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Abstract: The use of artificial water points for wildlife in African savannah ecosystems has been
widely criticised for affecting the distribution of wildlife and initiating changes in the heterogeneity
of natural landscapes. We examined the spatiotemporal variations in the landscape before and after
the installation of an artificial water point by integrating the analysis of vegetation and soil spectral
response patterns with a supervised learning random forest model between 2002 and 2022 in Chobe
Enclave, Northern Botswana. Our results revealed that the study area is characterised by animal
species such as Equus quagga, Aepyceros melampus, and Loxodonta africana. The findings also showed
that the main vegetation species in the study area landscape include Combretum elaeagnoides, Vachellia
luederitzii, and Combretum hereroense. The artificial water point induced disturbances on a drought-
vulnerable landscape which affected vegetation heterogeneity by degrading the historically dominant
vegetation cover types such as Colophospermum mopane, Dichrostachys cinerea, and Cynodon dactylon.
The immediate years following the artificial water point installation demonstrated the highest spectral
response patterns by vegetation and soil features attributed to intense landscape disturbances due
to abrupt high-density aggregation of wildlife around the water point. Landscapes were strongly
homogenised in later years (2022), as shown by overly overlapping spectral patterns owing to an
increase in dead plant-based material and senescent foliage due to vegetation toppling and trampling.
The landscape disturbances disproportionately affected mopane-dominated woodlands compared
to other vegetation species as indicated by statistically significant land cover change obtained from
a random forest classification. The woodlands declined significantly (p < 0.05) within 0–0.5 km,
0.5–1 km, 1–5 km, and 5–10 km distances after the installation of the water point. The results of this
study indicate that continuous nonstrategic and uninformed use of artificial water points for wildlife
will trigger ecological alterations in savannah ecosystems.

Keywords: artificial water point; botswana; landsat; random forest; spectral response pattern;
vegetation heterogeneity

1. Introduction

Artificially altering water availability in sub-tropical savannah ecosystems can affect
herbivore distribution [1] and intensify their impacts on natural landscapes, particularly
vegetation [2]. In this study, we aim to contribute to the understanding of the impacts of
artificial water points (AWPs) on woody vegetation and soil conditions using one avail-
able AWP in the Chobe Enclave (CE) as a reference point for multitemporal analysis of
landscape changes in the enclave. The adoption and implementation of artificial water
sources worldwide have primarily focused on supplementing shortages of natural surface
water [3]. In Botswana, the AWPs were initially intended to mitigate surface water scarcity
in rangelands and facilitate livestock production through borehole schemes [3–5]. Their
use was expanded in the 1980s to provide water to wildlife due to highly limited perennial
surface water sources [6]. The interventions were also seen as important wildlife manage-
ment strategies to minimise die-offs and optimise their utilisation of available forage [7].
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This saw the government of Botswana installing AWPs mainly in protected areas such as
the Central Kalahari Game Reserve (CKGR) [6]. In contrast, tourist enterprises have since
adopted water supplementation methods to boost wildlife numbers around their premises
and increase tourist visitation and satisfaction through enhanced wildlife viewing [8–10].
This has been noted to cause high-density aggregation of wildlife species around AWPs [8].

The concentration of some wildlife species, such as Loxodonta africana, can alter natural
landscapes by causing homogenisation of foraging habitats, especially woody vegetation,
thereby threatening biodiversity and ecosystem resilience [8,11,12]. However, little is
known about the effects of wildlife densities on landscape changes through the utilisation
of geospatial tools [12]. Previous studies have investigated AWPs in the tropical ecosystems
of Botswana [7,9,13]; however, no similar studies have been conducted using geospatial
tools to estimate the effects of increased wildlife concentrations on woody vegetation
and soil. This is despite the advantage of the geospatial technologies to provide fine
spatial resolution and high temporal resolution data that can simplify the quantification
of landscape changes under AWPs [12]. Additionally, all previous studies have not been
able to directly compare the landscape before and after the impact rather than inferring
AWP-induced disturbances from the present spatial patterns alone.

In this study, we addressed the research gaps and limited scope of the previous
studies since the multitemporal nature of satellite imageries allows for a more robust
investigation of spatiotemporal disturbances induced by AWP. Our study area, in Northern
Botswana, has the highest concentration of herbivore wildlife species including Loxodonta
africana, Syncerus caffer, Aepyceros melampus, Connochaetes taurinus, Kobus leche, and Equus
quagga [14]. The population of some of the species, for example, buffalos, zebras, impalas,
wildebeests, and lechwe has been increasing over the years [14]. Some of these, for example,
wildebeests, have residential inclinations around water sources and the creation of artificial
water points affects the dynamics of their space use while also increasing their negative
impacts on the surrounding vegetation [10]. The artificial points also tend to be dominated
by water-dependent species such as impalas, zebras, and elephants to the detriment of
some drought-tolerant species as they suffer from competition for forage [15]. They further
influence localised changes in vegetation structure due to the increase in wildlife browsing
and occupancy closer to the water points [16].

We, therefore, coupled the analysis of spectral response patterns of vegetation and soil
features over time and supervised learning based on the random forest (RF) model in a
Google Earth Engine to assess the temporal and spatial variations in landscapes around an
AWP in CE. Our study achieved this aim through the following objectives:

1. Assessing wildlife and vegetation diversity in the study area.
2. Analysing the temporal conditions of vegetation and soil features before and after the

installation of the AWP.

2. Materials and Methods
2.1. Study Area

The study area is the Chobe enclave, in the Chobe district of Botswana (Figure 1).
It is a communally administered wildlife management area with a mixture of land uses
comprising arable land and cattle posts. The area is semiarid to sub-humid [17] and
characterised by intensive tourism activities [18,19]. It experiences an annual average
rainfall of 600 mm with daily minimum and maximum temperatures of 6 ◦C and 22 ◦C,
respectively [19]. Spatiotemporal variations in vegetation and soil conditions were assessed
around an AWP located at 24.390855◦ E and −18.202900◦ S in CE (Figure 1). The AWP
was introduced by a private safari operator in 2016 and has influenced wildlife visits and
movements to the outskirts of a bush lodge in search of water. The AWP is near the Chobe
Forest Reserve, and it is the only one available in the CE. It is in a transit zone between the
forest reserve (which serves as a wildlife habitat) and the perennial Chobe River (Figure 1),
thereby altering wildlife movements between the habitat and the river.
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The location of CE settlements, namely Kavimba, Kachikau, Satau, and Parakarungu
(Figure 1) also separates the wildlife habitat from the Chobe River, thereby limiting their
access to the river and reducing their impacts around the natural water source.

