitation are found in the
Peru region.

Using MODIS retrievals of the effective cloud-droplet radius (re), the cloud opti-
cal depth (τc), the cloud-top temperature, and the cloud-top pressure, the cloud-droplet
number concentration (Nd) is calculated according to Grosvenor et al. [29]:

Nd =

√
5

2πk

√
fad cw τc

Qext ρw r5
e

(1)

where k = 0.8, fad = 0.66, and Qext = 2. While the overall uncertainty in the calculated Nd is
estimated to amount to around 78% at the native MODIS resolution of 1 km2 [29], this is
likely reduced for the footprint averages utilized here. The accuracy of the Nd calculation
was further improved by utilizing the re and the τc provided by the CERES enhanced cloud
algorithm. The enhanced cloud algorithm makes use of the CALIPSO and CloudSat cloud
height and cloud mask retrievals in addition to the MODIS reflectances to obtain re and
τc [27], reducing the number of cases where default values for observations outside the
lookup table are used in the standard CERES algorithm. Furthermore, any instances where
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re or τc are below 4 are removed from the dataset due to the associated uncertainties for
retrievals in this range [30]. Finally, only the 1st–99th percentiles for Nd are used in order to
remove any remaining outliers possibly introduced by measurement errors.

Information on the background environment is provided to the model through the
meteorological reanalysis data taken from the ERA5 dataset available through the European
Centre for Medium-Range Weather Forecasts (ECMWF) at a 0.25° × 0.25° resolution on an
hourly basis [31,32]. Data for mean sea-level pressure (MSL), sea-surface temperature (SST),
air temperature, relative humidity (RH), u, and vs. wind components and vertical velocity
are collocated with the C3M data. The pressure levels in the ERA5 data that are closest
to the lower and upper cloud boundaries are then chosen based on the cloud-base height
(CBH) and CTH from CALIPSO. For each CERES footprint, these pressure levels are then
used to select the temperature, RH and wind components below the cloud, and the RH and
wind components above the cloud (Table 2). Additionally, the 2 m air temperature and the
temperature at 700 hPa from ERA5 are used to calculate the estimated inversion strenght
(EIS) according to Wood and Bretherton [33], assuming a surface pressure of 1010 hPa.

Table 2. Overview of the variables used in the machine learning models.

Variable Name Abbreviation Origin

Temperature below cloud Tbc ERA5
Vertical velocity below cloud wbc ERA5
Winds below cloud ubc/vbc ERA5
Winds above cloud uac/vac ERA5
Relative humidity below cloud RHbc ERA5
Relative humidity above cloud RHac ERA5
Mean sea level pressure MSL ERA5
Sea surface temperature SST ERA5
Estimated inversion strength EIS ERA5
Cloud top height CTH CALIPSO
Precipitation fraction PF CloudSat
Cloud droplet number concentration Nd MODIS
Liquid water path LWP AMSR-E
Rain water content 1 RWC AMSR-E

1 RWC not used to predict LWP.

The liquid water path (LWP) and the rain water content (RWC) are obtained from the
Level-2B precipitation product Version 3 of the Advanced Microwave Scanning Radiometer-
Earth Observing System (AMSR-E) sensor aboard the Aqua satellite. To avoid the risk of
an introduction of a pseudo-relationship in the Nd and LWP retrievals due to correlated
errors when both are based on the MODIS sensor, the AMSR-E product is utilized as an
independent source of LWP measurement. The data are provided with a resolution of 5 km
across track and 10 km along track [34]. To maintain a similar spatial scale for all satellite
observations, the mean LWP and the mean RWC is calculated for each CERES footprint
based on the five AMSR-E pixels closest to the center of that footprint as in [23].

2.2. Models

Gradient Boosting Regression Tree (GBRT) models are trained to predict PF and LWP
in all regions. GBRTs are able to capture non-linear relationships while considering the
interaction effects between the predictor parameters, and do not depend on the input data
having a specific distribution [35]. GBRT and other tree based machine learning models
have been utilized to analyse low-level clouds and ACI in the past [23,36–39]. The input
variables for the machine learning models are displayed in Table 2. The PF model utilizes
all variables as input features, while the LWP model does not use the RWC. This was done
to reduce the impact of confounding errors in those models, as both LWP and RWC are
retrieved from the AMSR-E sensor, which is known to have problems separating LWP
and RWC especially in situations with low amounts of liquid water [40]. Shapley additive
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explanation (SHAP) values are calculated for each individual model and used to analyze
the effect of changes in Nd on the predicted cloud parameters (PF and LWP).

