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Simple Summary: Fish fry counting finds applications in various scenarios, including fish fry trading
and the management of breeding densities. However, current computer-based methods struggle to
accurately and effectively count large numbers of fish fry and locate them. To address these challenges,
this study proposes a fish fry counting method based on a single keypoint as a feature. Additionally,
a large-scale fish fry dataset, FishFry-2023, has been constructed, which includes universal point
annotations for use. The number of fry in a single image ranges from 204 to 1935, ensuring an
effective evaluation of the proposed method. Our approach was trained and tested on FishFry-2023,
with experimental results demonstrating an average counting accuracy of 98.59%, exhibiting higher
counting precision compared to the density map algorithms now available.

Abstract: Fish fry counting has been vital in fish farming, but current computer-based methods are
not feasible enough to accurately and efficiently calculate large number of fry in a single count due
to severe occlusion, dense distribution and the small size of fish fry. To address this problem, we
propose the deconvolution enhancement keypoint network (DEKNet), a method for fish fry counting
that features a single-keypoint approach. This novel approach models the fish fry as a point located
in the central part of the fish head, laying the foundation for our innovative counting strategy. To be
specific, first, a fish fry feature extractor (FFE) characterized by parallel dual branches is designed for
high-resolution representation. Next, two identical deconvolution modules (TDMs) are added to the
generation head for a high-quality and high-resolution keypoint heatmap with the same resolution
size as the input image, thus facilitating the precise counting of fish fry. Then, the local peak value
of the heatmap is obtained as the keypoint of the fish fry, so the number of these keypoints with
coordinate information equals the number of fry, and the coordinates of the keypoint can be used
to locate the fry. Finally, FishFry-2023, a large-scale fish fry dataset, is constructed to evaluate the
effectiveness of the method proposed by us. Experimental results show that an accuracy rate of 98.59%
was accomplished in fish fry counting. Furthermore, DEKNet achieved a high degree of accuracy on
the Penaeus dataset (98.51%) and an MAE of 13.32 on a public dataset known as Adipocyte Cells.
The research outcomes reveal that DEKNet has superior comprehensive performance in counting
accuracy, the number of parameters and computational effort.

Keywords: fish fry counting; keypoint; deconvolution; heatmap

1. Introduction

Counting, which is defined as estimating the number of objects in the target area to
obtain precise information and perform timely control operations, has been widely applied
in many different fields [1,2]. For example, Han et al. [3] figured out the total number
of individual pedestrians using a density estimation method. Akgay et al. [4] employed
object detection models utilizing deep neural networks to assist the automatic process of
bird counting. Fan et al. [5] counted fish fry using computer vision and a multi-class least
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squares support vector machine. Fish fry counting is an important task in the aquaculture
industry. For one thing, fish fry counting is an essential part of aquatic product trading.
Culturing fish fry requires particular climate conditions, light conditions and water quality,
so most aquatic farms need to purchase fish fry from those that specialize in hatching fry,
which inevitably involves fish fry counting. For another, fish fry counting can also provide
guidance on assessing the survival rate, regulating breeding density, and monitoring
transportation sales [6]. Therefore, an automated, efficient and accurate counting method
is pivotal in the development of fish farming.

In general, fish fry counting methods include manual counting, physical shunt equip-
ment counting, image processing counting and deep learning-based counting. Manual
counting is time consuming, labor intensive, and costly, and its accuracy is likely to be
affected by human fatigue and other subjective factors during the counting process. As
for physical shunt equipment counting, it is not desirable as it may cause damage to fish,
harming fish welfare.

Currently, researchers are mainly exploring image processing counting and deep
learning-based counting. For example, Hernandez-Ontiveros et al. [7] implemented fish
counting through digital image processing with an accuracy rate of 96.64%. Aliyu et al. [8]
first segmented the images by applying three methods: (1) image binarization using Otsu
thresholding; (2) morphological operations using fill hole, dilation, and opening operations;
(3) boundary segmentation using edge detection. Then, the chain code algorithm and
Fourier descriptor were leveraged to extract boundary features. Finally, the boundary
features were input to the neural network to identify and count the catfish. The proposed
counting algorithm performed well, demonstrating 100% accuracy. Zhang et al. [6] used
binarization, dilation, and corrosion methods to extract the details of the fish fry. The
thinning and the connected area algorithms were then independently adopted to count the
fish fry within the image. These research efforts are based on traditional image processing
methods to conduct fish counting. Nevertheless, they have certain limitations. Although it
is possible to roughly estimate the number of objects in the image, they cannot utilize more
abstract semantic features and background information in the image, and the processing
effect is disappointing in case of occlusion, congestion, high density, etc.

Zhang et al. [9] first used traditional image processing methods to separate different
density grading, then used local regression to calculate the number of fry in different
density grading, and finally added the number of fry in multiple density grading. This
method delivered an accuracy rate of 96.07%. Zhao et al. [10] used density map regression
to count fish fry by adding transposed layers and concentrated—comprehensive convolution
modules to the generation head so that the resolution of the feature map is restored and the
computational overhead is reduced. The proposed method achieved a mean absolute error
of 4.10. Yu et al. [11] added an attention module to three parallel convolutional networks to
extract feature maps, and finally used the density map estimation module to estimate the
distribution and the number of fish in the image, with an accuracy rate of approximately
97.12% attained. Despite the high precision in counting fish with high-density levels, these
methods based on deep learning fail to pinpoint the exact location of the fish. Therefore,
the trading parties cannot be convinced in an intuitive way.

Deep learning technology marks a breakthrough in automatic counting methods in
smart aquaculture. In addition to the density map regression method, some scholars also
used the object detection algorithm to fulfill the counting function. Ditria et al. [12] selected
Mask R-CNN for fish counting, and the proposed model achieved an accuracy up to 93.4%.
Allken et al. [13] used RetinaNet to count fish, combining real images and synthetic images
during the training phase. Its counting precision was 84.5%, indicating that there was
still room for improvement. Jalal et al. [14] integrated optical flow and Gaussian mixture
models with a YOLO deep neural network for detecting fish in underwater scenarios.
Their proposed algorithm achieved an F-score of 95.47%. Cai et al. [15] performed fish
detection and counting by extracting image features of fish with the YOLOv3 model, but
its average counting precision was less than 80%. Lei et al. [16] proposed an improved
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detection method, termed as YOLOv7-waterbird, for real-time video surveillance devices to
identify attention regions and perform waterbird monitoring tasks. Nevertheless, the mean
average precision (mAP) value achieved by YOLOv7-waterbird was 67.3%. In addition to
the unsatisfactory counting precision in previous studies, two more problems still need
to be addressed; first of all, as the size of the fish fry is very small, methods proposed
in these experiments to count the relatively large fish may not be applicable. Moreover,
the detection-then-counting algorithms used in previous research may suffer from low
counting efficiency and accuracy. For one thing, they involve post-processing, namely
non-maximum suppression, in which the duplicate detection of the same instance should
be eliminated by calculating the bounding box IoU [17]. For another, they are prone to
treating multiple objects as a single one when these objects are relatively close to each other.