Soils in the CE area are characterised by arenosols and gleysols, with a calcic horizon in
the subsoil [19,20]. The soil supports vegetation communities that include diverse species,
such as perennial swamp vegetation, annually flooded grasslands, broad and fine-leaved
savannas, woodlands, and forests [19]. At the same time, a rich diversity of mega-herbivores
characterises the enclave [21,22]. Wildlife displays free-range movements [23] characterised
by seasonal shifts based on water availability, with dry season movements concentrating
near perennial rivers and water sources [19].

2.2. Field Data and Sampling

Two field visits were used to collect ground data on land cover in the CE in April 2021
and April 2022. GPS (global position system)-guided transect walks radiating from the
water source were used to study vegetation species and animal traces around the AWP.
The transects were used to study vegetation species and animal traces in an area covering
187.2 km2. Only three transects, radiating north-westerly, northerly, and north-easterly,
were used (Figure 1). The southern directions of AWP were not sampled as the areas
are occupied by the Chobe Forest Reserve and the Chobe National Park which already
serve as wildlife conservation areas and habitats. As such, the transects were used to
assess spatiotemporal variations in landscapes due to the encroachment of wildlife species
influenced by the manipulation of surface water availability in a non-wildlife conservation
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area. The transect method is frequently used in flora and fauna studies as it ensures
spatial representativeness of sampled data by enabling more ground coverage in a given
time [24,25]. Plots measuring 50 m × 50 m were systematically placed along the transects
at 0.5 km, 1 km, 5 km, and 10 km from the AWP to study woody trees (i.e., plants ≥ 3 m
in height, Figure 1). Within the 50 m × 50 m plots, 5 m × 5 m subplots were set up to
study shrub and herbaceous cover species. Each 50 m × 50 m plot contained five (5)
subplots 5 m × 5 m in size. A total of 12 plots were used to study woody tree species, and
60 subplots were used to study shrubs and herbs. According to Barnett and Stohlgren [26],
large plots such as 50 m × 50 m are effective in providing a good picture of local vegetation
conditions as well as enabling representative registering of species present in the area
studied [27]. On the other hand, subplots of 5 m × 5 m were chosen as they facilitate the
understanding of broad-scale landscape patterns [26]. Species names, counts, landscape
disturbances, and land uses were observed in all plots. The Shannon–Wiener diversity
index was used to estimate species diversity in the study area.

Animal species sighted at the different radii (i.e., 0.5 km, 1 km, 5 km, and 10 km)
along the study transects were recorded based on the common species in Table 1 below to
characterise common species within the periphery of the AWP. Other animal species that
visited the AWP were identified from their spoors, droppings, and carcass remains within
the 50 m × 50 m plots.

Table 1. Common animal and plant species in the study area and their categories of protection in the
Red books.

Animal Order Family English Name Categories of Protection

International Regional National

Equus quagga Boddaert, 1785 Perissodactyla Equidae Plains zebra Near threatened Least concern Not evaluated
Struthio camelus Linnaeus, 1758 Struthioniformes Struthionidae Ostrich Least concern Least concern Not evaluated
Giraffa camelopardalis Linnaeus, 1758 Artiodactyla Giraffidae Giraffe Vulnerable Least concern Not evaluated
Tragelaphus oryx Pallas, 1766 Artiodactyla Bovidae Common eland Least concern Least concern Not evaluated

Helogale parvula Sundevall, 1847 Carnivora Herpestidae Common dwarf
mongoose Least concern Least concern Not evaluated

Mungos mungo Gmelin, 1788 Carnivora Herpestidae Banded mongoose Least concern Least concern Not evaluated
Cynictis penicillata Cuvier, 1829 Carnivora Herpestidae Yellow mongoose Least concern Least concern Not evaluated
Aepyceros melampus Lichtenstein, 1812 Artiodactyla Bovidae Impala Least concern Least concern Not evaluated
Syncerus caffer Sparrman, 1779 Artiodactyla Bovidae African buffalo Near threatened Least concern Not evaluated
Connochaetes taurinus Lichtenstein, 1812 Artiodactyla Bovidae Common wildebeest Least concern Least concern Not evaluated
Loxodonta africana Blumenbach, 1797 Proboscidea Elephantidae African savanna elephant Endangered Least concern Vulnerable
Phacochoerus africanus Gmelin, 1788 Artiodactyla Suidae African warthog Least concern Least concern Not evaluated
Hippotragus equinus Desmarest, 1804 Artiodactyla Bovidae Roan antelope Least concern Endangered Not evaluated
Tragelaphus strepsiceros Pallas, 1766 Artiodactyla Bovidae Greater kudu Least concern Least concern Not evaluated
Canis mesomelas Schreber, 1775 Carnivora Canidae Black-backed jackal Least concern Least concern Not evaluated
Crocuta crocuta Erxleben, 1777 Carnivora Hyaenidae Spotted hyena Least concern Least concern Not evaluated
Panthera leo Linnaeus, 1758 Carnivora Felidae Lion Vulnerable Least concern Vulnerable

Plants
Eragrostis rigidior Pilg, 1912 Poales Poaceae Broad curly leaf Not evaluated Least concern Not evaluated
Aristida junciformis Trin & Rupr, 1842 Poales Poaceae Wiregrass Not evaluated Least concern Not evaluated
Heteropogon contortus (L) P.Beauv. ex
Roem. & Schult 1817 Poales Poaceae Black spear grass Not evaluated Least concern Not evaluated

Eragrostis pallens Hack, 1895 Poales Poaceae Broom love grass Not evaluated Least concern Not evaluated
Cynodon dactylon Pers, 1805 Poales Poaceae Couch grass Not evaluated Least concern Not evaluated
Megathyrsus maximus (Jacq.) B.K.Simon
& S.W.L.Jacobs, 2003 Poales Poaceae Guinea grass Not evaluated Not evaluated Not evaluated

Digitaria eriantha Steud, 1829 Poales Poaceae Common finger grass Not evaluated Least concern Not evaluated
Ocimum americanum L, 1755 Lamiales Lamiaceae American basil Not evaluated Least concern Not evaluated
Brachiaria dura Stapf, 1919 Poales Poaceae Signal grass Not evaluated Data-deficient Not evaluated
Urochloa trichopus (Hochst.) Stapf, 1920 Poales Poaceae Bushveld signal grass Not evaluated Least concern Not evaluated
Chloris virgata Sw, 1797 Poales Poaceae Feather finger grass Not evaluated Least concern Not evaluated
Euclea divinorum Hiern, 1873 Ericales Ebenaceae Diamond-leaved Euclea Not evaluated Least concern Not evaluated
Cyanthillium cinereum (L.) H.Rob, 1990 Asterales Asteraceae Little ironweed Not evaluated Not evaluated Not evaluated
Geigeria alata (Hochst. & Steud. ex DC.)
Benth. & Hook.fil. ex Oliv. &
Hiern, 1877

Asterales Asteraceae Wing vomit daisy Not evaluated Not evaluated Not evaluated

Dicoma tomentosa Cass, 1818 Asterales Asteraceae Woolly dicoma Not evaluated Least concern Not evaluated
Cymbopogon caesius (Hook. & Arn.)
Stapf, 1906 Poales Poaceae Kachi grass Not evaluated Least concern Not evaluated

Rhus tenuinervis Engl, nd Sapindales Anacardiaceae Commiphora rhus Not evaluated Not evaluated Not evaluated
Croton gratissimus Burch, 1824 Malpighiales Euphorbiaceae Lavender croton Least concern Least concern Not evaluated
Aristida adscensionis L, 1753 Poales Poaceae Six weeks threeawn Not evaluated Least concern Not evaluated
Leonotis nepetifolia (L.) R.Br, 1811 Lamiales Lamiaceae Christmas candlestick Not evaluated Least concern Not evaluated
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Table 1. Cont.

