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Abstract: The design of 3D scenes is of great significance, and one of the crucial areas is interior
scene design. This study not only pertains to the living environment of individuals but also has
applications in the design and development of virtual environments. Previous work on indoor
scenes has focused on understanding and editing existing indoor scenes, such as scene reconstruction,
segmentation tasks, texture, object localization, and rendering. In this study, we propose a novel
task in the realm of indoor scene comprehension, amalgamating interior design principles with
professional evaluation criteria: 3D indoor scene design assessment. Furthermore, we propose an
approach using a transformer encoder–decoder architecture and a dual-graph convolutional network.
Our approach facilitates users in posing text-based inquiries; accepts input in two modalities, point
cloud representations of indoor scenes and textual queries; and ultimately generates a probability
distribution indicating positive, neutral, and negative assessments of interior design. The proposed
method uses separately pre-trained modules, including a 3D visual question-answering module and
a dual-graph convolutional network for identifying emotional tendencies of text.

Keywords: interior design; 3D question answering; dual-graph convolutional networks; sentiment
analysis

MSC: 68T07

1. Introduction

Interior design is a significant professional field. A comfortable indoor space holds
crucial significance for both living and working environments. Assessment of interior
design is not only a key goal in evaluating the comfort of living environments in the real
world but is also crucial for virtual scenes, such as the layout of movie scenes and the
construction of game scenes. In film production, the design and arrangement of scenes can
convey different visual messages, thereby affecting the narrative and the audience’s emo-
tional experience. In game development, game artists can design virtual scenes to improve
players’ gaming experience and visual richness, thereby enhancing the attractiveness and
entertainment of the game. Therefore, the need for interior design evaluation is not limited
to the actual living environment but also extends to the creation of virtual scenes.

Considering the inherent characteristics of the task, comparable methods for visual
evaluation tasks [1] face limitations imposed by the 2D format of image data within pre-
defined scoring parameters, resulting in assessments confined to single-score analyses.
Recent investigations centered on the visual assessment of indoor environments have wit-
nessed a notable trend towards embracing multi-modal architectures aimed at seamlessly
integrating visual data, predominantly images, with pertinent textual content. In such
scenarios, textual cues often serve as supplementary information to enrich the interpre-
tation of visual data [2,3], enabled by modal fusion techniques employing transformers.
Recent scholarly inquiries have also seen the emergence of neuro-aesthetic estimators
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applied to three-dimensional settings [2]. Nevertheless, in these studies, the foundational
approach continues to rely on virtual camera systems capturing 2D image frames from
3D scenes to conduct aesthetic evaluations, rather than directly evaluating within the 3D
model itself. Furthermore, these investigations draw upon pre-existing textual knowledge
to varying extents.

Previous studies on 3D visual question answering (3DVQA) have predominantly
relied on the utilization of multi-modal features to tackle prediction tasks across predefined
answer categories. Several seminal investigations have introduced foundational models,
such as ScanQA [4], which utilizes a dual-branch architecture incorporating VoteNe and
BiLSTM to address point cloud scenes and textual queries separately. In addition, CLIP-
guide [5], integrates techniques for knowledge transfer. Nonetheless, these foundational
approaches regard 3DVQA as a predictive task, thus being constrained by the predefined
array of possible answers. Consequently, interactions between these models and human
users often produce relatively simplistic feedback. In a recent groundbreaking development,
Dwedari et al. [6] introduced an innovative transformer-based architectural framework
specifically designed to generate open-ended responses to user inquiries regarding 3D
scenes. This pioneering approach leverages language rewards throughout the model
training process and incorporates reinforcement learning techniques to ensure that the
generated sentences encompass comprehensive semantic content.

In such a scenario, sentiment analysis has attracted considerable attention [7,8]. It
delves into the examination of natural language texts, extracting subjective information
such as emotions and attitudes. Present sentiment analysis tasks commonly rely on deep
neural networks like RNN and LSTM, paired with numerous text datasets to train versatile
sentiment analysis models with robust generalization capabilities. A specialized area within
this domain is aspect-based sentiment analysis (ABSA), which is particularly oriented
towards finely detecting sentiment at the level of individual entities [7]. Our research
utilizes a dual-graph convolutional network (DualGCN) architecture, which consists of
an integrated semantic correlation-based graph convolutional network (SemGCN) and
a syntax-based graph convolutional network (SynGCN), both facilitated by the shared
BiAffine module. The motivation for the architectural choice stems from the desire to
comprehensively consider both the syntactic structure and semantic relevance present in
a given sentence. Compared with earlier methods oriented towards sentence-level and
document-level sentiments, this method shows greater generality and applicability for
analyzing short text paragraphs.

