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Abstract: This study explores the spatiotemporal variability and determinants of rainfall patterns
during the March to May (MAM) season in Rwanda, incorporating an analysis of teleconnections
with oceanic–atmospheric indices over the period 1983–2021. Utilizing the Climate Hazards Group
Infrared Precipitation with Stations (CHIRPS) dataset, the study employs a set of statistical tools
including standardized anomalies, empirical orthogonal functions (EOF), Pearson correlation, the
Mann–Kendall (MK) trend test, and Sen’s slope estimator to dissect the intricacies of rainfall vari-
ability, trends, and their association with large-scale climatic drivers. The findings reveal a distinct
southwest to northwest rainfall gradient across Rwanda, with the MK test signaling a decline in
annual precipitation, particularly in the southwest. The analysis for the MAM season reveals a
general downtrend in rainfall, attributed in part to teleconnections with the Indian Ocean Sea surface
temperatures (SSTs). Notably, the leading EOF mode for MAM rainfall demonstrates a unimodal
pattern, explaining a significant 51.19% of total variance, and underscoring the pivotal role of at-
mospheric dynamics and moisture conveyance in shaping seasonal rainfall. The spatial correlation
analysis suggests a modest linkage between MAM rainfall and the Indian Ocean Dipole, indicating
that negative (positive) phases are likely to result in anomalously wet (dry) conditions in Rwanda.
This comprehensive assessment highlights the intricate interplay between local rainfall patterns
and global climatic phenomena, offering valuable insights into the meteorological underpinnings of
rainfall variability during Rwanda’s critical MAM season.

Keywords: Rwanda; rainfall; CHIRPS; teleconnections; variability; trends; dipole; atmosphere

1. Introduction

Rainfall stands as a pivotal climatic variable, significantly influencing the ramifications
of climate change. It plays a critical role in determining and adapting crop varieties across
tropical regions [1,2]. Variations in rainfall, which might be long-duration synoptic-scale
rainfall and short-duration convective rainfall, are closely associated with hydrological
challenges, including droughts and floods [2,3]. Extensive research has underscored the
adverse effects of changes in rainfall patterns as a result of global climate change on socio-
economic endeavors [4]. The consequences of climate change are not uniform, varying
across different regions owing to differences in large-scale atmospheric circulation and
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geographical features [5]. The repercussions are notably more acute in developing countries,
where inadequate governance, compounded by various stress factors, exacerbates the
situation [6,7]. Thus, a comprehensive understanding of the variability, patterns, and
tendencies of rainfall within the context of an evolving climate at the regional level is
crucial for evaluating the impact of climate change on agricultural outputs and water
resources, as well as for devising effective mitigation strategies [8,9].

The March–April–May (MAM) season in East Africa (EA) is characterized as a major
rainy season, essential for agriculture and water resources. During these months, the region
experiences significant rainfall, which is critical for planting crops, replenishing water
bodies, and sustaining natural ecosystems [10,11]. The precipitation patterns during MAM
are vital for the livelihoods of millions, impacting food security, economic activities, and
environmental health [12]. However, variability in rainfall during this season can lead to
challenges such as droughts or floods, affecting communities and agriculture [13].

Rwanda, a landlocked country located in the heart of Africa, specifically EA, is pre-
dominantly agricultural, with a significant portion of its population depending on rain-fed
farming for subsistence [14]. The seasonal rainfall patterns, particularly during the crit-
ical MAM season, play a pivotal role in determining the agricultural productivity and
water resources management of the country [15]. This period, known as the long rains
season, is crucial for the main cropping season in Rwanda [16]. However, the region
has been experiencing noticeable changes and variability in rainfall patterns over recent
decades, which have significant implications for food security, water resources, and disaster
management [17].

The understanding of historical trends and variability in rainfall patterns is funda-
mental for effective agricultural planning, water resources management, and adaptation
strategies to climate change. Despite the critical importance of this season for Rwanda’s
agriculture and hydrology, there have been limited comprehensive studies that investigate
the long-term trends and variability of rainfall during the MAM season across different
climatological zones of Rwanda [18]. The interannual and decadal variability of these
rainfall patterns, alongside the potential drivers behind these changes, remains poorly
understood [18].