Plants Order Family English Name Categories of Protection

International Regional National

Sesamum triphyllum Welw. ex
Asch, 1889 Lamiales Pedaliaceae Wild sesame Not evaluated Least concern Not evaluated

Schmidtia pappophoroides Steud. ex
J.A.Schmidt, 1852 Poales Poaceae Kalahari sand quick Not evaluated Least concern Not evaluated

Vachellia tortilis (Forssk.) Galasso &
Banfi, 2008 Fabales Fabaceae Umbrella thorn Least concern Least concern Not evaluated

Colophospermum mopane (J.Kirk ex
Benth.) J.Léonard, 1949 Fabales Fabaceae Mopane Least concern Least concern Not evaluated

Combretum elaeagnoides Klotzsch, 1861 Myrtales Combretaceae Large-fruited jesse-bush
combretum Least concern Not evaluated Not evaluated

Boscia albitrunca (Burch.) Gilg &
Gilg-Ben, 1915 Brassicales Capparaceae Shepherd’s tree Least concern Least concern Not evaluated

Dichrostachys cinerea (L.) Wight &
Arn 1834 Fabales Fabaceae Sickle bush Least concern Least concern Not evaluated

Ziziphus mucronata Willd, 1809 Rosales Rhamnaceae Buffalo thorn Least concern Least concern Not evaluated
Vachellia erioloba (E.Mey.) P.J.H.Hurter,
2008 Fabales Fabaceae Camel thorn Least concern Least concern Not evaluated

Combretum hereroense Schinz, 1888 Myrtales Combretaceae Russet bushwillow Least concern Not evaluated Not evaluated
Senegalia mellifera (Vahl) Seigler &
Ebinger, 2010 Fabales Fabaceae Blackthorn Least concern Least concern Not evaluated

Combretum imberbe Wawra, 1860 Myrtales Combretaceae Leadwood Least concern Least concern Not evaluated
Vachellia hebeclada (DC.) Kyal. &
Boatwr, 2013 Fabales Fabaceae Candle thorn Least concern Least concern Data-deficient

Vachellia luederitzii (Engl.) Kyal &
Boatwr, 2013 Fabales Fabaceae False umbrella thorn Least concern Least concern Not evaluated

Senegalia galpinii (Burtt Davy) Seigler &
Ebinger, 2010 Fabales Fabaceae Monkey-thorn Least concern Least concern Not evaluated

Philenoptera violacea (Klotzsch)
Schrire, 2000 Fabales Fabaceae Apple-leaf/ rain-tree Least concern Least concern Not evaluated

Senegalia nigrescens (Oliv.)
P.J.H.Hurter, 2008 Fabales Fabaceae Knob thorn Not evaluated Least concern Not evaluated

Source: IUCN Red List of Threatened Species, Red List of South African Plants, Red List of South African Species,
Botswana Plant Red Data List.

2.3. Satellite Imagery

Landsat imagery of sensors corresponding to the years 2002, 2012, 2018, 2020, and
2022 was obtained from the United States Geological Survey (USGS) portal as described in
Table 2. Landsat collection 2, tier 1 images containing surface reflectance of land features,
were obtained. Wet season satellite images were obtained to necessitate the detection of
vegetation in its optimal growth. As such, Landsat images acquired in April were obtained
across the study dates, as the month marks the end of the wet season in CE; hence, the
optimal biomass was expected. Earlier dates images, i.e., 2002 and 2012, were used to assess
spatiotemporal variations in vegetation and soil conditions 10 years before the construction
of the AWP, while recent dates images, i.e., 2018, 2020, and 2022, were used to assess the
conditions 6 years after the AWP on a 2-year interval. In this case, the satellite image for
2022 in the study area served as a reference image based upon which the RF model is trained
using collected ground samples. The near-infrared band of the PlanetScope Super Dove
(PSB. SD) instrument at 3 metres spatial resolution was obtained for the same scene in 2022
from the Planet labs portal https://www.planet.com/ (accessed on the 18 October 2022)
for purposes of enhancing the reference Landsat images before using them to train the
RF model.

2.4. Image Pre-Processing and Enhancement

Image co-registration was used to co-register image scenes from earlier dates (2002,
2012, 2018, and 2020) to the 2022 reference image. Co-registration of images was performed
in ERDAS Imagine version 16.7.0. Image scenes obtained through the OLI/TIRS instrument
were then rescaled to 8-bit unsigned to align their pixel depth with ETM+ for standardised
analysis of spectral response patterns of features. All images were also reprojected to
UTM Zone 35S using ERDAS imaging software. Scan line errors in the ETM+ acquired
image for 2012 were corrected using the fill no-data function in open-source QGIS version
3.22.12. The near-infrared band of the PlanetScope Super Dove (PSB. SD) instrument was
used to perform a multisensor Ehlers fusion across all image scenes. This type of image

https://www.planet.com/
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merging technique keeps the spectral properties of the image of interest while sharpening
their spatial resolution using a higher resolution image [28,29]. As such, through this
fusion technique, all Landsat images were resampled from their original 30 m spatial
resolution to the Super Dove (PSB. SD) NIR band’s 3 m resolution. This improved image
feature identification by emphasising high-intensity changes and grey-level discontinuities
between pixels in all images [29]. The fusion technique was also based on multiple intensity–
hue–saturation (IHS) transforms and fast Fourier transforms (FFTs). The former enhanced
features, colour, and spatial resolution [30], while the latter applied an adaptive filter to
the images.

Table 2. Image specifications for Landsat 7 ETM+ and Landsat 8 OLI/TIRS sensors used in 2002,
2012, 2018, 2020, and 2022.