In recent years, the keypoint has been harnessed to detect objects and some scholars
have used keypoints to achieve human pose estimation. Zhou et al. [17] modeled an
object as a single point by first using keypoint estimation to find the center point, and then
returning to other object properties such as size and orientation. Liu et al. [18] added an
attention mechanism to the CenterNet backbone to improve the feature expression ability.
Then, a circle representation was introduced to optimize the detector for detecting tomatoes.
Although its precision reached 98.16%, the number of tomatoes in one image was not large.
Chen et al. [19] designed a deep neural network to detect five keypoints in pig body parts,
then correlated the keypoints to identify individual pigs, and finally designed a tracking
algorithm to complete pig counting in the video. Its experimental results show that the
highest accuracy could reach 99.2%. Due to the large size of the pig, five keypoints can
be used concurrently to determine a pig, but further grouping is required to associate the
five keypoints with the same target, which, to a certain extent, reduces the efficiency of
the model.

Although these studies have yielded satisfying results, fish fry counting is still a very
challenging task because of the severe occlusion, dense distribution and small size of fish
fry aged 5-10 days. Besides, one single prediction to quickly and accurately calculate the
maximum number possible of fish fry is valuable for commercial applications. Furthermore,
some methods mentioned above fail to obtain the locations of fish fry, which can be utilized
in subsequent higher-level fish fry analysis tasks, such as movement monitoring and
anomaly detection. Therefore, we propose a deconvolution enhancement keypoint network
(DEKNet), an automatic counting method that uses only one keypoint for fish fry counting.
This is an end-to-end model which requires neither grouping nor post-processing. When
using DEKNet for fry counting, there is no need to regress other properties of the object,
and only counting the target is needed. The quantities and the locations of fish fry can be
gained by obtaining the local peaks of the heatmap generated by DEKNet as the keypoint.
The pipeline of fish fry counting is illustrated in Figure 1. First, the image is acquired with
a smartphone and transmitted to DEKNet. Next, the heatmap is generated by DEKNet via
a series of convolution operations. Finally, the local peak is obtained from the heatmap as
the keypoint of the target, and the number of keypoints is counted, which equals to the
number of fish fry.
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Figure 1. The pipeline of fish fry counting. A smartphone is first used to collect data, and the feature

extractor is then used to extract high-resolution representation. Finally, the keypoint-counting module

generates the counting results and locations of fish fry according to the heatmap.

DEKNet stands out with the following three characteristics:

High-resolution heatmap. Generating a high-resolution heatmap with superior qual-
ity is crucial for precisely locating the keypoints of small objects. However, a high-
resolution heatmap is less investigated. Most methods mainly focus on grouping
keypoints and simply using a single resolution of a feature map that is 1/4 of the
input image resolution to predict the heatmap of keypoints. Coordinate regression
based on the heatmap produces quantization errors, as the coordinates have their
precision tied to the resolution in the heatmap [20]. For example, assume the input
image size is 1024 x 1024, and one of the keypoints is located at 516 x 516. The
resulting output heatmap would be 256 x 256, which is one-fourth the size of the
original image. Consequently, due to downsampling, the keypoint would be posi-
tioned at 128 x 128. However, there might remain an error of 3 pixels (calculated as
516 — 128 x 4 = 3 pixels), even if the heatmap is restored without any discrepancies.
Therefore, in order to handle quantization issues, two deconvolution (transposed con-
volution) modules are added to the generation head in DEKNet in order to generate
a high-quality and high-resolution heatmap with the same resolution as the input
image. Two factors made us select deconvolution. One reason is that deconvolution
can be used in sequence at the end of a network to efficiently increase feature map res-
olution [21]. The other reason is that Xiao et al. [22] demonstrated that deconvolution
can generate high-quality feature maps for heatmap prediction.

High-resolution representation. High-resolution representation is conducive to iden-
tifying the object. In the whole process, the two parallel branches of the feature
extraction module simply perform feature extraction synchronous with feature fusion,
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but the resolution of their respective feature map remains unchanged, where the
resolution of the feature map in the first branch is as high as 1/4 of the original image,
while the resolution of the feature map in the second branch is as high as 1/8 of
the original image. The feature extraction module ultimately outputs the feature
map acquired in the first branch. As a result, DEKNet can obtain high-resolution
representations throughout the feature extraction process.

3. Maximum efficiency. DEKNet is an end-to-end model that regresses keypoints
through the heatmap. Aiming to achieve precise counting, DEKNet uses a single
keypoint to fulfill the counting function and obtain the locations of fish fry without re-
gressing other properties of the object. In addition, DEKNet only utilizes one keypoint
for counting, which means that there is no need to group different types of keypoints,
nor does it involve post-processing, thus greatly reducing the computational effort of
the model.

Therefore, the main contributions of this pager are summarized below:

1.  An automatic fry counting method (DEKNet) using one keypoint is proposed, which
can effectively count the number of fish fry despite overlap and obscurity. The
approach not only achieves state-of-the-art counting accuracy but also provides the
exact locations of fish fry. Furthermore, it may also be transferred to count other small
objects in smart aquaculture.

2. Asimple, lightweight and dual branch parallel feature extractor is designed, which can
perform multi-scale feature extraction and maintain high-resolution representations.
Meanwhile, the computational effort is significantly reduced.

3.  Two identical deconvolution modules (TDMs) are added to the generation head, or
the keypoint-counting module, to generate a high-quality heatmap that has the same
size as the original image with more detailed features. In this way, the proposed
method can improve the performance of small object counting in high-density scenes.

4. A large-scale fish fry dataset (FishFry-2023) is constructed. In the dataset, a single
point instead of a bounding box is used to mark any individual fish fry when labeling
the data, thus significantly reducing the workload of annotating tasks.

2. Materials and Methods
2.1. Materials

In order to develop an automatic fry counting method, we first constructed a fish
fry dataset, namely FishFry-2023. The data in this experiment were collected under the
condition that the normal growth of the fish fry was not affected. In the process of data
acquisition, we provided an environment suitable for the survival of fish fry to maintain
the vitality of fish fry, so as to obtain more abundant sample data.

2.1.1. Fish Fry Images Collection

We collected the data of this experiment in a farm of fish fry, using equipment such
as diddle-nets, white opaque plates, and smartphones, which are readily available and
inexpensive. First of all, we used the net to take some fish fry and put them onto the plate
filled with water. Then, we took photos of the fry on the plate with our smartphones. Next,
after taking a certain number of photographs, we continued to put more fish fry onto the
plate for more pictures, repeating this operation to obtain an increasing number of fish
fry datasets in a random way. Finally, we acquired 8 batches of images with a total of
1100 images, where the number of fish fry mounted up in batch order, and the number of
fish fry images in each batch, was the same. Even though the number of fish fry remains
the same in each image of a given batch, the position and the morphology of fish fry in
each image are different due to the swimming fish fry. Thus, no images are identical in our
counting. The dataset is featured by the diversity, which is specifically demonstrated in the
following four aspects:

1.  Size variance. Since the smartphone has a local automatic gravity sensing function,
the collected images have two different sizes, which are 4032 x 3024 and 3024 x 4032.
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All images are stored in JPG format without being processed into the same size, and
both sizes are used for data labeling and model training.