Previous studies have focused on broader climatological analyses within the East
African region, often overlooking the localized impacts and specificities of rainfall vari-
ability in Rwanda [19–21]. These studies have highlighted the influence of global climatic
drivers, such as the El Niño Southern Oscillation (ENSO) and the Indian Ocean Dipole
(IOD), on the East African short and long rains [22,23]. However, the extent to which
these drivers affect the MAM rainfall season in Rwanda and the local variability patterns
have not been adequately explored. Furthermore, the implications of such variability on
agricultural productivity, water resource availability, and the overall socio-economic fabric
of Rwanda remain under-investigated.

Given this context, the research that fulfills the gap in knowledge by providing a
comprehensive analysis of historical trends and variability of rainfall patterns during the
MAM season in Rwanda over the past few decades is very important, considering the use
of array of meteorological data, statistical analyses, and climate modeling approaches to
identify the temporal and spatial variability of rainfall, investigate the potential drivers
behind observed trends, and assess the implication of rainfall variability on water resources
and agricultural planning.

Furthermore, the objectives of this research are (1) to analyze historical rainfall trends
during the MAM season in Rwanda over the last four decades, (2) to assess the spatial
and temporal variability of MAM season rainfall across Rwanda, (3) to investigate the
influence of global climatic drivers on MAM season rainfall in Rwanda, and (4) to evaluate
various statistical methods to identify trends and anomalies in rainfall in Rwanda. By
investigating these aspects, the study seeks to contribute to the body of knowledge on cli-
mate variability in Rwanda, offering insights that could inform policymakers, stakeholders,
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and communities about adaptive strategies and resilience building in the face of changing
rainfall patterns.

2. Data and Methods
2.1. Study Area

Rwanda, often referred to as the “land of a thousand hills”, is distinguished by its
varied topography and remarkable geographical diversity [24]. It is a landlocked country
in East Africa, 3◦–1◦ S and 28.75◦–31◦ E, that shares borders with Uganda to the north,
Tanzania to the east, Burundi to the south, and the Democratic Republic of the Congo (DRC)
to the west (Figure 1), and boasts a landscape that includes vast hills, plateaus, and the
scenic Congo Nile basin along Lake Kivu [25]. With elevations ranging from 900 to 4507 m,
Rwanda’s geography shifts from low-lying eastern regions to hillier central and southern
areas, where altitudes commonly span between 1500 to 2000 m. The country covers an area
of approximately 26,338 km2 and is home to a population exceeding 12 million people, a
majority of whom depend on agriculture as their primary means of livelihood [26].
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Figure 1. Study area on the map: (A) the geographical positioning of Rwanda within the East Africa
region (longitude 28◦–31◦ E, latitude 3◦–1◦ S); (B) the identification and mapping of specific weather
stations (red dots) across Rwanda’s landscape.

Rwanda experiences four primary climatic seasons: two rainy seasons from March
to May and September to December, and two dry seasons from June to August and
January to February [27]. Although the country receives abundant rainfall, averaging
over 1000 mm annually in most regions, it faces irregular patterns and frequent droughts,
especially in the eastern province [28]. The rainfall distribution is influenced by several
factors, including the movement and intensification of the intertropical convergence zone
(ITCZ), the Saint Helena high pressure system, Congo air mass, and wind movements [29].
Additionally, topography and Lake Victoria play significant roles in shaping Rwanda’s
rainfall patterns [24]. During the dry season, cold and dry air masses from the Arabian
Peninsula affect the climate, while moisture from the Indian Ocean influences the June
to August season [30]. Additionally, the temperature variations follow a similar annual
pattern to rainfall, with highs reaching up to 35 ◦C and lows dropping to 10 ◦C.
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2.2. Data

This research incorporated multiple data types, including observed monthly rainfall
figures from chosen stations, monthly reanalysis precipitation data from the Climate Haz-
ards Group Infrared Precipitation with Station data (CHIRPS), sea surface temperatures
(SSTs), and the Niño 3.4 SST anomaly index. These elements, collected on a monthly basis,
were instrumental in generating seasonal analyses. An in-depth explanation of these data
sources and their procurement is provided in the subsequent sections.

2.2.1. On-Site Data Collections

In this research, the Rwanda Meteorology Agency provided monthly rainfall record-
ings from fifteen stations over a period of thirty-nine years, spanning from 1983 to 2021.
This extensive dataset was utilized to corroborate the accuracy of CHIRPS data. Addi-
tionally, a map indicating the spatial arrangement of these meteorological stations across
Rwanda is depicted in Figure 1.