Image Date Sensor Spectral Bands Wavelengths (µm) Spatial
Resolution (m)

2002 and 2012
Landsat 7 Enhanced Thematic Mapper
Plus (ETM+)

Band 1—Blue 0.45–0.52 30
Band 2—Green 0.53–0.61 30
Band 3—Red 0.63–0.69 30
Band 4—Near-Infrared (NIR) 0.78–0.90 30
Band 5—Shortwave Infrared (SWIR) 1 1.55–1.75 30
Band 6—Thermal 10.40–12.50 60 * (30)
Band 7—Shortwave Infrared (SWIR) 2 2.08–2.35 30
Band 8—Panchromatic 0.52–0.90 30

2018, 2020, and 2022 Landsat 8 Operational Land Imager (OLI) and
Thermal Infrared Sensor (TIRS)

Band 2—Blue 0.45–0.51 30
Band 3—Green 0.53–0.59 30
Band 4—Red 0.64–0.67 30
Band 5—Near-Infrared (NIR) 0.85–0.88 30
Band 6—Shortwave Infrared (SWIR) 1 1.57–1.65 30
Band 7—Shortwave Infrared (SWIR) 2 2.11–2.29 30
Band 8—Panchromatic 0.50–0.68 15

2.5. Analysis of Vegetation and Soil Spectral Response Patterns around the AWP over Time

Spectral response patterns of vegetation and soil features over time were used as
proxies for temporal variations in woody vegetation and soil conditions in the CE. The
spectral response patterns of features in all images (i.e., 2002, 2012, 2018, 2020, and 2022)
were assessed at the exact location of the main sampling plots (50 m × 50 m) used for
ground sampling in 2022. As such, pseudocolour band combinations, single band displays,
and model spectral curves for earth features as described by Lillesand et al. [31] were
used to identify both vegetation and soil features in the enhanced satellite images of
the study area. A minimum of 6 pixels representing vegetation and soil were sampled
using ERDAS per land cover to extract reflectance values of the features in the visible and
reflected infrared wavelengths in all images. The reflectance values of pixels representative
of vegetation and soil were averaged and used to plot spectral response patterns of the
features across visible and infrared wavelengths. Specifically, blue, green, red, NIR, SWIR1,
and SWIR2 wavebands were used to plot the spectral response patterns. The blue band is
useful for soil/vegetation discrimination and forest mapping [31]. The waveband measures
reflected energy in part of the wavelengths (0.45 to 0.67 µm) where chlorophyll in plants
strongly absorbs the energy for photosynthesis [31]. The green band measures the green
reflectance peak of vegetation essential for monitoring plant health and differentiating
plant types [32]. The red band detects the strongest chlorophyll absorption region [31,32].
It is, therefore, useful for plant species identification and mapping boundaries of soil
types. The blue, green, and red bands sense within the visible spectrum where vegetation
reflectance is based on chlorophyll absorption [31,33]. At the same time, soil reflectance
at these wavebands tends to increase with wavelength based on texture, organic matter,
and moisture content [31,32]. On the other hand, the NIR is responsive to the presence of
vegetation biomass as chlorophyll is highly reflective in the NIR [32]. It can distinguish
between dry and moist soils as water strongly absorbs the NIR [32]. Both the SWIR1 and
SWIR2 are similarly sensitive to vegetation and soil moisture [33]. They are particularly
useful for identifying disturbed soils and vegetation stress. As such, the configuration of
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vegetation and soil spectral patterns along the visible and infrared wavelengths is a good
indicator of the condition of the features on the ground [31].

The soil-adjusted vegetation index (SAVI) was also used to estimate and relate spectral
behaviours with temporal biomass changes around the AWP. SAVI was calculated using
Equation (1) [34]:

SAVI =
NIR − RED
NIR + RED

∗ (1 + L) (1)

where
NIR = reflectance value of a pixel from the near-infrared band;
Red = reflectance value of a pixel from the red band; and
L = soil brightness correction factor. The L factor ranges between 0 for lowest-density

vegetation and 1 for highest-density vegetation, and it is mostly defined as 0.5 to represent
intermediate vegetation cover [34]. In this study, L is taken as 0.5 as it is recommended
when studying soil-vegetation systems [35].

To account for drought events during the assessment period, an evapotranspiration
dataset from the moderate resolution imaging spectroradiometer (MODIS) was obtained
from the application for extracting and exploring analysis ready samples (AppEEARS) for
the years 2002, 2012, 2018, 2020, and 2022. This was used to observe trends in evapotranspi-
ration during the study dates.

2.6. Land Cover Classification around the AWP

We utilised a supervised learning approach to train the RF classifier in Google Earth
Engine to map different land cover types on the reference image using field data collected
at different sampling plots. As defined by Biau and Scornet [36], RF is a predictor consisting
of a collection of randomised regression trees. The functionality of the RF classifier is
based on an embedded feature assessment approach [37]. Its ability to perform better in
terms of overall accuracy and kappa coefficient compared to other decision trees [38–40]
has attracted wide-ranging utilisation in remote sensing applications [37]. Classification
through this algorithm is achieved by combining several classification trees to perform
ensemble learning [41]. The algorithm utilises the bootstrapping method to create sample
datasets from training data on a random selection basis [37]. The sample datasets are then
passed through each decision tree in a random forest to make predictions. The predictions
from each decision tree in a forest are then aggregated on majority voting [37,42]. This
process is called bagging, and the resultant classification follows Equation (2) [41]:

H(x) = argmaxy
K

∑
i=1

I (2)

where H(x) is the final classification decision of the random forest; hi(x) is the classification
outcome in each decision tree i; Y is the output variable; and I is the indicative function [41].

Two parameters are needed for training the RF model for feature classification [41].
These are the number of trees (ntree) and the number of randomly selected features to be
evaluated at each tree (mtry). These further determine the classification accuracy of the
model [41,42]. In this study, 300 forest trees were used. Optimal accuracy is reported to be
achieved from 200 trees onwards [39]. We also used the square root of the number of bands
in each image to be classified as the number of randomly selected feature variables in this
study. Land cover mapping using RF was performed at the vegetation species level based
on the dominant species recorded at each sampling plot. A total of 261 training samples
collected at the sampling plots were used to randomly train and validate the RF classifier in
the Google Earth Engine. Some 80% of the training samples were used for training, while
the remaining 20% were used for validation of the model on the 2022 Landsat image. The
trained classifier was then applied to the 2020, 2018, 2012, and 2002 images to map land
cover changes around the AWP before and after the installation of the water source.
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Lastly, we used a t-test at a 95% confidence level to compare changes in different land
covers at different distances before and after the introduction of the water point. The t-test
is a statistical test that compares the means of two samples [43].

3. Results
3.1. Vegetation and Wildlife Diversity around the AWP

The vegetation species identified during the field survey are 38 woody trees and
herbaceous plants. Key species included large-fruited jesse-bush combretum, camel thorn,
mopane, sickle bush, false umbrella thorn, blackthorn, russet bushwillow and candle
thorn. The Shannon–Wiener diversity index showed a low to moderate level of vegetation
diversity (H) with a range of 1.52 to 2.43 in all directions. The species were distributed
over a continuous surface of loose-grain thin Ferralic arenosols in all directions of the
water point.