The collaborative interaction between the Gen3DQA and DualGCN modules forms
the bulk of our overall framework. After embedding the user’s textual questions and
3D point cloud scene information, we obtain vector spaces for both visual and textual
data. These spaces are then fused through the transformer encoder to generate the fusion
vector space. The fused vector space is passed through the transformer decoder to generate
relevant descriptions based on the 3D scene. In a subsequent stage, these textual answers
are fed into the ABSA module to identify the underlying aspect-based sentiments within
them. This collaborative architecture facilitates the evaluation of 3D scenes based on user
interests and evaluates the quality, atmosphere, style, etc., of interior design by detecting
the fine-grained differences in emotion contained in the generated text descriptions. The
combination of these modules provides a more complex and detailed assessment process.
To conclude, our contributions are as follows: (1) We introduce a novel task: evaluating
interior designs in 3D environments. (2) We propose a framework for this task, leveraging
the transformer encoder–decoder architecture and DualGCN, to facilitate the evaluation of
3D indoor scene designs. (3) Our approach promotes user participation by allowing users
to interact with the system by querying specific aspects of the 3D scene through text input.

2. Related Work

Significant traction in cross-modal tasks within both domains has been facilitated
by the rapid advancements in natural language processing and computer vision, which
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have intersected to a great extent. Widespread attention has been garnered by tasks
such as image captioning, visual question answering, and image retrieval. In the realm
of 3D scene analysis, recent research has focused on modal fusion techniques. These
techniques aim to integrate scene images with accompanying descriptive text, aligning them
in a vector space to improve subsequent task performance. However, existing aesthetic
estimators tailored for 3D scenes primarily utilize 2D image frame inputs, neglecting textual
information. To address this research gap, we recognized the need for and developed a
novel framework. This framework combines a context-aware, free-form answer generation
system for questions within 3D scene models with a fine-grained sentiment analysis model
focused on entity-level aspects. The goal is to conduct comprehensive evaluations of 3D
interior scene designs across various semantic dimensions.

2.1. Visual Question Answering (VQA)

VQA was first introduced by Malinowski et al. [9] and usually combines images and
natural language. The visual question-answering task involves presenting an image along-
side a corresponding question, to which the visual question-answering model provides a
prediction for the answer. Visual question answering (VQA) presents greater challenges
compared to other cross-modal tasks due to its demand for nuanced semantic comprehen-
sion of both image and text data, as well as the necessity for visual reasoning to accurately
anticipate the correct response. The most arduous aspect of the visual question-answering
task lies in achieving holistic semantic alignment across multimodal inputs. The approach
employing global feature fusion initially employs a conventional CNN to extract global
image features, utilizes an RNN to extract textual features, and subsequently merges these
disparate global features to derive fused features for answer prediction. This approach
may fail to effectively capture the local correlations or contextual information between
the image and text, potentially impacting the accuracy and diversity of the final answers.
Moreover, the use of traditional CNN and RNN models to extract global features may
be constrained by their ability to handle long sequences or complex image structures,
thereby limiting the model’s performance and applicability. Many important previous
works on VQA for 2D images treat this task as a classification problem, where answers are
generated from a predefined answer space [10–12]. However, treating VQA for 2D images
as a classification problem from a predefined answer space may limit the flexibility and
expressiveness of the model’s responses. For the VQG task, there has been a paradigm
shift from neural-network-based approaches to reinforcement learning settings [13], where
the optimization reward is based on the informativeness of the generated questions [14].
While most significant VQA research has focused on 2D images, the task has also been
extended to cover VQA of 360◦ panoramic images and videos [15,16]. Chou et al. [17]
introduced VQA 360◦, where the panoramic image, unlike the usual visual image, contains
the complete visual content around the camera’s optical center. This input representation
offers a comprehensive understanding of entities in the image’s full scene, demanding
models with spatially sound reasoning to leverage the extra available information. Various
VQA models have performed excellently in 2D environments [18–21].