2.2.2. Monthly Global Precipitation Dataset from UCSB CHIRPS Version 2.0

The monthly precipitation dataset used in this study was obtained from the UCSB
CHIRPS version 2.0, available through the IRI/LDEO climate data library. Covering
the period from 1983 to 2021, this dataset provides detailed geographical resolution at
0.05◦ × 0.05◦. It is a widely recognized and extensively utilized resource among researchers
for its comprehensive precipitation data, which is crucial for various climate-related studies.
The dataset can be accessed online at this link: https://iridl.ldeo.columbia.edu/SOURCES/
.UCSB/.CHIRPS/.v2p0/.monthly/.global/precipitation/ (accessed on 9 May 2024), of-
fering valuable insights into historical precipitation patterns on a global scale, thereby
supporting a range of environmental and climatological research projects [31,32].

2.2.3. Sea Surface Temperature

Average SST for HadISST was retrieved from https://coastwatch.pfeg.noaa.gov/
erddap/griddap/erdHadISST.html (accessed on 9 May 2024), on a monthly basis, with a
spatial resolution of 1◦ × 1◦. The same time span (1983–2021) for the SST data was used.

2.3. Statistical Techniques

The variability of Rwanda’s rainfall was examined using a range of statistical and
graphical techniques including the Sen slope estimator, the Mann–Kendall trend test, corre-
lation analysis, root mean square error (RMSE), bias, and standardized rainfall anomaly.
Additionally, the empirical orthogonal functions (EOF) analysis, a statistical method used
to identify the major modes of variability within a dataset and to reduce its dimensionality,
was employed to examine the rainfall patterns during Rwanda’s MAM season.

2.3.1. Standardized Abnormality

The rainfall anomaly was evaluated by standardizing the rainfall time series data
between −1 and 1, where plus one denotes rainy years and less than one represents
anomalously dry years. Z, the standardized anomaly, may be estimated as follows:

Z =
x − x

sx
(1)

where x denotes the recorded rainfall amounts, and x along with sx correspond to the
rainfall’s average and standard deviation, respectively.

https://iridl.ldeo.columbia.edu/SOURCES/.UCSB/.CHIRPS/.v2p0/.monthly/.global/precipitation/
https://iridl.ldeo.columbia.edu/SOURCES/.UCSB/.CHIRPS/.v2p0/.monthly/.global/precipitation/
https://coastwatch.pfeg.noaa.gov/erddap/griddap/erdHadISST.html
https://coastwatch.pfeg.noaa.gov/erddap/griddap/erdHadISST.html
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2.3.2. Mann–Kendall (MK) Analysis

Mann (1945) and Kendall (1975) describe MK as a nonparametric statistical test used
in climatological and hydrological trend analysis. This test is regarded as being very
strong since it may tolerate the abrupt discontinuities brought on by an uneven time
succession [33]. It is also extensively used for rainfall trend analysis since it does not need
any additional assumptions about the distribution of data [34]. The MK was carried out in
this research at a significant level of 0.05. For α < 0.05, the null hypothesis, which expresses
the trend’s absence, is rejected. The formula for MK test statistics (S) is written as follows:

S =
n−1

∑
i=1

n

∑
j=i=1

sgn
(
xj − xi

)
(2)

where observations within the annual time series are specified and represented by i and j
(with j > i), n signifies the analysis period, and the sgn function of the difference between xj
and xi is determined as follows:

sgn
(
xj − xi

)
=


1, i f xi − xj > 0,
0, i f xi − xj = 0,
−1 i f xi − xj < 0.

(3)

when the average of the dataset is zero, the variance of S may be found using the follow-
ing formula:

Sv = σ2
s =

n(n − 1)(2n + 5)− ∑m
k=1 tk(tk − L)(2tk + 5)

18
(4)

where the amount of data in the tied group, p, is represented by tp, the data size is repre-
sented by n, and the tied groups are denoted by q. Z statistical analysis is used to determine
the trend significance.

z =


s−1
σs

i f s > 0,
0, i f s = 0

s+1
σs

i f S < 0
(5)

If the measured value exceeds the tabularized α-value, then positive (negative) values
of Z indicate an increasing (decreasing) trend. An effective method for identifying change
points, the start of a substantial trend, and sudden changes in a series is the sequential
MK test [35]. In case the intersection happens outside of the computed α-value of 1.96, an
unanticipated shift at that moment is acknowledged [36]. The study used a 95% confidence
level, or α = 0.05, to evaluate the significant trend, with ±1.96-tabulated valves serving as
the equivalent.