SHAP values quantify the contribution of each predictor variable (model feature) to
the model prediction [41,42]. The sign of a feature’s SHAP value corresponds to a decrease
(negative SHAP value) or increase (positive SHAP value) the model prediction (relative
to the mean prediction value) in response to a feature’s observed value. Therefore, each
model prediction for an individual observation can be described as the sum of the mean
model prediction (defined as the mean of the predictand variable provided to the model
for training) and the SHAP values for all model features related to that observation. The
SHAP values themselves are the sum of the main effects, which are attributed to a single
feature (the current main feature) and the interaction effects which account for the impact
of the corresponding secondary features. Interaction effects can be analyzed to explore the
relationship between multiple model features and their impact on the model prediction.
They are defined as the change in the SHAP value of the main feature that occurs when the
secondary feature is removed.

Prior to the analysis of the GBRT models’ SHAP values, hyperparameter tuning was
performed to optimize the explained variability (R2, Table 1) and minimize the Root Mean
Squared Error (RMSE) by utilizing a training and a test dataset, which, respectively, had
70% and 30% of the data assigned randomly. The hyperparameters for the models have
been adjusted following a grid search of three parameters that have the strongest impact
on model performance (learning rate = 0.05, number of estimators = 1000, maximum tree
depth = 3). Additionally, the minimum number of samples per leaf was set to 50 to help
prevent the models from overfitting.

3. Results

An overview of the five study regions and the spatial distribution of the grid cell
averages for Nd, PF, and LWP is shown in Figure 1. All regions display a gradient from
the east (closer to the coastline) towards the open ocean in the west with decreasing Nd
and increasing PF and LWP, indicating a negative relationship of Nd with PF and LWP.
This gradient is less pronounced for the Canaries and the Australian region (Figure 1b,c),
likely due to the larger distance to the coast and the prevailing wind direction resulting in a
reduced influence of continental aerosol emissions. The continental influence is also evident
from the maxima in observed Nd, which are highest in the Californian and Namibian
region (indicated by the dark brown shading, Figure 1a,c), while the Canaries and the
Australian region show markedly lower Nd maxima (light brown shading, Figure 1b,c).
In the following Sections 3.1 and 3.2, the Nd–PF (Nd–LWP) relationship is analyzed using
machine learning, specifically exploring the influence of LWP (PF).

3.1. Precipitation Fraction

The regional machine learning models are able to explain 63–71% of the observed
variability in PF (R2 shown in Table 1) in the independent test data, displaying a similar
performance across the different regions. Figure 2 shows the SHAP values for Nd (Nd–
SHAP) for the models predicting PF across the five regions. Each dot represents a single
observation and is colored by LWP. All five regions are characterized by a decrease in
predicted PF with increasing Nd (Figure 2a–e). This negative relationship is characterized by
a steep decrease in Nd–SHAP for the lower spectrum of the Nd distribution (approximately
0–200 droplets cm−3), which then stagnates at higher Nd. Therefore, increases in Nd above
∼200 cm−3 do not lead to a further substantial decrease in PF.



Atmosphere 2024, 15, 596 6 of 14

Figure 1. Overview of the five regions analyzed in this study. Contour plots (a–e) show the grid
cell mean Nd (brown shading), PF (blue shading), and LWP (purple shading) for each region based
on data aggregated on a 1° by 1° grid for the years of 2006–2011. Grid cells with less than five
observations are shown in black. Regional averages are displayed above the contour plots. For
reference, each region (a–e) is additionally displayed as a red rectangle in the global map.

Figure 2. Scatter plots for the five stratocumulus regions (a–e) showing the effect of changes in Nd on
PF using SHAP values. Each dot represents a single observation. The LWP for each observation is
indicated by color increasing from blue to red. The interconnected dots show the median Nd–SHAP
value for 20 equal sample bins across Nd for the 1st (blue) and 4th (red) LWP quartiles with one
standard deviation indicated by the shaded areas. Shown in grey at the bottom of each panel is a
histogram of the distribution of observed Nd.
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To analyze the impact of LWP as a secondary model feature on the Nd–SHAP, we
compare the observations based on the 1st and 4th quartile of LWP. The average LWP
for the lower quartile is close to 40 gm−2 for all regions, while the average LWP for the
upper quartile is ∼160 gm−2 for the Australian and Peruvian region and in the range of
120–130 gm−2 for the Canaries as well as the Californian and Namibian region. In order
to better display the predicted PF response to possible interactions with LWP, the lower
and upper LWP quartiles are split into 20 equal Nd sample bins (ESB). The interconnected
dots in Figure 2 show the median Nd–SHAP value of the ESB, with shading indicating one
standard deviation. The ESB lines are colored according to their respective LWP quartile
(lower quartile—blue, upper quartile—red). In all regions, with the exception of Australia
(Figure 2b–e), there is a discernible difference in the predicted PF response to Nd between
the low (blue) and high (red) LWP cases, suggesting an amplified sensitivity of PF to Nd in
high-LWP environments and a dampened Nd–PF sensitivity for below-average LWP.