2.2. Question Answering in 3D Scene

In 2D VQA tasks, CNNs are commonly used. However, the three-dimensional CNN
method is costly. The spatial complexity and time complexity increase as the cube of N’s
resolution increases, and the computational cost is very high. Therefore, only a shallow
resolution can be used, leading to quantized noise errors and limiting recognition accuracy.
The PointNet++ backbone [22] is used as a scene encoder to obtain object proposals. A
transformer is then employed to integrate the information from both modalities, resulting
in a final vector for answer prediction. The core of PointNet++ proposes a multi-level
feature extraction structure to extract local feature extraction and global features effectively.

Azuma et al. employed the PointNet++ architecture to introduce the VQA task into
3D scenes [4]. In this work, the authors utilized a dual-branch decoder to encode question
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tokens and point clouds separately. In the ScanQA method, the language-encoding layer
encodes the question words wi

nq
i=1 using GloVe (Global Vectors for Word Representation)

embeddings. GloVe represents a notable breakthrough in natural language processing
(NLP), offering effective word embeddings through the utilization of global co-occurrence
statistics. At its core, GloVe introduces a crucial formula for computing word embeddings
based on the co-occurrence probability ratio of words. This formula, encapsulated within its
loss function, plays a pivotal role in training GloVe embeddings. Specifically, the definition
of the loss function is as Equation (1):

J = ∑V
i=1 ∑V

j=1 f
(
Xij
)(

w⊤
i w̃j + bi + b̃j − log Xij

)2
, (1)

where Xij represents the co-occurrence count of words i and j, f is a weighting function,
wi and w̃j are the word vectors, and bj and b̃j are bias terms. Understanding this formula
is essential for appreciating the underlying mechanisms of GloVe embeddings and their
applications in various NLP tasks. The research on ScanQA introduces the VQA task into
three-dimensional scenes. Due to its reliance on predefined semantic spaces for responses,
the ScanQA model can only provide answers in the form of simple phrases rather than
complete sentences. Furthermore, lacking significant prior knowledge, the model is limited
to answering questions on basic physical information about the scene such as color, location,
and quantity.

Furthermore, the effective integration of diverse modal information, particularly the
alignment and consistent representation of heterogeneous data like point clouds and images,
has garnered increasing attention from researchers. Subsequent research has endeavored
to transfer prior knowledge from the 2D to the 3D domain [23]. Unlike previous methods
that predict answers from the answer space, Dwedari et al. suggest employing an end-to-
end transformer architecture for generating free-form answers in recent studies [6]. This
improvement enables the model to generate free-form and complete-sentence answers.
However, limitations in answering questions restricted to simple physical features persist.

2.3. Aspect-Based Sentiment Analysis Model (ABSA)

ABSA encompasses two fundamental tasks: aspect extraction (AE) and aspect senti-
ment classification (ASC). Traditional, fine-grained sentiment analysis (ABSA) typically
involves three subtasks: attribute extraction, opinion extraction, and a series of three se-
quential tasks aimed at determining the emotional tendency of attribute–opinion pairs.
Certain words appear more frequently in sentences within reviews, and these commonly
occurring terms are identified as aspects. ABSA seeks to identify various aspects, such
as food, service, and environment, discussed within reviews and evaluate the sentiment
polarity associated with each one [24].

Traditional sentiment analysis methods relied heavily on handcrafted features [25–28].
These approaches were limited to sentence-level or document-level analysis, neglecting the
connection between predefined aspects and content. Subsequently, attention-based neural
networks gradually replaced feature engineering methods, addressing the need for manual
feature extraction. Tang et al. proposed a hierarchical attention network, which captures
sentiment information relevant to predefined aspects [26,29].