2. Light variance. Since the data are collected under different lighting conditions, the
background of the images is different, including dark light, natural light, and reflection
(Figure 2a).

3. Water variance. Since the turbidity of the water differs, the background of the images
also varies from clear to slightly muddy (Figure 2b,c).

4. Density variance. When collecting data, we constantly increased the number of fry,
so the dataset had three types of density distribution: low, medium and high levels
of density. Among them, low density means that the number of fish fry is within
the range from 204 to 591, with the corresponding images collected in Batches 1, 2,
3 (Figure 2d). Medium density refers to the number of fry ranging from 642 to 876,
with the corresponding images collected in Batches 4, 5, 6 (Figure 2e). High-density
indicates that the number of fry ranges between 1312 and 1935, with the corresponding
images collected in Batches 7, 8 (Figure 2f).

(f)

Figure 2. Images with different illumination conditions, watercolors, and levels of density in the
FishFry-2023 dataset: (a) lightness: reflection; (b) water: clear; (c) water: slightly muddy; (d) density:
low level; (e) density: medium level; (f) density: high level.

2.1.2. FishFry-2023 Dataset

There are 8 batches of fish fry data, and the data for batches 1-3 were classified as low
density, Batches 4-6 as medium density, and Batches 7-8 as high density. In the first step, we
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pre-processed the collected data, and removed some blurred images that captured only part
of the fish fry on the plate and could not be used to distinguish the fish fry. Subsequently,
the graphical image annotation tool Labelme was used for data annotation. Each fish
fry in the image was annotated with a point positioned at its head. We selected several
images from each batch for annotation and obtained the annotation results of each batch
(Table 1). In the first batch, the number of fish fry in each picture was 204, and 45 images
were pre-processed altogether, with a total of 9180 fish fry labeled. Finally, 200 annotated
images were obtained, with a total target number of 137,390.

Table 1. Annotation results of each batch.

Density Low Level Medium Level High Level
Batch number 1 2 3 4 5 6 7 8
Image 45 45 5 45 5 5 45 5
Fry number in per image 204 438 591 642 712 876 1312 1935
Instance 9180 19,710 2955 28,890 3560 4380 59,040 9675

To verify the robustness of the model, the training set does not include images of
all batches, but the validation set and the test set include images of all batches. First, we
selected 40 annotated images from Batches 1, 2, 4 and 7, a total of 160 images to establish a
training set, and 5 images from Batches 1 to §, a total of 40 pictures to form a verification set.
The ratio of the training set to the validation set was 8:2. The test set included 800 unlabeled
images, with each batch comprising 100 images. This was because the number of fish fry
in each batch was the same, and we could calculate the exact number of fish fry in each
batch in the test set based on the annotated data. Although there are only 160 images
in the training set, the annotated target reaches 103,840. The validation set consists of
40 images, but the number of annotated targets reached up to 33,550. It can be seen that
our experimental data are sufficient. Details of the architecture of the FishFry-2023 dataset
and the test set are shown in the Appendix A.

2.2. Methods

In this section, we first introduce the details of two modules in DEKNet: the feature
extraction module and the keypoint-counting module. Then, the process of training and
the inference of the model, as well as the evaluation metrics, are interpreted. Finally, the
experimental setup is illustrated.

2.2.1. Framework

In this study, we propose a novel counting network that uses only one keypoint and
is enhanced by deconvolution, namely DEKNet, for automated, accurate and efficient
fish fry counting. In the initial phase, DEKNet is trained on labeled images to obtain its
corresponding weights. In a later period, when presented with new images, DEKNet
leverages these learned weights to make predictions. During the prediction stage, DEKNet
utilizes a heatmap to generate a set of points with coordinate information. Each point
corresponds to a detected fish, with the quantity of these points indicating the number of
fry. This approach enables DEKNet to accurately count and locate fry within the images.
The network framework of DEKNet is composed of two parts, a feature extraction module
and a keypoint-counting module inspired, respectively, by HRNet [23] and HigherHR-
Net. Initially, the feature extraction module extracts target features and outputs feature
maps. Subsequently, the keypoint-counting module regresses the keypoint in the form of a
heatmap, receives the feature map generated by the backbone, and outputs the keypoint.
The schematic diagram of DEKNet is shown in Figure 3.
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Figure 3. Network architecture of DEKNet. The feature extraction module has two parallel branches
to extract target features, which can maintain the resolution of the feature map while performing
feature fusion. The keypoint-counting module restores the resolution of the feature map and generates
the heatmap.

2.2.2. Feature Extraction Module

Traditional image process methods rely on professionals to manually select object
features, resulting in low model robustness. In contrast, deep learning-based models can
automatically learn target features through their feature extraction modules, making tasks
like image processing more accurately performed. Most existing methods first generate low-
resolution representations with rich semantic information through a series of convolution
and downsampling modules, and then perform feature fusion and improve the resolution
of the feature map through a series of convolution and upsampling modules. For example,
feature pyramid networks [24] perform upsampling on the last-layer feature map to im-
prove resolution and perform feature fusion. Improving the resolution of the feature maps
may be attributable to the rich spatial information in high-resolution representations, with
which object location is facilitated. In our research design, the backbone cannot only obtain
more spatial information but also extract high-level semantic features. Therefore, similar
to HRNet, our backbone maintains high-resolution representations and fuses multi-scale
features throughout the process, rather than recovering high-resolution representations
through a low-to-high process. However, in contrast with HRNet, which generates a new
branch after each stage of feature fusion due to the downsampling operation, our backbone
has only two parallel branches; therefore, it not only allows the model to obtain rich spatial
information and semantic features, but also reduces the computational effort of the model.