To test whether these observed differences in Nd–PF sensitivity are actually attributed
to LWP in the machine learning model, interaction effects are analyzed. The interaction
effects for Nd and LWP are depicted in Figure 3 and colored by LWP. Here, the interaction
effects are defined as the change in the PF response to an Nd value when LWP is present
as a model predictor versus a model without LWP. Therefore, it quantifies how sensitive
the predicted PF response to Nd is to the secondary feature LWP. The interaction effects
clearly show a separation of the PF response to Nd by LWP. In low LWP conditions (blue
dots), interaction effects tend to increase with Nd, whereas the opposite is the case for
high LWP conditions (red dots), which becomes especially apparent in the diverging
pattern for Nd > 100. This shows that in the machine learning model, the predicted PF
response to Nd is modulated by LWP where the negative Nd–PF sensitivity is amplified
in high LWP conditions (adding the negative Nd–LWP interaction effect relationship to
the negative Nd–PF relationship), but dampened in low LWP conditions (adding the
positive Nd–LWP interaction effect relationship to the negative Nd–PF relationship). In
the Californian, Canarian, Namibian, and Peruvian region (Figure 3b–e), observations
characterized by a high LWP show a negative impact on the predicted PF as opposed
to observations with a low LWP. This suggests that in the machine learning model the
differences in Nd–PF sensitivity for high and low LWP situations are in fact caused by LWP.
The distinction between high and low LWP cases is not as clear for the Australian region,
however (Figure 2a). Similarly, in Figure 3a, the LWP interaction effects on Nd–SHAP are
not as clearly separable for low and high LWP cases as for the other regions. This may be
attributed to the lack of high Nd observations in the region.

Figure 3. Scatter plots for the five stratocumulus regions (a–e) showing the interaction effects for Nd
and LWP when predicting PF. Each dot represents a single observation. The LWP is indicated by
color increasing from blue to red.
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To quantify the Nd–PF relationship and enable an inter-regional comparison despite
marked differences in the Nd distribution, two distinct Nd bins are defined: (i) pristine
conditions where 20 < Nd < 50 and (ii) polluted conditions where 150 < Nd < 250. The
sensitivity of PF (SPF) to changes in Nd is then defined as the difference in the median SHAP
value of the polluted bin minus the pristine bin. To assess the impact of the LWP control on
the Nd–PF relationship suggested above (Figures 2 and 3), the 1st and 4th quartile of LWP
are used to calculate SPF for low (Sl

PF) and high (Sh
PF) LWP conditions, respectively. SPF

values for all regions are displayed in Figure 4 with color indicating the LWP conditions.
All five regions are characterized by a negative SPF with an inter-regional average of −0.13.
A negative SPF indicates a decrease of the predicted PF with increasing Nd that is attributed
solely to Nd. As SHAP values are always given in units of the model’s predictions, they have
the advantage of simplifying the interpretation of the physical impact of SPF. Accordingly,
a SPF of −0.13 refers to an Nd-driven median reduction of PF by 13 percentage points from
pristine to polluted conditions (e.g., a median PF of 0.40 in pristine and 0.27 in polluted
conditions). Throughout all five regions, high LWP conditions display a stronger negative
Nd–PF sensitivity (Sh

PF < Sl
PF), with an inter-regional average Sh

PF of −0.16, compared
to an average Sl

PF of −0.10. The Californian (Sh
PF = −0.22, Sl

PF = −0.11) and Namibian
(Sh = −0.16, Sl = −0.08) regions show the largest differences in sensitivities, with Sh

PF
values twice as large as Sl

PF.

Figure 4. Sensitivity of PF (SPF) to changes in Nd defined as the difference in the bin median Nd-
SHAP values between the 20 < Nd < 50 and 150 < Nd < 250 bins. Error bars show the range of the
differences between the 25th and the 75th percentile of both Nd bins. Values are shown for both low
LWP (Sl

PF, blue) and high LWP (Sh
PF, red) conditions.