3. Method

The model framework proposed in this study, as depicted in Figure 1, is presented in
detail in this section. The main objective of our research is to comprehensively evaluate
interior design by integrating image generation and sentiment analysis methods. Our
model takes two types of input data: a 3D point cloud consisting of RGB and standard
features and a series of questions. These two types of input data are processed by the 3DQA
module to generate corresponding textual answers, which are then fed into the DualGCN
module for sentiment analysis, resulting in sentiment analysis results. The Gen3DQA
module is responsible for generating natural language textual answers from input interior
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design images and questions, while the DualGCN module conducts sentiment analysis by
analyzing these textual answers.
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to assess interior designs in 3D scenes. By combining a transformer architecture and dual-graph
convolutional networks, we generate text descriptions of RGB-D interior scenes and analyze them
comprehensively. The part inside the dotted box is the aspect-based sentiment analysis module. This
approach reduces resource consumption while facilitating detailed evaluations.

3.1. 3D Question Answering

3D Point Cloud Embedding. In the 3D question-and-answer stage, we employ the
sophisticated SoftGroup method [30] to extract semantic information from object proposals
using 3D sparse convolutions. The opposite of SoftGroup methods is early hard prediction,
which associates each point with a single category when performing semantic segmentation.
Two problems arise when using previous methods for hard prediction classification: the IoU
between prediction and Gt is low, and incorrect semantic prediction produces redundant
false positives. The SoftGroup method allows each point to retain the prediction results of
multiple semantic categories, thereby predicting more valid instance points and reducing
incorrectly predicted instance results.

Token Sequence Embedding. The second input comprises the token sequence of the
question. To encode these tokens and vectorize the words, we utilize the GloVe model [31],
aiming to imbue the vectors with maximal semantic and grammatical information. At this
stage, the user-input question vector Q is obtained, where W represents the token count,
and 300 denotes the dimension of the GloVe word embedding, as in Q ∈ RW×300. This
vector holds the semantic details of every token within the question sequence, aiding in
subsequent processing steps.

Transformer Encoder–Decoder. We use the original transformer positional encod-
ing [32] for question embedding. The transformer model utilizes positional encoding
generated through sine and cosine functions with different frequencies, which is subse-
quently integrated with the word vectors at corresponding positions. The dimension of the
position vector should match the word vector dimension. We incorporate the generated
object proposals into the last three dimensions of each (extended) object proposal. Initially,
the attention scores are computed by applying the softmax function to obtain the attention
weight for each time step after calculating the dot product between the query Q and the
key V′ prime. The formula for calculating our attention weight is as Equation (2):

Attention
(
Q, V′) = so f tmax

(
QV′⊤
√

dk

)
, (2)
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where dk denotes the dimensionality of the keys V′, and the dot product operation QV′⊤

assesses the correlation between the question and the object proposals. We then use the
obtained attention weights to perform a weighted sum on the values V′, resulting in the
generation of the contextual encoding sequence S. This process can be represented as
Equation (3):

S = Attention
(
Q, V′)·V′, (3)

where the symbol S denotes the contextual encoding sequence, possessing dimensions
that mirror those of the values V′ prime. This computational step effectively captures
the semantic connections between the posed question and the proposed objects, thereby
furnishing crucial contextual information essential for the subsequent decoding process to
generate accurate responses.

Here, T′ represents the output sequence generated by the transformer decoder, con-
taining the token embeddings of the answer. This sequence is further processed by the
DualGCN module to refine the generated answer. The answer sequence T ∈ RA×300,
embedded with GloVe, serves as input to the transformer decoder for the training set,
facilitating the generation of the final token sequence.

3.2. Text Sentiment Analysis Model

The generated textual responses from the 3D question-answering phase are fed into the
ABSA model [33]. The DualGCN model maximizes the utilization of two crucial modules,
namely, the syntax-based graph convolutional network (SynGCN) and the semantic-based
graph convolutional network (SemGCN).

For the generated answer text t from the decoder, a text–aspect pair (t, a) is given,
where t represents a text containing the context for sentiment analysis, and a represents
one or more aspects (aspects) in the sentence, which are the target objects or topics for
sentiment analysis. The following represents an example: t: “I really like the spacious
layout and elegant furniture in this living room.” a: [“layout”, “furniture”]. In this example,
t represents a sentence describing a living room, and a represents two aspects in the
living room (i.e., layout and furniture). a = a1, a2, . . . , am represents an aspect, which is a
subsequence of t = ω1, ω2, . . . , ωm.

DualGCN. To extract hidden contextual representations, we employ both BiLSTM
and BERT as sentence encoders. BiLSTM functions as the sentence encoder, extracting
implicit contextual representations. The final aspect representation is obtained by pooling
and concatenating the representations of all aspects, ultimately derived from the SynGCN
and SemGCN modules.