3. Results
3.1. Evaluation of CHIRPS Dataset with Station Data

In this study, the evaluation of the CHIRPS dataset was performed by assessing the
correlation between the CHIRPS data and ground station data over the entire period
covered by this research. In this context, the comparison between the CHIRPS dataset and
station data in capturing rainfall patterns during the MAM season in Rwanda reveals a
high degree of accuracy, as evidenced by a correlation coefficient of 0.89, an RMSE of 12 in
the context of rainfall amounts ranging from 0 to 300 mm, and a coefficient of determination
(R2) of 0.77, as shown in Figure 2A. These metrics collectively indicate that the CHIRPS
dataset closely mirrors the actual rainfall measurements recorded at ground stations across
Rwanda, capturing the wide variance in rainfall with a high level of precision. The strong
positive correlation suggests that the CHIRPS dataset effectively replicates the trends and
fluctuations in rainfall observed during this critical agricultural season as was previously
reported [36,37]. The RMSE, when considered against the backdrop of the broad range
of rainfall amounts, points to a relatively minor average deviation from the station data,
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underscoring the dataset’s reliability for practical applications. Moreover, the high R2 value
indicates that the CHIRPS dataset can account for the vast majority of the variance in rainfall
patterns, making it an invaluable tool for climatological studies, agricultural planning,
and water resource management in Rwanda, and this result concurs with the previous
research over the country [38,39]. This comparison not only highlights the potential of
satellite-derived datasets like CHIRPS in enhancing our understanding of climate dynamics,
but also underscores their importance in supporting decision-making processes in regions
prone to climate variability.
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between observation data from stations and the red line represents the regression between CHIRPS
and observed rainfall. (B) shows mean annual rainfall cycle (mm) over Rwanda for observation
data (blue) and CHIRPS data (green) from the period 1983–2021. The red arrows indicate the season
being studied.

In the evaluation of Rwanda’s mean annual rainfall cycle, focusing on the distinct,
locally named, “Long rains” (MAM) and “Short rains” (SOND) seasons [40], the com-
parative analysis of the CHIRPS dataset with ground station data plays a pivotal role in
enhancing our understanding of the nation’s rainfall dynamics. This analysis is critical for
accurately delineating the seasonal patterns, particularly noting the rainfall peaks in April
for the long rains and in October for the short rains, as shown in Figure 2B. The precision
of the CHIRPS dataset in mirroring the observed data from ground stations underscores
its utility in capturing the complex variability and intensity of rainfall across different
parts of Rwanda. Such accuracy ensures that the specific characteristics of the rainfall
peaks, which are vital to understanding the climatic and environmental landscape of the
region, are well represented, as was previous reported [41,42]. The efficacy of the CHIRPS
dataset extends beyond mere numerical alignment; it facilitates a nuanced understanding
of Rwanda’s climatic patterns, enabling researchers to dissect the seasonal fluctuations with
a high degree of confidence. This precise replication of ground truth data highlights the
dataset’s value in climatological research, providing a reliable basis for studies focused on
temporal and spatial rainfall variations [10,11]. The ability of CHIRPS to accurately capture
these critical periods of rainfall intensity is essential for a wide array of environmental
assessments and policy-making processes. It allows for a more informed exploration of
the climatic trends that define Rwanda, offering insights that are crucial for addressing the
environmental and climatic challenges faced by the region [14].
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3.2. Climatology Spatial Distribution of Rainfall over Rwanda

The investigation into the climatology and spatial distribution of rainfall over Rwanda
during the MAM seasons of 1983–2021 reveals rainfall patterns that shed light on the
country’s hydrological dynamics (Figure 3). The quantity of seasonal rainfall within the
country varies each year between 80 and 220 mm for MAM (Figure 3A). Additionally,
the observed annual rainfall variations, ranging from 250 mm to 600 mm, highlight the
heterogeneity of precipitation across different regions of Rwanda (Figure 3B). Particularly
notable is the concentration of maximum rainfall amounts in the southwest and northwest,
contrasting sharply with the lower annual rainfall observed in the eastern part of the
country, and these findings concur with previous studies [43,44]. This spatial variability in
rainfall distribution highlights the influence of geographical features such as mountains and
elevation gradients, which can significantly impact precipitation patterns [45,46]. Moreover,
the moderate levels of rainfall ranging from 50 to 350 mm observed in the central part of
Rwanda suggest a transitional zone between the more arid eastern regions and the wetter
western areas. The lowest rainfall amounts recorded during the MAM season in the eastern
part of the country further accentuate the disparities in precipitation distribution [46]. The
observed southwest to northeast slant in rainfall distribution implies a gradient that may be
influenced by regional climatic drivers such as prevailing wind patterns and topographical
features [42].
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seasonal mean rainfall (mm/season) over Rwanda 1983–2021.