3.2. Liquid Water Path

Similar to the previous section, the machine learning models predict LWP equally well
across the five regions with an explained variability in the range of 61–67% (Table 1) in the
independent test data. Figure 5 shows the SHAP values for Nd for the models predicting
LWP akin to Figure 2, but with each dot colored by PF. The models for all regions show
a positive Nd–LWP relationship (Figure 5a–e) as the SHAP values increase with higher
Nd. The increase in predicted LWP is larger at low Nd values, whereas at higher Nd (i.e.,
Nd > 100), LWP is less sensitive to further increases in droplet number, which has been
shown for the Namibian stratocumulus region in previous work [23]. This saturation effect
is consistent across all regions except the Canaries, where the predicted LWP is shown to
increase with Nd even for Nd > 100. Aside from the Canaries, the saturation effect seems to
be independent of the large inter-regional differences observed in the distribution of Nd.
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It is worth noting that the Californian and Peruvian regions (Figure 5b,e) display a slight
decrease in LWP in high Nd conditions for non-precipitating clouds (blue dots), which may
be indicative of entrainment feedback.

Figure 5. Same as Figure 2 but for models predicting LWP. Scatter plots for the five stratocumulus
regions (a–e) showing the effect of changes in Nd on LWP using SHAP values. Each dot represents a
single observation. The PF for each observation is indicated by color increasing from blue to red. The
interconnected dots show the median Nd–SHAP value for 20 equal sample bins across Nd for the 1st
(blue) and 4th (red) PF quartiles with one standard deviation indicated by the shaded areas. Shown
in grey at the bottom of each panel is a histogram of the distribution of observed Nd.

All regions show a higher sensitivity of LWP to changes in Nd for precipitating clouds
(upper quartile of PF, red dots) when compared to non-precipitating clouds (lower quartile
of PF, blue dots). This difference is most pronounced for the Californian and Peruvian
regions (Figure 5b,e) and is driven by the opposing interaction effects of PF in precipitating
and non-precipitating clouds (Figure 6). In all five regions these interaction effects lead
to an increase in the predicted LWP with increasing Nd in precipitating clouds (red dots),
while non-precipitating clouds (blue dots) are characterized by a decrease in the predicted
LWP. Using the same definition of pristine and polluted conditions as in Section 3.1, the
sensitivity of LWP (SLWP) to changes in Nd is calculated as the difference in the median
SHAP value for the polluted bin minus the pristine bin. Similar to Section 3.1, the 1st
and 4th quartile of PF are used to asses the impact of PF on the Nd–LWP relationship
by calculating the LWP sensitivity for non-precipitating clouds (Sl

LWP) and precipitating
clouds (Sh

LWP). Figure 7 shows SLWP for all regions with color indicating the cloud state
(non-precipitating—blue, precipitating—red). All five regions display a positive SLWP
with an inter-regional average of 12 gm−2 more liquid water in polluted clouds when
compared to pristine conditions. This relationship is further enhanced in precipitating
clouds with an average Sh

LWP of 15 gm−2 and weakened under non-precipitating conditions
(Sl

LWP = 8 gm−2). While the impact of PF on the Nd–LWP relationship can be observed in
all regions, it is especially pronounced in the Californian (Sh

LWP = 21 gm−2, Sl
LWP = 9 gm−2)

and Peruvian (Sh
LWP = 15 gm−2, Sl

LWP = 7 gm−2) regions.
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Figure 6. Same as Figure 3 but for models predicting LWP. Scatter plots for the five stratocumulus
regions (a–e) showing the interaction effects for Nd and PF when predicting LWP. Each dot represents
a single observation. The PF is indicated by color increasing from blue to red.

Figure 7. Same as Figure 4 but for models predicting LWP. Sensitivity of LWP (SLWP) to changes
in Nd defined as the difference in the bin median Nd-SHAP values between the 20 < Nd < 50
and 150 < Nd < 250 bins. Error bars show the range of the differences between the 25th and
the 75th percentile of both Nd bins. Values are shown for both low PF (Sl

LWP, blue) and high PF
(Sh

LWP, red) conditions.

4. Discussion

Previous studies examining the relationship between cloud Nd and precipitation often
utilize a measure of precipitation susceptibility defined as the negative fractional change in
precipitation with a fractional increase in Nd first introduced by Feingold and Siebert [43].
Precipitation susceptibility may be based on different proxies for precipitation, such as the
rain rate, the probability of rain, and the rain intensity [44]. Here, we compare the findings
of the precipitation susceptibility based on the probability of rain (R0) to SPF based on
PF. The probability of rain as defined in Wang et al. [45] lends itself to comparison with
PF as both measures are calculated by relating the number of precipitating clouds to the
total number of clouds observed. R0 is found to be variable in strength depending on
the cloud thickness (H) [46,47], but is reported to be strictly positive for MSC in previous
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works [44,46–48] when considering the LWP range covered by the dataset analyzed here.
A positive R0 indicates a decrease in the probability of rain with increasing Nd [43], which
is in agreement with the findings for SPF presented here. The influence of LWP on R0 is
not described as unambiguously in the literature. While Terai et al. [44,46] suggested a
decreasing R0 in MSC with increasing H, Jung et al. [47] showed that there is an increase
in R0 with increasing H in MSC up to intermediately thick clouds and Gupta et al. [14]
reported an overall increase in R0 with increasing H especially in high Nd environments.
An increase in R0 with H agrees well with the finding of a more negative SPF in high LWP
MSC, as both indicate a stronger decrease in the occurrence frequency of precipitation with
increasing Nd in clouds with more liquid water available.