Syntax-Based Graph Convolutional Network (SynGCN). The syntax-based graph
convolutional network (SynGCN) module takes as its input a grammar encoding. Utilizing
the dependency parsing model known as LAL-Parser [34], we incorporate syntactic details
by employing the probability matrix containing all dependency arcs generated by the
dependency parser in this study.

Using the adjacency matrix Asyn ∈ Rn×n of syntactic encoding, in the SynGCN module,
the initial node representations within the syntactic graph are derived from the vector H
obtained from the Bidirectional LSTM. The SynGCN module obtains the syntactic graph
representation Hsyn = hsyn1 , hsyn2 , . . . , hsynn . In this context, the hidden representation
hsyni ∈ Rd represents the i − th node. It is worth mentioning that for aspect nodes, we

adopt the notation
{

hsyna1
, hsyna2

, . . . , hsynam

}
to denote these hidden representations.

Semantic-Based GCN (SemGCN). The SemGCN is crafted to capture semantic rela-
tionships within a sentence through self-attention mechanisms, without the necessity of
explicit syntactic knowledge utilized by the SynGCN. This flexibility allows the SemGCN
to adapt to various text inputs, including online reviews that may lack structured syntactic
information.

Within our DualGCN framework, we utilize a self-attention layer to compute the
attention score matrix denoted as Asem ∈ Rn×n, where attention scores are computed
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simultaneously between every pair of elements. The attention score matrix Asem serves as
the foundation for the SemGCN module and is structured as Equation (4):

Asem = so f tmax
(

QWQQ⊤ − KW⊤
K

)
. (4)

In this formulation, Q and K represent graph representations, while WQ and WK
denote trainable weight matrices. The variable d represents the dimensionality of the input
node features. We compute the attention score matrix by utilizing a single self-attention
head. The SemGCN module, following a similar approach to the SynGCN module, derives
the graph representation for every pair of elements using the BiAffine Module. To enable
the sharing of pertinent features between the SynGCN and SemGCN modules, we employ
a mutual BiAffine transformation, formulated as Equations (5) and (6):

Hsyn0 = so f tmax
(

HsynW1(Hsem)
⊤
)

, (5)

Hsem0 = so f tmax
(

HsemW2
(

Hsyn
)⊤), (6)

where W1 and W2 denote trainable parameters.
Through pooling operations and concatenation performed on the aspect nodes within

the SynGCN and SemGCN modules, the ultimate feature representation for the ABSA task
is Equations (7)–(9):

hsyna = avg − pooling
(

hsyna1
, hsyna2 , . . . , hsynam

)
, (7)

hsema = avg − pooling
({

hsema1
, hsema2 , . . . , hsemam

})
, (8)

r =
[
hsyna ; hsema

]
. (9)

After processing through a linear layer, the representation denoted as r undergoes
transformation, followed by the application of a softmax function, resulting in the genera-
tion of a probability distribution p for sentiment Equation (10):

p(a) = so f tmax
(
Wpr + bp

)
. (10)

Within this framework, D constitutes a comprehensive set comprising pairs of sen-
tences and their associated aspects, encapsulating the entirety of the sentiment analysis
task. Conversely, C serves as the repository for an array of diverse sentiment polarities,
providing the necessary context for evaluating the sentiment expressed within the textual
data. This structured representation facilitates a systematic analysis of sentiment across
various aspects, enhancing the model’s ability to discern emotional nuances within the
input sentences.

Regularization and Loss Function

Regularizer. These regularization techniques serve to refine the learned features
within the SemGCN module, promoting a more nuanced understanding of semantic
relationships. By encouraging orthogonal features, the model can effectively disentangle
distinct aspects of the input data, facilitating clearer interpretation and reducing the risk of
overfitting. Additionally, the incorporation of the differential regularizer further enhances
the model’s adaptability to diverse semantic structures, fostering robustness in capturing
semantic nuances.