The structure of the feature extraction module is shown in Figure 4. The image feature
extraction by backbone consists of the following five steps. (1) The resolution of the image
is reduced by two convolution blocks to obtain feature maps whose width and height are
one-quarter of the original image. (2) The convolution operation in the BottleNeck module
increases the number of channels output, but maintains the resolution of the feature map,
and this process is repeated four times. (3) Two branches are generated by two convolution
modules. The resolution of the feature map of the first branch remains unchanged, which
is used to maintain high-resolution representations. At the same time, the second branch is
used to extract high-level semantic features, and the width and height of the feature maps
become one-eighth of the original image, and the number of channels in the feature maps
is twice that of the first branch. (4) Feature fusion of two branches. First, the two branches
extract features through four BasicBlock modules. Next, the first branch is downsampled,
and the second branch is upsampled. Eventually, the concat operation is performed on
both the feature map in the first branch and the feature map obtained by upsampling in the
second branch. Concurrently, the concat operation is performed on both the feature map in
the second branch and the feature map obtained by downsampling in the first branch. The
same operation is performed twice in this phase. (5) Feature fusion is performed on the
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first branch only. First, both branches extract features through four BasicBlock modules.
Subsequently, the concat operation is performed on the feature map in the first branch,
together with the feature map sampled in the second branch to obtain the feature map that
can be input to the keypoint-counting module, and the resolution of this feature map is
one-quarter of the input image.

x2

BottleNeck*4 Conv2d BN ReLU BasicBlock*4 Concat + ReLU BasicBlock*4
(256, 256. 256) (256, 256, 48) (256, 256, 48) (256. 256, 48) (256, 256, 48)
First branch
Conv2d BN_ReLU Upsampling Downsampling Upsampling Concat + ReLU
(256, 256, 64) (256, 256, 48) (128. 128, 96) (256, 256, 48) (256, 256, 48)

Second branch

Conv2d BN ReLU Conv2d BN ReLU BasicBlock*4 Concat + ReLU BasicBlock*4

(512,512, 64) (128, 128, 96) (128, 128, 96) (128.128. 96) (128, 128, 96)
Image Feature map
(Input: 1024.1024.3) (Output: 256,256.,48)

Figure 4. The architecture of the feature extraction module. The input is the image with a resolution
of 1024 x 1024. The resolution of the feature map in the first branch is 256 x 256, which is twice that
of the second branch. Both branch feature maps require feature fusion operations that only need to
be performed twice. Finally, the output is a feature map of 48 channels.

2.2.3. Keypoint-Counting Module

A high-resolution heatmap with high quality enables the keypoints of small objects to
be localized precisely, so a deconvolution module is added to HigherHRNet to obtain a
feature map with the resolution of the input feature map in two folds. Differences between
the heads of DEKNet and those of HigherHRNet are found mainly in two aspects. First, we
add two identical deconvolution modules to our research. Each deconvolution module can
get a new feature map twice the size of the input feature map. Therefore, a high-quality
feature map with identical size to the input image is generated by the head. Secondly, only
two deconvolution modules are added in our keypoint-counting module, while several
other modules are added in HigherHRNet before and after the deconvolution module
is used. For example, before the deconvolution module is established, a convolution
operation is performed by HigherHRNet to obtain another feature map, and then feature
fusion is performed to obtain a new feature map. At the same time, several Basic Residential
Blocks [25] are added after the deconvolution module is created.

The architecture of the keypoint-counting module is shown in Figure 5. Two identical
deconvolution modules are combined to the head module to generate a high-quality feature
map. Eventually, a high-quality prediction heatmap is generated by a convolution operation
with core 1 x 1. The workflow of the keypoint-counting module includes three steps. (1) A
feature map from backbone is input into the two deconvolution modules to generate a high-
quality and high-resolution feature map without changing its channel. (2) The feature map
obtained in the previous step is fed into a convolution block to generate one high-quality
and high-resolution heatmap for prediction. Because DEKNet only uses a single keypoint
for object counting, there is no need to group different types of keypoints, nor is there a
need to add additional output. Furthermore, the number of heatmaps and the number of
keypoint types have one-to-one correspondence, so the number of channels output by the
model is one. (3) Local peaks containing coordinate information in the keypoint heatmap
are extracted as the keypoint of the target, and the keypoints are counted to obtain a final
result in fish fry counting.
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Figure 5. The architecture of the keypoint-counting module. The input is a feature map generated
by the feature extraction module, with a resolution of 256 x 256 and a channel of 48. After each
deconvolution, the resolution of the feature map is restored twice. Eventually, a heatmap identical in
size to the original image is generated.

2.2.4. Training and Inference

The heatmap is used to obtain keypoints of the object. During the training, the loss
function, defined as mean squared error, is used to calculate the error of the predicted
heatmap and the ground truth (GT) heatmap, which is expressed as follows:

AL ~ .2
Loss = HZ (yi—vi) 1)
i=1

where A is the loss factor, y; € [0,1] is the value on the ground truth heatmap, and /};i €[0,1]
is the value on the prediction heatmap.

The inference step represents that the image is input to DEKNet and the counting
results are output correspondingly. The pseudo code of inference is shown in Algorithm 1.
Firstly, in Algorithm 1, the function conv_some which consists of convolution operation,
batch normalization and the activation function is performed on the image to obtain the first
feature map (Line 2 in Algorithm 1). The second feature map is obtained by down_sampling
operation (Line 3 in Algorithm 1). Then, the function conv_same, which has a function
identical to conv_some but maintains the size of the feature map, is performed on the above
two feature maps (Lines 5-6 in Algorithm 1). The second feature map only needs to be
fused twice, and then the feature fusion operation is performed on the first feature map
(Lines 8-11 in Algorithm 1).

Subsequently, the function deconvolution is performed on the first feature map to
restore the size of the feature map (Lines 14-16 in Algorithm 1). And the function conv_1
is used to generate the prediction heatmap (Line 17 in Algorithm 1). Lastly, the counting
results are obtained by the function obtain_counting_results according to the prediction
heatmap (Line 18 in Algorithm 1, see Algorithm 2 for more details).

The heatmap generated by DEKNet can be represented by a two-dimensional array
with values between 0 and 1. DEKNet defines a 3 x 3 window to traverse through
all the values of the array, keeping the points that match the criteria to represent the
number of fry and each point has coordinate information. Relevant details are provided
in Algorithm 2. First, the list of counting results CR is initialized (Line 1 in Algorithm 2).
Then, the maximum pooling function whose stride is 1 is performed on the heatmap to
obtain a temporary heatmap whose size is the same as that of the input heatmap (Line
3 in Algorithm 2). In this work, the kernel size is 3 and the padding is 1. This function
enables each value of the heatmap to be replaced with the max value within the kernel size
3 x 3 square region centered at each spatial location (h,w). Subsequently, all the values
of the above two heatmaps are iterated. If the two values in the same location are equal,
the point is a local peak. At this point, if the value is greater than the score threshold, the
coordinate information and the score value of the point are added to the list of counting
results CR (Lines 4-11 in Algorithm 2). Finally, the counting result CR is returned (Line 12
in Algorithm 2).
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Algorithm 1 Pseudo-code of inference

Input: the original image; window_size; the counting score threshold
Output: the counting results CR
1 preprocess the original results image
/* conv_some: a convolution operation; Fmap: feature map */
2 first_Fmap := conv_some (image)
/* create a feature map of the second branch by down_sampling */
3 second_Fmap := down_sampling (first_Fmap)
4 for i in range(0,3) do
5 first_Fmap := conv_same (first_Fmap)
6 second_Fmap := conv_same (first_Fmap)
7 upsample_Fmap :=up_sampling (second_Fmap)
/* execute twice to fuse features of the first branch into the second one */

8 if i <2 then

9 down_Fmap := down_sampling (first_Fmap)