Figure 4 provides a comprehensive depiction of the spatial distribution of CHIRPS
monthly rainfall (mm) across Rwanda, offering valuable insights into the seasonal patterns
and geographical variations in precipitation. The highest rainfall amounts are concentrated
in the southwestern region of the country, particularly in April and November. This aligns
with the typical seasonal rainfall distribution observed in many tropical regions, where
April often marks the onset of the rainy season and November represents a secondary peak
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in precipitation [40,47]. Conversely, the months of June, July, and August emerge as the
driest months across Rwanda, exhibiting lighter shades on the map indicative of lower
rainfall amounts during these periods. Additionally, the spatial distribution of rainfall in
March, April, and May, followed by October, November, and December, showcases a clear
pattern of seasonal variability across Rwanda, with these months consistently experiencing
the highest levels of precipitation [48].
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Figure 4. The distribution pattern of monthly rainfall (mm) climatology across Rwanda spanning
from 1983 to 2021.

3.3. Spatial Patterns of Mann–Kendall and Sen’s Slope across the Study Area

The rainfall trends in Rwanda from 1983 to 2021 were analyzed using the Mann–
Kendall trend test, examining annual and seasonal changes, including the crucial MAM
period. This method effectively identifies trends in time series data, offering insights into
Rwanda’s rainfall dynamics without requiring normal data distribution, crucial for its
agriculture and hydrology. The analysis of rainfall trends unveiled a complex pattern
of variability, with both increases and decreases observed over the study period. This
intricate landscape is effectively illustrated in Figure 5, where blue and dark red hues
denote areas of declining and rising rainfall, respectively, with significant trends at a 95%
confidence level highlighted by black dots (Figure 5). This statistical validation provides
a reliable basis for distinguishing actual changes from mere random fluctuations [48,49].
The study particularly highlights the southwestern region of Rwanda as a critical area
of concern, exhibiting a significant decrease in rainfall on both the annual and the MAM
seasonal scales.
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The mixed trends, reflecting both positive and negative changes, underscore the com-
plexity of climate variability and its influence on rainfall distribution, highlighting the
importance of localized studies for revealing specific regional patterns amidst broader
global shifts [46,49]. Through the Mann–Kendall test and Sen’s slope analysis, the research
provides a detailed insight into the spatial dynamics of rainfall trends across Rwanda, espe-
cially emphasizing the need for focused attention on the southwestern parts to understand
the implications for ecosystems and human activities reliant on consistent rainfall.

Additionally, the Mann–Kendall test and Sen’s slope analysis reveal a nuanced spatial
pattern of rainfall changes across Rwanda, highlighting variability that escapes a uniform
trend across all months. Specifically, the analysis indicates no significant change in rain-
fall for most months, with the exception of March, April, July, October, and November
(Figure 6), and these findings concur with the previous studies [49,50]. In March, there is a
noteworthy increasing trend in rainfall in the northeast, southeast, central, and northwest
regions, compared with a decreasing trend in the southwest. April further highlights this
variability, with an increasing trend observed in the east, contrasted by decreases in the
west, south, and central areas. As previous reported, the pattern shifts in July, where
significant decreases are noted in the west and southeast, while October’s data reveal an
increase in the east but a decrease in the southwest.

Moreover, November brings an increase in rainfall to the northwest, with the south-
west continuing to experience a downward trend [43,48]. These findings underscore the
complex interplay of climatic factors influencing rainfall distribution in Rwanda, empha-
sizing region-specific trends that manifest distinct patterns of change within the country’s
diverse climatic zones. This spatial and temporal variability in rainfall trends points to
the intricate dynamics of climate change impacts, necessitating targeted adaptation and
mitigation strategies to address the specific needs and vulnerabilities of each region.
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3.4. Temporal Variations in Rainfall