The orthogonal regularizer plays a crucial role in fostering the acquisition of inter-
pretable feature representations and fostering the acquisition of features that are mutually
orthogonal. By enforcing this regularization, it is assumed that items with semantic rela-
tionships within a sentence should be positioned in distinct regions, thereby minimizing
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redundancy and bolstering the model’s capacity to extrapolate to unseen data. This regu-
larization is formally defined as Equation (11):

RO =
∣∣∣∣∣∣Asem A⊤

sem − I
∣∣∣∣∣∣

F
. (11)

Within this context, the identity matrix is denoted by the symbol I, and the Frobenius
norm is represented by ∥ · ∥F. This regularization technique operates by minimizing the
off-diagonal elements of Asem A⊤

sem to preserve orthogonality, thereby ensuring that the
learned features remain mutually independent.

The differential regularizer serves to promote distinct representations obtained from
both the SynGCN and SemGCN modules by constraining the difference between their adja-
cency matrices. This technique aims to ensure that the semantic information captured by
each module remains complementary rather than redundant. Its mathematical expression
is given as Equation (12):

RD =
1∣∣∣∣Asem − Asyn

∣∣∣∣
F

. (12)

Loss Function. The primary objective during training is to minimize the comprehen-
sive loss function, which encompasses both the cross-entropy loss designed for sentiment
analysis and additional regularization terms. This loss function formulation ensures that
the model not only learns to predict sentiment accurately but also maintains desirable
properties such as feature interpretability and parameter stability through regularization
techniques as Equation (13):

LT = LC + λ1RO + λ2RD + λ3|θ|22, (13)

where the regularization coefficients λ1, λ2 and λ3 are introduced to balance the impact of
regularization terms. All trainable parameters within the model are denoted by θ. Tailored
for the ABSA task, the standard cross-entropy loss LC measures the disparity between
predicted sentiment probabilities and ground truth labels.

LC = − ∑
(s,a)∈D

∑
c∈C

logp(a), (14)

where the set D comprehensively captures the associations between sentences and their
respective aspects, facilitating a thorough analysis of sentiment within the textual data.
Similarly, the collection C encompasses a diverse range of sentiment polarities, providing a
nuanced framework for evaluating the sentiment expressed across different aspects. This
structured representation enables a systematic exploration of sentiment nuances, enhancing
the model’s capacity to discern subtle emotional variations within the input sentences.

3.3. Proposed 3D Visual Question-Answering Model

We employ a pretrained 3DQA model for our training process. The pretrained model
has been previously trained by other researchers and is used as a backbone for our approach.
Here, we detail the training procedure for our visual-language model, focusing on fine-
tuning the pretrained 3DQA model.

Initially, our training process involves the pre-training of SoftGroup using ScanRe-
fer [35]. This decision is informed by the findings of Dwedari et al., whose experiments
revealed that the combination of RGB and regular features resulted in the highest overall
score. However, it is worth noting that the forward pass for SoftGroup entails a significant
computational cost. Therefore, during predictions on the test set, the SoftGroup undergoes
reactivation, ensuring that a complete forward pass is executed to obtain accurate results.

Throughout the end-to-end training process of the SoftGroup model, we utilize a
multitask loss function called SoftGroup. This loss function encapsulates the collective loss
incurred during the initial training phase, providing a comprehensive measure of model
performance. By optimizing this multitask loss function, the SoftGroup model adapts
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and refines its parameters to better capture the semantic relationships between visual and
textual inputs, enhancing its overall effectiveness in the subsequent tasks.

We then refine our question-answering model through a two-stage training regimen.
During the initial stage, the question-answering model undergoes training with a focus on
minimizing the word-level cross-entropy (XE) loss, denoted as Lans. This loss function is
formulated as Equation (15):

Lans = − ∑
t∈T

∑
z∈Z

yt,z log
(

ŷt,z

)
, (15)

where the symbol T represents the ground truth answer, providing a reference for training
the model. The vocabulary used during training is denoted by Z, encompassing the set of
all possible tokens within the dataset. Each predicted probability ŷt,z corresponds to the
likelihood of token z in the softmax output at step t, serving as a crucial component for
assessing model performance.

As for the localization branch, its cross-entropy loss Lloc follows a similar formulation
to established methods, ensuring consistency with prior approaches in the field. Conse-
quently, the total loss for the second training phase is determined by the summation of Lans
and Lloc, expressed as L = Lans + Lloc.