10 Second_Fmap := concate (second_Fmap, down_Fmap)
11 end

/* feature fusion */

12 first_Fmap := concate (frist_Fmap, upsample_Fmap)
13 end

/* deconvolution performed twice to get critical features */
14 for j in range (0,2) do
15 first_Fmap := deconvolution (first_Fmap)
16 end

/* conv_1: a convolution operation with core 1x1 */
17 prediction_heatmap := conv_1 (first_Fmap)

/* please refer to Algorithm 2 for the procedure for counting results */
18 CR := obtain_counting_results (prediction_heatmap, window_size, threshold)
19 return CR

Algorithm 2 Pseudo-code of obtaining counting results

Input: the prediction heatmap PH; the size of the sliding window;
the counting score threshold

Output: the counting results CR
1 initialization: CR:= @

/* get the height and width of the heatmap */
2 height, width := PH.shape

/* each value of the heatmap is the maximum value of this area */
3 temp_heatmap := MaxPool2d (PH, window_size, stride:=1, padding)
/* traversing the two heatmaps
4 for h in range(height) do
5 for w in range(width) do

/* get the value of the current position */

6 value := PH[h][w]
/* add the location information and value of the keypoint to the CR */
7 if value == temp_heatmap[h][w] and value >= threshold then
8 CR.append((h, w, value))
9 end
10 end
11 end
12 return CR

2.2.5. Evaluation Metrics

Several performance indicators are utilized to evaluate the performance of the pro-

posed method in our experiments. Accuracy is used to evaluate the counting accuracy of
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the method. Furthermore, root mean squared error (RMSE) and mean absolute error (MAE)
are used to calculate the fish fry counting errors. The specific formulas are as follows:

n — /\‘
Accuracy = (% (1- M)) x 100% ()
i=1 i
18 ~\2
RMSE = HZ (P — py) ©)
i=1
18 ~
MAE = H.Z p; — pil (4)

i=1

where n is the total number of images, p; is the ground truth of the i-th image, and /};i is the
predicted number of the i-th image.

2.3. Experimental Setup

The FishFry-2023 dataset used for the training process included a training set of
160 images and a validation set with 40 images, both featuring a resolution of 3024 x 4032 or
4032 x 3024. During the training process, the image was scaled to 1024 x 1024, and the
model generated a heatmap of the same size. In addition, to increase the number of
training samples and prevent the model from overfitting, the data augmentation techniques
employed included horizontal flipping, random scaling ([0.75, 1.5]), and random rotation
([-30°,30°]). The experiment adopted the hrnet_w48 as pre-trained weights. Furthermore,
the Adam optimizer was used. The base learning rate was set to 1.5 x 1073, and dropped
to 1.5 x 10~* and 1.5 x 1072 at the 20th and 60th epoch, respectively. The number of
training epochs was 500, the batch size was 4, the o of Gaussian kernels was 1, and the
loss factor was 1. The details of the training parameter settings are described in Table 2. In
addition to the above hyper parameters, the server equipped with Intel(R) Core i7-11700K
CPU, NVIDIA GeForce RTX 3090 GPU (Colorful, Shenzhen, China), PyTorch 1.11.0, CUDA
11.3 and CUDNN 8.2 was used for training and testing.

Table 2. Training parameter setting.

Parameter Value
Input size 1024 x 1024
Pre-trained weight hrnet_w48
Epoch 500
Optimizer Adam
Learning rate 1.5 x 1073
Batch size 4
o 1
A 1

3. Results

In order to validate the performance of the proposed model DEKNet, we designed a
series of experiments using different models for comparison. In the first step, we launched
experiments on the FishFry-2023 dataset and obtained the results produced by DEKNet. In
the second step, to verify the universality of DEKNet, we conducted experiments on the
existing Penaeus dataset [26] and a publicly available Adipocyte Cells dataset [27]. Finally,
subsequent ablation experiments were carried out on the FishFry-2023 dataset to verify the
performance of each component in DEKNet.

3.1. Fish Fry Counting Results

As shown in Table 3, DEKNet achieved an accuracy of 98.59% in all images, with the
RMSE and MAE being 31.19 and 16.32, respectively. In the low-density level, the counting
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accuracy was 98.91%, with a RMSE of 7.01 and a MAE of 5.11. In the medium-density level,
the counting accuracy was up to 99.05%, with the RMSE and MAE being 13.41 and 7.33,
respectively. The counting accuracy in medium density was higher than that of low density,
which may be related to the relatively uniform dispersion of fish fry; the more dispersed
the fish fry, the more accurate the counting. In the high-density level, the counting accuracy
reached 97.44%; its RMSE and MAE were 59.56 and 46.62, respectively. With the increasing
number of fish fry in higher levels of dense distribution, the number of overlapping fish fry
also increased significantly. As a consequence, the counting accuracy decreased.

Table 3. Experimental results of fish fry counting at different levels of density.

Density Level Accuracy (%) RMSE MAE
Low 98.91 7.01 5.11
Medium 99.05 13.41 7.33
High 97.44 59.56 46.62
Total 98.59 31.19 16.32

The partial test results of 8 batches are shown in Figure 6. It can be seen that the size
of fish fry is very small; the number of fish fry in each batch is different, and each image
has a different background. In Figure 6h, despite the number of fish fry being as large as
1935, they can still be counted individually even in close proximity, which is the advantage
of using only one keypoint for counting.

Figure 6. Cont.
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Figure 6. Partial test results of each batch. A green point signifies a fish fry, which is located on
the head of any individual fish fry. (a) Total number predicted was 204 and GT was 204 in Batch
1; (b) total number predicted was 434 and GT was 438 in Batch 2; (c) total number predicted was
589 and GT was 591 in Batch 3; (d) total number predicted was 642 and GT was 642 in Batch 4; (e) total
number predicted was 710 and GT was 712 in Batch 5; (f) total number predicted was 871 and GT
was 876 in Batch 6; (g) total number predicted was 1303 and GT was 1312 in Batch 7; and (h) total
number predicted was 1892 and GT was 1935 in Batch 8.

3.2. Comparisons with Different Counting Methods

Currently, there are three types of backbone systems. The first type is a typical convo-
lutional neural network (CNN) including HRNet-W48, BL [28], HigherHRNet-W48 and
DEKNet, the second type is featured by transformer architecture, including Swin-Base [29]
and PVTv2-B2 [30], and the third type combines CNN with transformer architecture, such
as HRFormer-S [31]. Among these models, only BL is a density map estimation method,
and the other models combine a heatmap to implement the keypoint counting function.