This section presents an in-depth analysis of the changing patterns of rainfall in
Rwanda over a 36-year period, from 1983 to 2021, as shown in Figure 7. This compre-
hensive study highlights the significant inter-annual variability in rainfall, on both an
annual and seasonal scale, specifically during the MAM season, which is critical for the
region’s agricultural practices. The findings reveal a distinct classification of years based
on standardized rainfall anomalies, identifying eight particularly wet years (1987, 1988,
2001, 2006, 2010, 2011, 2012, 2018) and eight markedly dry years (1984, 1993, 1999, 2000,
2003, 2005, 2008, 2014) on an annual basis (Figure 7A). Moreover, the analysis extends to
seasonal variations, where eight years were exceptionally wet (1987, 1988, 2006, 2012, 2016,
2018) during the MAM season, contrasted against six years that experienced significantly
lower precipitation (1984, 1996, 2000, 2008, 2014, 2017), as shown in Figure 7B. Notably,
the year 2018 stood out as an anomaly, being extraordinarily wet, contrasting sharply with
2017, which was marked by minimal rainfall, and these results concur with the previous
findings across the country [29,40,51]. This detailed exploration into the temporal dynamics
of rainfall in Rwanda not only highlights the region’s vulnerability to climatic variability
but also emphasizes the critical need for adaptive strategies in water resource management
and agricultural planning to mitigate the impacts of these fluctuating weather patterns.

Figure 8 provides a comprehensive overview of the variation in rainfall patterns in
Rwanda from 1983 to 2021, covering a detailed month-by-month analysis from January
to December. This extensive period of observation uncovers significant insights into
the climatic variability experienced across the country, highlighting both wet and dry
years in terms of monthly rainfall. The analysis, focused on 15 meteorological stations,
documented varying trends of precipitation, highlighting the spatial diversity in climatic
responses across the region. A handful of stations such as Rulindo, Gisenyi Aero, Byimana,
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Busogo, and Gikongoro present stable precipitation patterns, devoid of significant long-
term changes, which is a rarity in the context of broader climatic fluctuations [28,52,53].
Conversely, stations like Bugarama and Nyagatare signify the extremes of these temporal
variations, with Bugarama experiencing a marked decline in rainfall, whereas Nyagatare
sees a noticeable uptick. These contrasting trends highlight the localized and heterogeneous
nature of rainfall variability within Rwanda, emphasizing the need for region-specific
climatological studies [42,52,54,55].
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3.5. Analysis of Empirical Orthogonal Function (EOF)

The analysis of EOF applied to rainfall variability during the MAM season over
Rwanda from 1983 to 2021 reveals a detailed understanding of spatial and temporal rainfall
patterns across the region (Figure 9). Utilizing EOF1, EOF2, and EOF3 modes to dissect the
dataset, it becomes evident that these modes encapsulate a significant portion of the total
variance in seasonal rainfall, with EOF1 accounting for 51.19%, EOF2 for 22.52%, and EOF3
for 8.41%. This hierarchical decomposition of rainfall variability stresses the dominant
influence of EOF1, which is characterized by a distinctive west–east precipitation gradient
across the country as shown in previous studies [56,57]. Specifically, EOF1 delineates
a pattern of weak to strong positive loadings in the western, northern, and southern
sectors, contrasted by general negative loadings across the eastern regions. This spatial
configuration suggests a pronounced dipole effect within the country’s climatic system,
likely driven by complex interactions between topographical features and atmospheric
circulation dynamics [58,59].

The EOF1 mode, in particular, highlights a predominant negative anomaly over much
of Rwanda, except for localized areas of positive factor loading in the western corridor,
alongside significant positive anomalies in the northeast and southwest. Such distribution
indicates that EOF1 captures the primary mode of seasonal rainfall variability, potentially
linked to large-scale atmospheric phenomena such as the East African monsoon system
and its modulation by the intertropical convergence zone (ITCZ) [59,60]. The presence
of positive loadings in the west and the stark contrasts observed across the EOF patterns
could be indicative of orographic lifting effects, where elevated terrain in the west enhances
convective activity, leading to increased precipitation, while eastern regions experience
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rain shadow effects. Furthermore, the variance contributions of EOF2 and EOF3, though
lesser than EOF1, are critical in understanding secondary and tertiary patterns of rainfall
variability, which may be influenced by other meteorological factors such as regional
temperature gradients, variations in sea surface temperatures, and teleconnections with
global climate indices [61]. The delineation of these EOF modes offers invaluable insights
into the climatological processes driving seasonal rainfall patterns in Rwanda, particularly
in identifying areas prone to extreme rainfall events during the MAM season.
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The first principal component (PC1) effectively captures the temporal variability of
rainfall, identifying distinct wet and dry years based on a standardized threshold, with
+1 signifying wet years (1985, 1987, 1988, 2012, and 2018) and −1 indicating dry years
(1984, 1996, 2000, 2008, 2014, and 2017). This divergence underlines the robustness of
PC1 in discerning anomalous hydroclimatic conditions over the study period [62]. On the
spatial front, EOF2 elucidates the geographical distribution of rainfall anomalies, revealing
a pattern of positive loading in the western regions contrasted by negative loadings in
other parts, indicative of a noticeable west–east moisture gradient [42]. PC2, associated
with EOF2, further segments the temporal axis into six wet years (1986, 1996, 2002, 2006,
2016, 2017, and 2018) and five dry years (1987, 1988, 1990, 2000, and 2010), reinforcing
the dynamic interplay between spatial and temporal variability in rainfall. Remarkably,
EOF2 accounts for 22.52% of the total variance, signifying its substantial contribution to
understanding the overall variability. The delineation of a unimodal pattern in eastern and
central areas with significant positive loading by EOF2, alongside the minimal variability in
rainfall in the northern and southern regions as indicated by the smallest positive loadings,
suggests a nuanced understanding of regional precipitation dynamics [58,63]. Additionally,
the analysis, however, revealed that the contributions of EOF3 and its associated PC3 to
understanding rainfall variability were negligible. This minimal influence suggests that
while the first two EOFs capture the primary modes of variability effectively, capturing
substantial portions of the variance, the third EOF does not significantly contribute to
explaining additional variability in the dataset [59,63,64].