On the other hand, wildlife species identified in the study area totalled 17 species
(Table 3). The species diversity ranged between 1.50 and 1.80. The highest species diversity
of 1.80 was recorded within a 1 km radius of the AWP. However, the highest species
abundance was observed within a 0.5 km radius of the AWP (Table 3). The most abundant
species within this distance were zebra, impala, elephant, and buffalo at 58.1%, 7.0%, 6.2%
and 5.4%, respectively. At a 1 km radius, the most abundant species were zebra at 29.5%,
followed by impala at 26.1%, elephant at 17.0%, and roan at 12.5%. Elephant, zebra, roan,
and impala maintained high species abundance at a 5 km radius of the AWP. Roan was the
most abundant (37.5%) at 10 km radius of the AWP. This was followed by elephant (20.8%),
dwarf mongoose (16.7%), and warthog (16.7%).

Table 3. Frequency and abundance of wildlife species encountered at various distances in the
study area.

Wildlife
Species

Frequency
(0.5 km)

Abundance
(%)

Frequency
(1 km)

Abundance
(%)

Frequency
(5 km)

Abundance
(%)

Frequency
(10 km)

Abundance
(%)

Zebra 75 58.1 26 29.5 6 22.2 0 0.0
Ostrich 2 1.6 0 0.0 0 0.0 0 0.0
Giraffe 2 1.6 0 0.0 0 0.0 0 0.0
Eland 4 3.1 2 2.3 0 0.0 0 0.0
Dwarf
mongoose 3 2.3 2 2.3 3 11.1 4 16.7

Banded
mongoose 1 0.8 0 0.0 0 0.0 0 0.0

Yellow
mongoose 2 1.6 0 0.0 0 0.0 0 0.0

Impala 9 7.0 23 26.1 4 14.8 2 8.3
African
buffalo 7 5.4 3 3.4 0 0.0 0 0.0

Wildebeest 5 3.9 1 1.1 0 0.0 0 0.0
Elephant 8 6.2 15 17.0 7 25.9 5 20.8
Warthog 1 0.8 5 5.7 0 0.0 4 16.7
Roan 6 4.7 11 12.5 6 22.2 9 37.5
Kudu 1 0.8 0 0.0 0 0.0 0 0.0
Jackal 1 0.8 0 0.0 0 0.0 0 0.0
Hyena 1 0.8 0 0.0 0 0.0 0 0.0
Lion 1 0.8 0 0.0 1 3.7 0 0.0

3.2. Vegetation and Soil Conditions
3.2.1. Spectral and Metabolic Changes at 0.5 km Distance from the Water Source

Spectral response patterns showed the reflectance of vegetation and soil features
ranging between 27.8% and 67.6% across all wavelengths in 2002 (Figure 2a,b). In 2012,
the reflectance decreased but at different rates ranging between 26.9% and 58.3% across
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various bands of Landsat sensors (Figure 2a,b). Both features in both years displayed
distinguishable spectral responses except in the near-infrared waveband. Notably, the
spectral response of vegetation in both years deviated from the expected peak and valley
behaviour for healthy green vegetation in the visible wavelengths. For example, a stronger
reflection of red light by vegetation in 2002 and 2012 contradicted the expected strong
absorption of radiation through chlorophyll for photosynthesis by healthy plants. This
coincided with the lowest evapotranspiration rates of 126 mm and 313 mm in 2002 and
2012, respectively, compared to the years after the AWP.
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In the years after the inception of the AWP (i.e., 2018 and 2020), the study area was
characterised by extremely high reflectance across wavelengths by both vegetation and soil
features (Figure 2a,b). The highest reflectance of nearly 100% was observed for soil features
in all directions (Figure 2b, Table S2). However, photosynthetic activity was noticed in both
years as characterised by the lowest reflection of red radiation within the visible spectrum
and a peak reflection of NIR radiation. In contrast to 2018 and 2020, the reflection of
radiation by vegetation and soil was suppressed across all wavebands in 2022 (Figure 2a,b).
However, the reflection of energy across wavebands by both features remained higher
than in the years before the AWP except in the SWIR ranges, matching the relatively
high evapotranspiration rates in 2022 compared to 2002 and 2012. While vegetation was
photosynthetically active in 2022, the spectral heterogeneity of both vegetation and soil
was less distinctive across wavelengths compared to previous years (Figure 2a,b).

3.2.2. Spectral and Metabolic Changes at a 1 km Distance from the Water Source

The reflection range of vegetation and soil slightly declined by 7.6% in 2002 and 0.2%
in 2012 while maintaining similar spectral patterns compared to a 0.5 km distance from
the water source (Figure 3a,b). Both features also showed a slightly declined reflection
of energy across wavelengths in 2018 and 2020 compared to shorter distances from the
AWP. The decline was emphasised in 2018 in all directions (Figure 3b, Table S4). This was
consistent with the highest evapotranspiration rate (429.7mm) observed in 2018. However,
the SAVI index revealed that the relatively high moisture did not stimulate vegetation
density, as the lowest indices (0.25 and 0.02) were recorded in the NE and N directions at
this distance compared to the years before the AWP. On the other hand, vegetation and soil
continued to show comparable spectral responses across wavelengths in 2022 (Figure 3a,b).
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3.2.3. Spectral and Metabolic Changes at a 5 km Distance from the AWP

In 2002 and 2012, the reflection of energy by soil was mostly higher in the NE and NW
directions than in the northern direction (Table S5). The state of aridity remained noticeable
in different directions at this distance, chiefly characterised by a lack of photosynthetic
behaviour in the visible wavelengths and some spectral overlaps of both vegetation and soil
in some infrared wavelengths (Figure 4a,b, Table S5). The overlaps were mainly observed
in the NE and NW directions.
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The years 2018, 2020, and 2022 exhibited further improvement in the spectral response
of features at a 5 km distance from the AWP compared to the same dates at shorter distances
from the water source (Figure 4a,b). At this distance, the spectral improvements were much
more noticeable on vegetation compared to soil (specifically soil in the NE and N directions,
Figure 4b, Table S6). The most stable spectral behaviour was displayed by vegetation in
the NW direction in 2018 and 2020 (Table S6). In contrast, the NE and N soils exhibited the
highest reflection of visible light and SWIR radiations at this distance compared to the soils
in NW (Table S6). In 2022, both features retained overly overlapping spectral responses
across wavelengths in all directions, as observed at 0.5 km and 1 km away from the AWP
(Figure 4a,b, Table S6).