To better display the comprehensive performance of DEKNet, the calculation results
of seven methods were compared in each batch of FishFry-2023. The comparison results
between DEKNet and the methods concerning the parameter, computational amount and
accuracy are shown in Table 4. Many models, such as HRNet [23] and HigherHRNet [21],
measure their performance using two indicators: the parameter (Params) and the floating
point operations (FLOPs). If a model has fewer Params and FLOPS, it typically indicates
that it is lighter in weight and higher in efficiency. Such a model can be deployed and
executed more effectively in resource-constrained environments, potentially offering faster
inference speeds and lower power consumption. The value in the bold type indicates that
a particular method outperforms others concerning a corresponding indicator. (1) The
parameters of DEKNet were 3.32 MB which was 4.43 MB less than those of HRFormer-S.
Although DEKNet has few parameters, the total computational complexity is still relatively
large, as the higher the resolution of the heatmap, the greater the computational complexity
of the model. Meanwhile, the FLOPs of DEKNet were 112.24 G, which was 50.34 G
more than those of HRFormer-S and remained the third least among the seven methods.
When compared to HRNet-W48, the FLOPs of DEKNet decreased by 224.15 G, signifying
increased efficiency. (2) DEKNet outperformed the other six models in terms of total
average accuracy. For example, compared to BL and HRFormer-S, DEKNet improved
average accuracy by 0.75 and 2.87 points, respectively. (3) DEKNet and BL were very close
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to each other in accuracy from Batch 1 to Batch 5, all exceeding 98%. In Batch 2, the accuracy
of BL was 98.83, only 0.02% higher compared with DEKNet. Despite this, as the number of
fish fry increased, the accuracy of DEKNet was significantly higher than that of BL. (4) The
accuracy of DEKNet in Batches 7-8 was 99.08% and 95.80%, respectively, 2.18% and 1.19%
higher than that of BL. By contrast, all the other five methods had an accuracy rate of less
than 87% in Batches 7-8. For example, the accuracy of PVTv2-B2 was the lowest at 72.85%.
In addition, the accuracy of HRNet-W48 in the 8th batch was only 80.08%, 15.72% less than
that of DEKNet.

Table 4. Experimental results in low-, medium- and high-density fish fry. The value in the bold type
indicates that a particular method outperforms others concerning a corresponding indicator.

Params  FLOPs Accuracy T (%)
Method Year ) ©) 1 2 3 4 5 6 7 8  Total
HRNet-W48 2019 6359 33639 9451 8873 9406 9454 9550 8377 93.04 80.08 90.53
BL 2019 2150 42173 9928 98.83 9834 9827 99.17 9729 9690 9461 97.84
HigherHRNet-W48 2020  63.80 38275  96.66 94.85 9554 9565 9843 9473 9694 8698 9497
Swin-Base 2021  86.75 33419 9192 8170 9501 79.89 8825 79.84 9791 8457 89.26
HRFormer-S 2021 7.75 61.90  99.01 9765 97.69 9709 9879 9376 96.61 86.16 95.72
PVTv2-B2 2022 2485 6835 9630 91.63 9487 8170 8396 67.87 8860 72.85 8472
DEKNet (ours) 2023 3.32 11224 9945 9879 98.49 98.83 99.77 9853 99.08 95.80 98.59

Furthermore, the fish fry counting errors in each model, namely RMSE and MAE, are
shown in Table 5. Since the number of fish fry in each image in the first batch was only
204, the RMSE and MAE of all methods were relatively small. For example, the RMSE and
MAE of HRNet were 11.69 and 11.19, respectively, and those of DEKNet were 1.55 and
1.12, respectively. It can be seen that the RMSE and MAE were much lower in DEKNet
with the exception of the second batch; the RMSE and MAE of DEKNet were significantly
lower than those of the other six methods. In the second batch, the RMSE and MAE of BL
were 1.6 and 1.1 less than those of DEKNet, respectively. In addition, the RMSE of DEKNet
in the 7th and 8th batches was 14.40 and 82.99, respectively, which was lower than that
of the other six methods. Meanwhile, in the 8th batch, the MAE of DEKNet was 81.19,
177.01 lower than that of HigherHRNet, 217.82 lower than that of Swin, and 187.01 lower
than that of HRFormer.

Table 5. Comparisons of RMSE and MAE among different methods. The value in the bold type
indicates that a particular method outperforms others concerning a corresponding indicator.

2 3 4 5 6 7 8

Method
RMSE  MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE
HRNet 11.69 11.19 52.50 49.33 36.10 35.11 4127 35.01 33.97 32.04 231.68 142.20 96.42 91.25 394.16 385.46
BL 1.67 147 5.54 5.11 10.64 9.80 12.44 11.12 6.51 5.89 25.32 23.75 42.37 40.73 108.06 104.31
HigherHRNet 7.06 6.82 23.71 2254 28.12 26.38 36.60 27.93 11.97 11.20 66.10 46.15 44.60 40.10 260.83 251.91
Swin 18.40 16.48 98.70 80.16 3347 29.47 172.85 129.12 119.13 83.69 328.12 185.4 40.75 27.43 300.81 298.58
HRFormer 242 2.02 10.79 10.30 15.83 13.63 23.02 18.67 9.49 8.58 76.41 54.70 63.32 57.60 270.20 267.85
PVTv2 10.37 7.54 48.46 36.65 32.48 30.33 137.94 117.55 127.07 114.23 362.75 281.42 155.17 149.54 526.89 525.31
DEKNet 1.55 112 5.94 5.26 10.47 8.94 11.96 7.51 212 1.63 19.79 12.84 14.40 12.04 82.99 81.19

In addition, to more intuitively demonstrate the counting performance of DEKNet at
high-density levels, we plotted box plots of the error values between the predicted values
and the ground truth for the above models. As shown in Figure 7, the orange line represents
the mean value, and the blue line represents the median value. The minimum value and the
maximum value of errors are, respectively, represented by two short lines outside the box.
It can be seen that the max error value of DEKNet was 134, which was smaller than that of
the other six methods. Furthermore, DEKNet has the lowest box height, which manifests
the best stability and the least data fluctuation. What is more, as shown in Figure 8, the total
number of fish fry predicted by DEKNet was 1888 and the accuracy was 97.57%, which
was obviously superior to the other models in the same sample. As BL could not predict
the locations of fish fry, we did not show the image predicted by BL in Figure 8.
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Figure 7. Box plots of error values between the predicted values and the ground truth for seven dif-
ferent methods.
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Figure 8. Comparisons of the total number of fish fry predicted by six different methods in the same
image whose GT was 1935. (a) The total number predicted by HRNet-W48 was 1643; (b) the total
number predicted by HigherHRNet-W48 was 1766; (c) the total number predicted by Swin-Base was
1745; (d) the total number predicted by HRFormer-S was 1742; (e) the total number predicted by
PVTV2-B2 was 1435; and (f) the total number predicted by DEKNet (ours) was 1886.
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In summary, DEKNet was more robust and accurate in counting fish fry compared with
the other six methods. In Batch 7 and Batch 8, marked by particularly dense distribution, the
comprehensive performance of DEKNet was more satisfactory than the other six methods in
the comparison. The reason why DEKNet is excellent mainly lies in the two deconvolution
modules added to the generation head for a high-resolution and high-quality heatmap.