Atmosphere 2024, 15, 609 13 of 20Atmosphere 2024, 15, x FOR PEER REVIEW 13 of 21 
 

 

 
Figure 9. The spatial variability of EOF1, EOF2, and EOF3, along with the time series of principal 
components (PCs) for the MAM season from 1983 to 2023. 
Figure 9. The spatial variability of EOF1, EOF2, and EOF3, along with the time series of principal
components (PCs) for the MAM season from 1983 to 2023.



Atmosphere 2024, 15, 609 14 of 20

3.6. Correlation between SSTs and Rainfall Patterns, Focusing on the MAM Period

The correlation between SSTs and rainfall patterns, particularly during the MAM
period, presents a complex but discernible pattern that significantly affects regional climates
and, more specifically, rainfall distribution in Rwanda during the period 1983–2021. In
Figure 10, the correlation of rainfall with global SSTs at a MAM seasonal scale is shown,
which offers insight into the intricate relationship between oceanic temperatures and
precipitation patterns. The use of blue and brown shades to represent negative and positive
correlations, respectively, helps to investigate and analyze the spatial correlation patterns
across different parts of the globe.
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The spatial correlation patterns observed during the MAM rainy seasons with global
SSTs range between −0.8 and 0.8, as shown in Figure 10. This indicates a varying degree
of influence that different ocean basins exert on rainfall over Rwanda during this specific
period, as previously reported [65,66]. Notably, the Indian Ocean exhibits a lesser impact
on MAM season rainfall in Rwanda.

This observation is significant because it suggests that while the Indian Ocean is a crit-
ical driver of climate variability in many parts of East Africa, its direct influence on rainfall
during the MAM season in Rwanda is relatively subdued [67,68]. The positive phase of the
IOD, commonly referred to as the positive dipole, correlates with increased precipitation
over EA in general [42]. This suggests that during years when the western Indian Ocean is
warmer relative to the eastern part, there is a tendency for more rainfall in the region [52,69].
Conversely, the negative phase of the IOD, characterized by cooler surface waters in the
western Indian Ocean, is associated with reduced rainfall over Rwanda [58]. This inverse
relationship highlights the IOD’s significant role in modulating rainfall patterns over East
Africa, including Rwanda, during the MAM season.

Additionally, it was previously reported that there is a strong positive correlation
between MAM rainfall in Rwanda and SSTs in the South Atlantic Ocean [70–72]. This
relationship highlights the broader climatic relationship between the Atlantic Ocean and
East African rainfall patterns including those of Rwanda. The positive correlation suggests
that warmer surface temperatures in the South Atlantic Ocean can enhance MAM rainfall
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in Rwanda, a relationship that is crucial for understanding and predicting seasonal rain-
fall variability in the region [25,65]. Furthermore, the analysis indicates a high negative
correlation between MAM rainfall in Rwanda and the South African ridge. This negative
correlation implies that atmospheric conditions associated with the South African ridge,
such as high-pressure systems, might inhibit moisture flow and rainfall over Rwanda
during the MAM season [40,65,68,70].