3.2.4. Spectral and Metabolic Changes at a 10 km Distance from the Water Source

Despite the dry conditions and drought seasonality in 2002 and 2012, the reflection
of energy at this distance by vegetation and soil remained lowest in both years compared
to years after the AWP (Figure 5a,b). The reflection of energy by features ranged between
23.8% and 55.6% in 2002 and 23.9% and 48.8% in 2012.
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Reduced wildlife impacts on natural landscapes were noticeable by generally sup-
pressed energy reflection by vegetation and soil in 2018, 2020, and 2022 (Figure 5a,b).
However, environmental disturbances remained disproportionately intense over soil in the
NE direction compared to soil in other directions in 2018 and 2020 (Table S8). In the same
years, soil in the NE direction retained a high spectral response similar to the soil at a 5 km
distance from the AWP while soil in the N direction exhibited a declining spectral response
between 2018 and 2020 at this distance. On the other hand, the vegetation spectral response
illustrated a photosynthesising vegetation cover in 2022. This is despite the maintained
homogenisation of the landscape exhibited in 2022, as vegetation and soil spectral response
patterns continued to strongly overlap across wavelengths (Figure 5a,b). Nonetheless,
soil in the NW direction displayed a distinguishable spectral response compared to other
features in other directions.

3.3. Land Cover Classification and Accuracies

The land cover types of the study area are shown in Figure 6, while Table 4 shows the
error matrices, producer/user accuracies, kappa statistics, and overall accuracies of the
trained RF classifier in 2022. The high number of correctly classified pixels in each land
cover type as well as the high kappa statistic (0.75) and overall accuracy (80.6%) indicated
that the RF model trained on Landsat imagery was effective in classifying land cover types
in the study area (Table 4).

The trained RF model effectively classified land cover types in the study area into five
major classes inclusive of woody and herbaceous species (Figure 6). These were (1) large-
fruited jesse-bush combretum, camel thorn, black spear grass, wiregrass; (2) mopane,
sickle bush, couch grass, common finger grass; (3) barren land; (4) false umbrella thorn,
blackthorn, sickle bush, broad curly leaf; and (5) russet bushwillow, candle thorn, umbrella
thorn, black spear grass.

Table 4. Random forest algorithm confusion matrix and accuracy assessment for the 2022
classified image.

Plant Communities

Large-Fruited
Jesse-Bush
Combretum
Communities

Mopane
Communities Barren Land

False
Umbrella
Thorn
Communities

Russet
Bushwillow

Producer’s
Accuracy (%)

User’s
Accuracy (%)

Large-fruited jesse-bush
combretum communities 8 2 0 0 0 80 53.3

Mopane communities 5 13 0 0 1 68.4 81.3
Barren land 0 0 8 0 0 100 100
False umbrella thorn
communities 1 1 0 14 1 82.4 100

Russet bushwillow 1 0 0 0 7 87.5 77.8

Overall accuracy = 80.6%; kappa statistic = 75.3%.
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Diagonal elements (bolded) in Table 4 above show that the number of correctly clas-
sified pixels in each landcover class was higher than misclassified pixels. The RF model
showed that most land cover classes were correctly classified at above 80% producer ac-
curacies indicating high probabilities of correctly classified pixels for each land cover. At
the same time, most of the landcover classifications were reliable and representative of the
actual context at above 75% user accuracy.

Land cover maps revealed that the study area was historically dominated by mopane,
sickle bush, couch grass, and common finger grass species in 2002 and 2012 (Figure 6,
Table 5). The species showed the highest mean distribution at various distances compared
to other land covers before the AWP (Table 5). However, the species declined significantly
(p = 0.075) after the inception of the AWP within 0–0.5 km from the water point. A signif-
icant drop (p = 0.048), (p = 0.019), and (p = 0.020) was also seen at distances of 0.5–1 km,
1–5 km, and 5–10 km from the water source. Other plant communities demonstrated grow-
ing trajectories following the AWP. For example, russet bushwillow communities grew
within 0–0.5 km of the water source (Table 5). The observed increase was statistically signif-
icant (p = 0.023) within this distance. A significant increase was also observed at 0.5–1 km
(p = 0.006) and 1–5 km (p = 0.022) distances. At further distances (i.e., 5–10 km), the increase
in russet bushwillow communities was not statistically significant with a p-value of 0.113.
At the same time, the increase in large-fruited jesse-bush combretum communities after the
introduction of the water point was not statistically significant, with p = 0.255 and p = 0.105
within 0–0.5 km and 0.5–1 km distances, respectively. Rather, the communities significantly
increased with p-values of 0.002 and 0.011 within 1–5 km and 5–10 km, respectively. On the
other hand, the increase in false umbrella thorn communities after the introduction of the
water point was not statistically significant with p-values of 0.452, 0.594, and 0.216 within
0–0.5 km, 0.5–1 km and 1–5 km, respectively. Between 5 and 10 km distance from the water
source, the species increased significantly (p = 0.027). Barren land also increased after AWP;
however, the increase is not statistically significant with p-values of 0.483, 0.479, 0.119 and
0.069 at 0–0.5 km, 0.5–1 km, 1–5 km, and 5–10 km distances, respectively.
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Table 5. Changes in the mean distribution (in km2) of vegetation communities at various distances
before and after the introduction of the AWP.

Area (in km2)

Land Cover 0–0.5 km 0.5–1 km 1–5 km 5–10 km

Large-fruited jesse-bush combretum communities before AWP 0.01 ± 0.01 0.03 ± 0.03 0.64 ± 0.16 2.61 ± 0.95
Large-fruited jesse-bush combretum communities after AWP 0.08 ± 0.06 0.25 ± 0.10 9.03 ± 0.49 22.30 ± 2.85
Mopane communities before AWP 0.80 ± 0.08 1.55 ± 0.04 38.04 ± 0.74 86.74 ± 0.25
Mopane communities after AWP 0.25 ± 0.21 0.51 ± 0.33 14.82 ± 4.54 24.30 ± 12.55
Barren land before AWP 0.04 ± 0.02 0.10 ± 0.02 0.54 ± 0.10 7.58 ± 0.92
Barren land after AWP 0.15 ± 0.18 0.28 ± 0.30 1.66 ± 0.60 13.30 ± 2.05
False umbrella thorn communities before AWP 0.02 ± 0.001 0.03 ± 0.02 1.14 ± 0.49 6.26 ± 0.54
False umbrella thorn communities after AWP 0.04 ± 0.04 0.06 ± 0.07 3.87 ± 2.10 12.16 ± 1.28
Russet bushwillow communities before AWP 0 0 0.01 ± 0.02 0.19 ± 0.26
Russet bushwillow communities after AWP 0.19 ± 0.04 0.62 ± 0.07 10.97 ± 2.33 31.30 ± 16.16

4. Discussion
4.1. Vegetation and Wildlife Diversity around the AWP

The Shannon–Wiener diversity index showed that the study area hosts a diversity
of vegetation and wildlife species. A total of 38 plant species were recorded with an
overall low to moderate diversity index range of 1.52 to 2.43 in all directions from the
water sources. The value of the Shannon–Wiener diversity index normally ranges between
1.5 and 3.5 [44]. This implies that the diversity of vegetation in our study area falls within
the low to moderate values of species richness. This contrasts with the high vegetation
diversity reported by Kashe et al. [45] and Mokatse et al. [20]. We partly attribute the low
diversity established in this study to a smaller study extent utilised in our assessment
compared to the previous studies. We also link the poor diversity to a reported continuous
degradation of vegetation cover within the savanna landscape of Chobe by an increasing
number of elephants and other herbivores [46].