3.3. Comparisons with Crowd-Counting Methods

A series of experiments were conducted on FishFry-2023 by employing state-of-the-art
crowd-counting methods such as CSRNet [32], CAN [33], CCTrans [34], SCALNet [35],
and P2PNet [36]. The comparison results on the test set are presented in Table 6. In terms
of parameters and FLOPs, DEKNet surpassed these crowd-counting methods. With the
exception of DEKNet and SCALNet, all the other methods exhibited FLOPs exceeding
300 G. While SCALNet boasted the second smallest FLOPs, it still exceeded DEKNet's by
31.27 G. This demonstrated that DEKNet was more efficient than these crowd-counting
methods. Furthermore, our method exhibited superior performance according to the
evaluation metrics, closely followed by P2PNet. The accuracy for CSRNet and CAN was
81.10% and 84.58%, respectively, whereas the accuracy for CCTrans, SCALNet, and P2PNet
all exceeded 90%. In comparison to CCTrans, our method demonstrated an improvement
in accuracy (increased by 2.53%). Furthermore, compared to P2PNet, our method achieved
an increase in accuracy (improved by 2.01%), accompanied by reductions of 16.46 and
16.1 in RMSE and MAE, respectively. The modest performance of these crowd-counting
methods for fish fry counting may be attributed to the diminutive size of the fry, which
contrasts sharply with the larger size of humans. These findings underscore the efficacy
of a high-resolution heatmap in facilitating small object counting, thereby positioning the
proposed method favorably relative to certain crowd-counting methodologies.

Table 6. Comparisons results on FishFry-2023 test set. The value in the bold type indicates that a
particular method outperforms others concerning a corresponding indicator.

Method Venue Params (MB) FLOPs (G) Accuracy (%) RMSE MAE
CSRNet CVPR’18 16.26 433.79 81.1 225.53 157.71
CAN CVPR'19 18.1 459.72 84.58 207.78 128.28
CCTrans CVPR21 104.61 397.37 90.61 73.14 55.73
SCALNet IEEE’21 19.1 143.51 94.05 139.98 62.44
P2PNet ICCv21 21.58 383.31 96.58 47.65 32.42
DEKNet - 3.32 112.24 98.59 31.19 16.32

3.4. Comparisons Results on Penaeus Dataset

To validate the generalization ability of DEKNet, we conducted experiments on a
Penaeus dataset using the models introduced in Section 3.2. The Penaeus dataset is a
shrimp fry dataset of Penaeus monodon, which consists of a training set with 593 images, a
validation set with 60 images and a test set with 1426 images.

The results on the test set are shown in Table 7. Compared to HRNet-W48 [23] and
BL [28], DEKNet improved average accuracy by 7.07 and 2.55 points, respectively, in all
test images. At the same time, the RMSE of DEKNet was 25.68, 101.22 less than that
of HRNet-W48, and 30.32 less than that of BL. What is more, the MAE of DEKNet was
14.77, which was less than that of the other six methods. In all test images, compared to
Swin-Base [29] and HRFormer-S [31], our method achieved a 8.21 and 6.66 point gain in
accuracy, respectively. Furthermore, the accuracy and the MAE of PVTv2-B2 [30] were
92.25% and 34.59, respectively, which were less than those of DEKNet.

The test result in one of the images with the largest number of shrimp fry is shown in
Figure 9. Although the shrimp fry were very densely distributed and severely occluded,
our method still made efficient counting by means of the keypoint of the head, with an
accuracy reaching 95.27%, and its predicted value and ground truth were 1611 and 1691,
respectively. In summary, our method also outperformed the other six methods in the
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Penaeus dataset. The foremost reason is the fact that DEKNet can generate a heatmap to
precisely locate the keypoint of small objects.

Table 7. Comparisons of the Acc, RMSE and MAE of different methods on the Penaeus dataset.
The value in the bold type indicates that a particular method outperforms others concerning a
corresponding indicator.

Method Accuracy(%) RMSE MAE
HRNet-W48 91.44 126.90 69.20

BL 95.96 56.60 27.72
HigherHRNet-W48 95.66 65.75 36.59
Swin-Base 90.30 120.02 57.86
HRFormer-S 91.85 113.16 64.96
PVTv2-B2 92.25 49.26 34.59
DEKNet (ours) 98.51 25.68 14.77

Figure 9. An example image of the Penaeus dataset whose ground truth is 1691. The total number
predicted by DEKNet was 1611. A green point represents a penaeus monodon, which is located on
the head of individual shrimp fry.

3.5. Comparisons Results on Adipocyte Cells Dataset

In addition, we made comparisons between DEKNet and two cell-counting methods,
namely Count-ception [37] and SAU-Net [38]. The Adipocyte Cells dataset consists of
200 images. The average cell count across all images is 165 & 44.2 and they are densely
packed, adjoining cells with few gaps [37]. Based on the experimental settings of these two
cell-counting methods, we randomly selected 50 images for the training set, 50 images for
the validation set, and the remaining 100 images for the test set every time. This process
was conducted at least 10 times, and eventually the mean value (MAE) and its standard
deviation (STD) were given. The MAE and STD of these two methods came from their
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respective experimental outcomes. The DEKNet reduced the MAE by 6.1 and STD by 1,
respectively, compared to Count-ception. Compared with SAU-Net, the MAE and STD of
our method decreased by 0.88 and 0.4, respectively. The experimental results are shown in
Table 8.

Table 8. Comparison results between our method and two cell-counting methods on Adipocyte
Cells. The value in the bold type indicates that a particular method outperforms others concerning a
corresponding indicator.

Method MAE =+ STD
Count-ception 19.40 £ 2.2

SAU-Net 14.20 + 1.6
DEKNet (ours) 13.32 £ 1.2

All in all, our method outperformed the above methods in the public dataset of
the Adipocyte Cells dataset. The superior performance of DEKNet can be attributed to
two factors, namely our method cannot only maintain the high representations, but also
generate a high-resolution heatmap with high quality.

3.6. Ablative Analysis of Each Module

In order to study the effectiveness of each component, we conducted ablation experi-
ments in the test set of FishFry-2023. The experimental results are shown in Table 9. Let H
and W represent the height and width of the input image, respectively. With only our fish
feature extractor (FFE) and no deconvolution modules in the generation head, Experiment
A generated a heatmap size of H/4 x W /4 with a counting accuracy of 88.87%. And the
RMSE and MAE of Experiment A were 202.89 and 120.80, respectively.

Table 9. Ablation study of each module on FishFry-2023 test dataset.

. Number of . o
Experiment Method Deconvolution Module Heatmap Size  Accuracy (%) RMSE MAE
A FFE 0 H/4 x W/4 88.87 202.89 120.80
B FFE + ODM1 1 H/2 xW/2 97.35 64.72 33.50
C FFE + ODM2 1 HxW 97.89 47 44 21.14
D FFE + TDM(DEKNet) 2 HxW 98.59 31.19 16.32

Experiment B and Experiment C were conducted on the basis of Experiment A. In
both experiments, one deconvolution module (ODM) was added, but the size of the
heatmap they generated was different because the stride of the ODM was different. ODM1
represents that the stride is 2 and ODM2 represents that the stride is 4. The size of the
heatmap generated by Experiment B is H/2 x W/2, while that generated by Experiment C
is H x W. Compared with Experiment A, the counting accuracy of Experiment B increased
by 8.48%, and its RMSE and MAE decreased to 64.72 and 33.50, respectively. This indicates
that improving the resolution of the heatmap will achieve a higher calculation accuracy of
the model. Compared with Experiment B, all indicators in Experiment C were better than
those in Experiment B.