Recent studies looking to analyze the Nd–LWP relationship globally based on MODIS
satellite obseravtions find a positive sensitivity at low Nd and a negative sensitivity at
higher Nd (Nd > 30), the latter of which dominates the overall correlation, leading to a
decrease of LWP with increasing Nd [8,25]. In contrast to this, a general pattern of LWP
increasing with Nd has been reported in previous studies based on models [22,49–51] as
well as observation data [23,52,53], which is consistent with the findings of a positive but
non-linear Nd–LWP relationship here. Only the Californian and Peruvian stratocumulus
regions show a slight decrease in LWP under high Nd conditions in non-precipitating
clouds, which may be attributed to the influence of evaporation–entrainment feedback,
especially since the two regions show a low average for the relative humidity above cloud
(California avg. RHac = 29%, Peru avg. RHac = 20%). However, as opposed to the
findings of Gryspeerdt et al. [8], this decrease only occurs above a higher Nd threshold
(Nd > 150), is much smaller in magnitude, and is unable to reverse the overall positive Nd–
LWP relationship. The findings here are closer to those displayed in Ackerman et al. [17],
who used large eddy simulations that indicate an LWP increase with increasing Nd up to
≈60–100 cm−3, depending on the relative humidity above cloud. At this point precipitation
may be mostly suppressed, which could then lead to the negative impact of evaporation
entrainment on LWP becoming dominant, especially under conditions with drier air above
the clouds.

The observation of a decreasing PF (especially for high LWP clouds) with increasing Nd
along with an increasing LWP (especially in drizzling clouds) shown here can be explained
by the process of precipitation suppression [11]. Clouds characterized by higher LWP that
are precipitating or have the potential to develop precipitation are more susceptible to
precipitation suppression. However, low LWP clouds are unable to form precipitation due
to LWP acting as the limiting factor and hence there can be no precipitation suppression.
This tendency of LWP enabling precipitation and Nd regulating precipitation has also been
described by Lu et al. [54] albeit in a more general manner for a larger range of LWP than is
observed in MSC.

5. Conclusions

In this study, explainable machine learning models (in the form of GBRTs) were trained
to predict PF and LWP over five marine areas characterized by a high occurrence of MSC.
SHAP values were used to analyze the statistical relationship between Nd, PF, and LWP in
order to provide a better understanding of cloud adjustments to aerosol perturbations. The
main findings are as follows:

• The GBRT models are able to explain ∼60–70% of the variability (Table 1) in LWP and
PF in the five regions considered here.

• With increasing Nd, an overall decrease in PF and increase in LWP is found in all
five regions. The decrease in PF is amplified in high LWP clouds and the increase in
LWP is stronger for precipitating clouds.

• The process of precipitation suppression is likely responsible for the observed sensitiv-
ity of PF and LWP to changes in Nd.
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• Evaporation–entrainment feedback may be responsible for a decrease in LWP in
non-precipitating clouds under high Nd conditions in the Californian and Peruv-
ian region.

The machine learning framework applied in this work explicitly considers the entire
Nd–PF-LWP system and related environmental parameters on a fine spatial scale, thereby
yielding more dependable results compared to approaches considering only the binary
relationship between cloud parameters. However, even the comparatively high spatial
resolution of the dataset used here is still too coarse to resolve processes on the cloud
formation scale. In order to further improve the models’ performance, an increased spatial
resolution for the input data—especially the thermo-dynamic parameters derived from
ERA5—would be desirable. Nevertheless, it was possible to demonstrate that the displayed
approach is capable of isolating individual processes and is able to account for non-linearity,
while also incorporating interactive effects between multiple parameters. Accordingly,
the findings discussed in this work show the importance of precipitation suppression in
MSC in particular and the potential benefit of utilizing explainable machine learning to
analyze ACI. By isolating the impact of individual parameters from other confounding
factors—which proved to be a challenging endeavour in previous work—the displayed
approach opens an avenue to further disentangle the effects of ACI using models or
satellite observations.
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