A total of 23 animal species were also observed within the study area. Large and
small herbivores and carnivore species were the main animal species identified within the
peripheries of the AWP. The highest wildlife diversity was observed within a 1 km radius of
the AWP. Herbivores such as zebra, impala, elephant, and buffalo were the most abundant
within the study area mainly due to the established high and increasing population of
herbivores in northern Botswana [14].

4.2. Vegetation and Soil Conditions
4.2.1. Spectral and Metabolic Changes at 0.5 km Distance from the Water Source

We observed a generally distinctive spectral heterogeneity between vegetation and soil
in 2002 and 2012. This shows a maintained heterogeneous nature of the savanna landscape
in both years [46]. However, vegetation spectra in both years in the visible wavelengths
deviated from the expected reflectance patterns for living green vegetation as described by
Lillesand et al. [31]. In this case, we noticed a peak reflection of red radiation in both years,
which is contradictory to the expected strong absorption of the radiation by chlorophyll for
photosynthesis. This implies that vegetation was photosynthetically inactive in both years.
The lowest evapotranspiration rates of 126 mm and 313 mm recorded in 2002 and 2012,
respectively, further imply that the study area experienced drought episodes that caused
the prevalence of senescent foliage in the landscape. Vegetation conditions are enhanced
by an increase in precipitation, as such moisture tends to be the most limiting factor for
vegetation growth in arid and semi-arid landscapes [47].

Following the installation of the AWP, the highest reflection of energy by vegetation
and soil was observed. A reflection of nearly 100% across wavelengths was noticed on soil
features at this distance. The high reflection of energy by soils indicates their low moisture
content. This is because the presence of moisture in the soil will decrease its reflectance due
to the infrared absorption capabilities of water [31]. The introduction of AWPs causes the
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gradual formation of piospheres as areas closer to the water points experience high grazing
pressure and trampling as animals congregate at a reduced area [4]. The piospheres expose
the ground surface to rapid moisture loss and further introduce changes in vegetation and
soil conditions due to grazing gradients that form with continuous grazing pressure [4,5,46].
Our results also showed poor spectral heterogeneity between vegetation and soil following
the installation of the AWP, consistent with the low to moderate vegetation diversity
discussed. We attribute this to selective foraging of vegetation by some herbivores, e.g.,
elephants [12], and a gradual degradation of vegetation heterogeneity as wildlife numbers
increase and grazing intensifies [8]. Our observations are consistent with Herrero et al. [46]
who have shown that if savanna landscapes portray a nonequilibrium state, large ecological
shifts may be induced by small- and large-scale shocks.

4.2.2. Spectral and Metabolic Changes at a 1 km Distance from the Water Source

Landscape conditions remained consistent in the study area in 2002 and 2012, as
evidenced by consistent vegetation and soil spectral patterns at this distance from the
water source. On the other hand, the low reflection of energy by vegetation and soil in
the SWIR1 and SWIR2 wavelengths in 2018 compared to 2020 coincided with the highest
evapotranspiration rate of 430 mm, indicating improved landscape moisture. We note that
the improved moisture content could not restore landscape conditions at this distance, as
shown by only a slight spectral change for both features compared to shorter distances
and low SAVI indices. The findings indicate that wildlife disturbances associated with
foraging and trampling persisted, reaching up to a 1 km distance from the water source,
thereby corroborating the findings of Perkins [5] and Dzinotizei et al. [12] that the impact
of piospheres may stretch beyond the immediate peripheries of AWPs, termed as the
“sacrifice zone”. The poor landscape condition restoration despite wetter conditions in
2018 confirms that the nonstrategic use of AWPs is detrimental to the resilience of semiarid
landscapes, as their ecological functioning is disrupted by enhanced wildlife distribution
through artificially altering water availability [1,9].

4.2.3. Spectral and Metabolic Changes at a 5 km Distance from the AWP

Noticeable spectral changes in vegetation and soil occurred in the NE and NW direc-
tions in 2002 and 2012. In this case, the reflection of energy by both features was mostly
higher compared to the Northern direction, and spectral overlaps in some infrared wave-
lengths were noticed. The results implied that the features in the different directions were
experiencing different landscape conditions at this distance. We attribute the portrayed
spectral behaviour of features in the NE to the intensification of land use brought about
by proximity to arable land and human settlements (i.e., Kachikau settlement). Intensifica-
tion of land use causes a reduction of green cover, thereby accelerating drought severity
through thermal and moisture stresses [47,48]. The higher spectral behaviour in the NW
corresponds with a reduced moisture gradient in the NW direction. Reduced moisture
influences strong reflectance, particularly within the infrared wavelengths, indicating that
moisture content in vegetation leaves is also low [48].

In 2018 and 2020, the spectral behaviour of features improved for vegetation compared
to soil at this distance. We noted a stable spectral behaviour by vegetation in the NW
direction compared to other directions. We also noted that soil in NE and N exhibited
the highest reflection of visible light and mid-infrared radiation compared to soil in NW.
Both observations imply reduced landscape disturbances in the NW direction. The unique
spectral response of vegetation and the implied less intense wildlife disturbance in the
NW direction further suggest the onset of vegetation fragmentation in favour of the NW
direction. This is because bushes in clusters surrounded by open areas tend to form in
artificially altered landscapes due to intense browsing and the toppling of vegetation [49].

In 2022, the spectral behaviours of vegetation and soil retained overly overlapping
trajectories across wavelengths in all directions, as initially observed at 0.5 km and 1 km
away from the AWP. This signifies a homogenising landscape in 2022 attributed to an
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increase in plants in dormant status as well as a change in the composition of the landscape.
Vegetation stresses alter their spectral response patterns [31] while increasing density and
foraging pressure by wildlife in areas with artificial water holes tend to cause long-term
alterations in the configuration and composition of the landscapes through coppicing,
thereby homogenising the landscapes [12].