Experiment D was performed by DEKNet, where a deconvolution module was added
based on Experiment B. Experiment D involved two identical deconvolution modules with
the same stride, generating a heatmap with a size of H x W. Compared with the previous
experiments, the indicators in Experiment D are optimal. The accuracy of experiment D
was 98.59%, up by 1.24% compared with Experiment B and up by 0.7% compared with
Experiment C. The RMSE and MAE of Experiment D were 31.19 and 16.32, respectively,
which were 33.53 and 17.18 less than those in Experiment B, and 16.25 and 4.82 less than
those in Experiment C.
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The above ablation experiments show that each component is effective, and the high-
resolution heatmap with high quality is conducive to precisely locating the keypoint of
small objects. Therefore, our method is optimal; adding two individual deconvolution
modules to the generation head is better than just adding one. Similarly, adding two decon-
volution modules is better than adding only one, provided that the heatmap resolution is
restored to the input image resolution.

3.7. Ablative Analysis of Different Image Sizes

We maintained the remaining parameters constant and conducted a series of experi-
ments by resizing the original image to various dimensions. The outcomes are summarized
in Table 10. Experiment A utilized an image size of 256 x 256, yielding an accuracy rate of
merely 33.60%. Across Experiments A to E, the counting accuracy of DEKNet consistently
improved with increasing image dimensions. Nevertheless, in Experiment F, the accuracy
declined, reaching only 96.60%. These experiments highlight the impact of image size on
DEKNet'’s counting performance—undersized images hinder accuracy, while excessively
large images are also suboptimal. Thus, we opted to resize the image to 1024 x 1024 for
optimal performance.

Table 10. Ablation study of different image sizes.

Experiments Image_Size Accuracy (%)
A 256 x 256 33.60
B 640 x 640 44.94
C 720 x 720 45.83
D 1000 x 1000 89.96
E 1024 x 1024 98.51
F 1400 x 1400 96.60

In the Results section, a series of experiments were conducted to assess the counting
performance of DEKNet. Initially, the counting results of DEKNet in FishFry-2023 were
presented, alongside a comparative analysis with the keypoint-counting methods and the
crowd-counting methods. Subsequently, to evaluate DEKNet’s generalization capabilities,
a set of comparative experiments was performed on two additional datasets, namely the
Penaeus dataset and the Adipocyte Cells dataset. Finally, two sets of ablation experiments
were introduced; one was introduced to verify the effect of each module of DEKNet, the
other to explain the rationale behind setting the image size to 1024 x 1024. The experi-
mental findings demonstrated that DEKNet outperformed the methods in the comparative
experiments in terms of parameter, FLOPs, and counting accuracy.

4. Discussion

The low accuracy observed in existing counting methods can largely be attributed
to factors such as the small size, high density, and the mutual occlusion of fish fry. In
order to address these challenges and enhance fry-counting precision, a novel methodology
utilizing a singular keypoint is proposed within this study. Presently, there are limited
methods for fry counting utilizing keypoints, and research on generating a high-resolution
heatmap is scarce [21]. DEKNet’s production of a high-resolution heatmap addresses this
gap, realizing precise localization of small targets and minimizing errors. Consequently,
when the heatmap resolution matches that of the input image, the localization accuracy
improves significantly, resulting in fewer errors [20]. Furthermore, DEKNet can be used
to count the penaeus [26] and the cells [27]. Therefore, DEKNet is more robust compared
to existing methods in the research field of fish fry counting. The exemplary performance
of DEKNet can be primarily ascribed to the integration of two identical deconvolution
modules within its keypoint-counting module, thereby advancing the generation of a
high-resolution and high-quality heatmap. Nevertheless, it is imperative to acknowledge
that the higher-resolution heatmap necessitates increased computational resources. Under
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the comprehensive trade-off, DEKNet strategically incorporates a lightweight feature
extraction module, thereby attaining high-resolution representations while minimizing
computational overhead.

Our research still has some limitations. Since DEKNet only uses a keypoint to identify
targets, it is only suitable for counting targets of the same category, and lacks the ability to
separately and synchronously count the targets of different categories in the same image,
which is one of its shortcomings. Another limitation of DEKNet is that it requires that
selected keypoint to uniquely identify an object; if the keypoints in multiple positions of the
object are indistinguishable, the counting effect of DEKNet will be reduced. For example, if
a fish has two eyes, assuming that most of the characteristics of these two eyes resemble
each other, and that only the left eye is selected as a keypoint, then DEKNet may also
count its right eye together with its left eye, which will increase the error of fry counting.
Therefore, DEKNet's selection of the object keypoint is an important factor affecting its
counting performance.

In the future, we will endeavor to optimize DEKNet so that it cannot only accurately
count fish fry with different day age, but also deal with large quantities of them at the
same time. Furthermore, DEKNet can be trained to recognize multiple keypoints of
different categories, and then fulfill the function of counting different targets simultaneously.
Hopefully, we will apply it to other research subjects in intelligent agriculture, such as
counting poultry, legumes, and aquatic products.

5. Conclusions

In this work, a keypoint-based counting network, DEKNet, is proposed and a large-
scale dataset (FishFry-2023) is constructed. Drawing inspiration from the architectural
principles of HRNet and HigherHRNet, the framework of DEKNet is established. Compar-
ative analysis demonstrates that DEKNet surpasses alternative keypoint-counting methods
in terms of accuracy rates. Furthermore, DEKNet enables accurate fry localization. The
backbone of DEKNet maintains high-resolution representations throughout the process and
uses only two parallel branches to extract target features, which can significantly reduce the
model size. Furthermore, two identical deconvolution modules added to the generation
head are conducive to generating an accurate and spatially precise keypoint heatmap with
high quality and high resolution. The experimental results indicate that the accuracy of
DEKNet reached 98.59%, with an RMSE of 31.19 and an MAE of 16.32 in the FishFry-2023
dataset. In summary, DEKNet can be trained for direct prediction on the complete image,
thus avoiding repeated counting of the boundary area when the image is segmented into
several sub-images. What is more, this model stands out in counting fish fry and even
smaller objects.
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Appendix A
The appendix is about the detailed architecture of FishFry-2023.

Table Al. Dataset structure of FishFry-2023.

Dataset Image Instance Annotation Point Batch Number

Train set 160 103,880 103,880 1,2,4,7
Validation set 40 33,570 33,570 1-8

Test set 800 670,900 - 1-8

Table A2. Details of FishFry-2023 test set.

Density Level Batch Number Image Range

Low 1,2,3 300 204-592

Medium 4,5,6 300 642-876
High 7,8 200 1312-1935
Total 1-8 800 204-1935
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