3.7. Relationship between Geopotential and Rainfall at MAM Season

The relationship between geopotential heights (GH) at different atmospheric levels
(specifically 500 hPa and 850 hPa) and rainfall during the MAM season in Rwanda over
the period of 1983–2021 is a complex interplay of atmospheric dynamics and moisture
transport mechanisms (Figure 11). This relationship is further influenced by macro-scale
pressure systems developed in the Indian and Atlantic Oceans, as well as monsoon flows,
which collectively impact the seasonal and annual rainfall variations not only in Rwanda
but also in the broader East African region.
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At the 500 hPa level, the GH is a crucial parameter for understanding mid-tropospheric
circulation patterns. These patterns are instrumental in steering air masses and associated
moisture towards or away from specific regions, such as Rwanda, thereby exerting a
significant influence on local rainfall patterns [62,66]. The mid-troposphere is characterized
by the movement of large-scale weather systems, which can either promote or inhibit the
conditions necessary for precipitation [73]. For instance, the presence of strong gradients in
geopotential height at this level can induce ascending air masses, a process that is conducive
to cloud formation and, subsequently, rainfall. This vertical motion in the atmosphere is a
key component in the development of precipitation, as it facilitates the lifting of moist air,
cooling, and condensation to form cloud droplets [74]. The interaction between surface low-
pressure systems and upper-level atmospheric patterns can further enhance these processes,
leading to significant rainfall events. The correlation between geopotential height at the
500 hPa level and rainfall in Rwanda during the MAM season has been quantitatively
established, with a positive correlation ranging from +0.25 to +0.38 at a 95% confidence
level, as shown in Figure 11A.
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Conversely, the 850 hPa level is closer to the Earth’s surface and plays a pivotal role in
the low-level transport of moisture [71,75]. GHs at this atmospheric level are indicative of
the presence and characteristics of air masses; low heights often signal the presence of moist
air masses, while high heights are indicative of drier conditions [66,67,73]. The distribution
and movement of these air masses are critical in determining the moisture availability
for precipitation over Rwanda. The low-level circulation patterns are sensitive to local
geographical features, including topography and land surface conditions. Rwanda’s varied
landscape, marked by mountains and valleys, exerts a profound influence on the flow of air
and moisture at this level, modifying rainfall patterns across different regions of the country.
The significant positive correlation between geopotential height at the 850 hPa level and
rainfall during the MAM season, approximately equal to +0.38 with a 95% confidence level
as shown in Figure 11B, highlights the importance of understanding the dynamics at this
level to predict rainfall patterns.

The analysis of GH at both 500 hPa and 850 hPa levels reveals the intricate mechanisms
through which atmospheric circulation patterns influence rainfall in Rwanda, especially
during the critical MAM season. These findings highlight the need for comprehensive atmo-
spheric monitoring and modeling to predict rainfall patterns accurately. Understanding the
relationship between GH and rainfall is vital for developing effective water resource man-
agement and agricultural planning strategies in Rwanda and the wider East African region,
where rainfall variability has significant socio-economic impacts. The combined effects of
mid-tropospheric circulation patterns and low-level moisture transport mechanisms, as
influenced by large-scale pressure systems and local geographical features, underscore the
complexity of predicting rainfall in this region. Future research efforts should continue to
explore these dynamics, incorporating advanced atmospheric modeling techniques and
long-term climate data analysis to improve the accuracy of rainfall forecasts and mitigate
the impacts of climate variability on vulnerable communities.

4. Conclusions

This study rigorously evaluates the CHIRPS satellite dataset against terrestrial hy-
drometeorological measurements, illustrating its efficacy in accurately capturing Rwanda’s
precipitation dynamics across variable temporal and spatial domains. CHIRPS’ high fi-
delity in reflecting seasonal pluvial patterns, specifically the “Long rains” and “Short rains,”
along with its detailed depiction of Rwanda’s complex rainfall distribution, highlights its
critical role in hydroclimate studies. The integration of statistical analyses, including the
Mann–Kendall trend test and Sen’s slope estimator, reveals nuanced temporal and spatial
rainfall trends, highlighting the pronounced influence of climatic variability on regional
precipitation regimes. Further, the study’s application of EOFs dissects the primary modes
of rainfall variability, emphasizing the significant impact of atmospheric and oceanic inter-
actions on Rwanda’s rainfall, particularly the role of SSTs and GH. The correlation between
SSTs in the Indian and South Atlantic Oceans and Rwanda’s MAM season precipitation
patterns elucidates the complex global-to-local climatological linkages influencing rainfall
distribution. These findings advocate for the development of targeted adaptation and
mitigation strategies to address the impacts of climatic fluctuations, reinforcing the need
for advanced analytical methodologies and datasets in enhancing predictive accuracy and
hydrological resilience in the face of climate change.
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