4.2.4. Spectral and Metabolic Changes at a 10 km Distance from the Water Source

Consistency in spectral response patterns of vegetation and soil in 2002 and 2012
was maintained at this distance, further indicating minimal disturbances, and retained
landscape heterogeneity before the installation of the AWP. Most importantly, the spectral
consistency implies similar environmental conditions at varying sampling distances before
the AWP. On the other hand, the spectral response patterns of features were generally
suppressed in 2018, 2020, and 2022 across wavelengths at this distance compared to other
distances except for soil in the NE direction. Landscape homogenisation also improved at
this distance except in the NE direction. The reduction in the spectral response patterns at
this distance shows reduced landscape disturbances, confirming that areas further away
from AWPs experience less intense changes in landscape compositions, partly due to a
decrease in animal density with distance from the AWP [50,51].

Lastly, our results reveal that the immediate years following the installation of an
AWP are characterised by unstable spectral responses of features consistent with landscape
disturbances that accompany the high-density aggregation of wildlife around the AWP.
Later years, for example, 2022 in our study, show a stabilised spectral response by features,
albeit strong homogenisation of the landscape attributable to a change in the composition
of the landscape, increase in dead plant-based material and senescent foliage as more
trees continue to be toppled and trampled in the area. The results also indicated an
existing vulnerability of the study area to drought events with the potential of acting
simultaneously with wildlife concentrations to aggravate AWP-induced disturbances on
the landscape. Drought increases wildlife damage on woody vegetation, as such strategic
water point closure is necessary to regulate grazing and reduce the wildlife pressure on the
landscapes [52,53].

4.3. Land Cover Changes around the AWP

The overall accuracy and kappa statistic of our trained RF model for the classification of
land cover in the study area were 80.6% and 0.75, respectively. This demonstrated the ability
of supervised learning through the RF algorithm to accurately classify woody savanna
landscapes in CE using Landsat imagery. Similarly, Kulkarni and Lowe [38] reported that
RF showed better performance in terms of overall accuracy and kappa coefficient when
compared with other classifiers. As such, the high accuracy of our model allows us to
conclude that RF was effective in classifying land cover types in the study area into five
major classes.

The results showed that the CE landscape consists of (1) large-fruited jesse-bush
combretum, camel thorn, back spear grass, wiregrass; (2) mopane, sickle bush, couch grass,
common finger grass; (3) barren land; (4) false umbrella thorn, blackthorn, sickle bush,
broad curly leaf; and (5) russet bushwillow, candle thorn, umbrella thorn, black spear
grass. The identification of woody and herbaceous species in this classification is in line
with Sianga and Fynn [54] and Vittoz et al. [22] that vegetation communities in CE are
characterised by different herbaceous and woody species with soil texture and fertility
accounting for the species variations.

A comparison of land cover maps revealed that the inception of AWP initiated rapid
land cover changes that disproportionately affected vegetation communities in the study
area, particularly mopane woodlands. The woodlands exhibited significant (p < 0.05)
declines within 0–10 km after the introduction of the water point. In this case, Combre-
tum-dominated species, namely, large-fruited jesse-bush combretum communities, russet
bushwillow communities, and barren land were shown to benefit from widespread decline
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in mopane woodlands. The Combretums peaked significantly after the introduction of the
water point at various distances from the water source. This is because the communities
have a prolific resprouting attribute which is key to their resilience and productivity, par-
ticularly in disturbance-prone areas [55]. These are also most likely to persist under very
high densities of herbivores due to their low palatability [56]. On the contrary, mopane
woodlands have a low growth rate [57]. However, Vittoz et al. [22] indicated that the
woodlands have a high nutritional value, with high protein and phosphorus contents, and
as such, they attract intensive browsing by elephants. Mopane woodlands also provide
suitable habitats for herbivorous species such as buffalo, roan, and sable antelope because
of the abundance of digestible grasses that normally exist within the woodlands [22,54].
This causes the herbivore population to increase in these woodlands [54]. Therefore, the
interplay of forage and habitat preference of the mopane woodlands by herbivore species
and artificial alteration of surface water availability at these woodlands justifies their rapid
reduction following the installation of the AWP in the study area.

5. Conclusions

Artificially manipulating surface water availability for wildlife in sub-tropical sa-
vannah ecosystems initiates wildlife-mediated effects on natural landscape configuration
and composition through enhanced distribution patterns and high-density aggregations.
Understanding how natural landscapes respond to alterations in surface water availability
for wildlife can help inform the strategic use of artificial water resources and sustainably
manage sub-tropical savannah ecosystems. The assessment of landscape variations follow-
ing the installation of AWPs through multitemporal satellite imagery provides a unique
opportunity to make direct landscape comparisons before and after the introduction of
the resources. As a result, our study provides this opportunity in that spatiotemporal
variation in landscape following the installation of an AWP in the CE was assessed using
multitemporal Landsat images before and after the AWP. Our findings showed that the
AWP in the CE instigated landscape disturbances on a drought-vulnerable landscape. The
disturbances affected vegetation heterogeneity through the degradation of vegetation cover
types. Immediate years following the AWP installation showed intense landscape distur-
bances consistent with sudden high-density aggregation of wildlife, whereas the landscapes
strongly homogenised in later years due to the change in landscape composition, increase in
dead plant-based material and senescent foliage as vegetation continued to be toppled and
trampled. Our land cover classification model and t-test revealed that these disturbances
disproportionately affected mopane woodlands compared to other land cover types. The
study provides insights into how the continued nonstrategic use of AWPs and droughts
in sub-tropical savannah ecosystems may induce large ecological shifts characterised by
vegetation fragmentation and extinction of some species due to the detrimental effect on
reproductive individuals and woody plant seedlings. However, there is a need for further
studies looking at AWP impacts on natural landscapes using process-based climate models
and hyperspectral satellite images to better detect non-photosynthetic plant material as a
proxy for disturbances.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/land13050690/s1, Table S1: Percentage reflectance of vegetation
and soil at a 0.5 km distance in different directions of AWP in 2002 and 2012; Table S2: Percentage
reflectance of vegetation and soil at a 0.5 km distance in different directions of AWP in 2018, 2020, and
2022; Table S3: Percentage reflectance of vegetation and soil at a 1 km distance in different directions
of AWP in 2002 and 2012; Table S4: Percentage reflectance of vegetation and soil at a 1 km distance in
different directions of AWP in 2018, 2020, and 2022; Table S5: Percentage reflectance of vegetation
and soil at a 5 km distance in different directions of AWP in 2002 and 2012; Table S6: Percentage
reflectance of vegetation and soil at a 5 km distance in different directions of AWP in 2018, 2020, and
2022; Table S7: Percentage reflectance of vegetation and soil at a 10 km distance in different directions
of AWP in 2002 and 2012; Table S8: Percentage reflectance of vegetation and soil at a 10 km distance
in different directions of AWP in 2018, 2020, and 2022.
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