Following this training phase, we proceed to fine-tune our pre-trained 3DQA model,
aligning it with the specific requirements of our task and ensuring its optimal performance
in subsequent evaluations.

3.4. Procedure of Interior Design Evaluation Model

The detail procedure of the proposed interior design evaluation model is shown in
Figure 2. It can be seen from Figure 2 that for a vague conceptual question, the proposed
framework supports splitting the question into specific sub-questions. The final judgment
is obtained as total question–sub-question–total question. During testing, we reactivate the
SoftGroup module to generate object proposals. For the transformer decoder, we adopt
greedy decoding to generate answer sequences, as carried out in prior work. The answer
sequences are then fed into the aesthetic rule module for comprehensive analysis. Initially,
text questions are provided by the user and are then fed into the DualGCN for analysis to
obtain sub-questions. The sub-questions are fed into Glove in text form, fused with the 3D
point cloud scene embedded through Softgroup. Ultimately, text answers are generated by
the decoder. This example primarily focuses on implementing combinations of RGB colors.
We identify the five most voluminous objects in the indoor scene and analyze their color
combination relationships. To begin, we need to compute the hue values based on the RGB
values using the following formula:

H =



undefined, if max = min

60◦ × g−b
max−min + 0◦, if max = r and g ≥ b

60◦ × g−b
max−min + 360◦, if max = r and g < b

60◦ × b−r
max−min + 120◦, if max = g

60◦ × r−g
max−min + 240◦, if max = b

(16)

The difference in H values determines the angular separation of each color on the
hue circle, which helps assess the color harmony. For example (Figure 2), the main colors
in the room have the following H values: RGB (91, 84, 67) corresponds to H value 42,
RGB (217, 199, 169) corresponds to H value 37, RGB (94, 81, 68) corresponds to H value
30, RGB (53, 20, 9) corresponds to H value 15, and RGB (142, 29, 31) corresponds to H
value 359. After calculation, the maximum difference in their H values is 43 degrees (since
hue values cycle between 0 and 360 degrees). This color information is fed into the large
language model ChatGPT. We leverage relevant interior design knowledge to process the
large language model. In this example, if the difference in hue values among the five
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colors is less than or equal to this threshold, they can be considered to exhibit analogous
harmony. According to Zhang et al. [36], color combinations in analogous harmony do
not create strong contrasts but instead present a soft and unified effect, evoking feelings
of comfort and relaxation. This color scheme is often used to create warm and peaceful
indoor environments, suitable for spaces such as bedrooms and living rooms that require a
cozy atmosphere. In addition to the examples provided, disciplines such as art and design
typically classify color combinations uniformly and associate them with corresponding
psychological effects.
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4. Experiments

According to professional knowledge related to interior design and art, different
combinations of materials and colors produce different design atmospheres [36]. Therefore,
we can design a set of rules by exploring patterns in the combinations of these colors and
materials, thereby determining the feelings evoked by interior spaces. The atmosphere
of a space is also related to the style of interior furnishings and the distance between
objects. For an abstract question raised by users, such as atmosphere, quality, and feelings,
our framework can reconstruct the problem and split a main question into multiple sub-
problems. As computers excel in describing precise information rather than abstract
feelings, we reconstruct and break down the questions raised by humans into concrete sub-
problems related to color, position, orientation, size, and so on. Eventually, by aggregating
the answers to these sub-problems, a comprehensive description can be obtained.

We tested our model using scene data from ScanNet [37]. The proposed model scores
using the XE loss trained on a single object, multiple objects, and no object localization at all
are given in Table 1. It can be seen that the proposed model exhibits different effects under
different conditions. In our observations, the model demonstrated a slight performance
enhancement when handling multiple objects compared to single-object scenarios. In
analyzing the experimental results, we found that the model exhibited different effects
under different conditions. Specifically, when we applied the model to handle multiple
objects, we observed a slight performance improvement. This indicates that our model
has a certain advantage in handling complex scenarios, enabling it to better deal with the
relationships and interactions among multiple objects. However, in contrast, we found a
moderate decline in the model’s performance when object localization information was
removed. This suggests that the position information of objects is crucial for the accuracy
and effectiveness of the model. In interior design, the position of objects not only affects
the layout and atmosphere of a space but also directly influences people’s perception
and experience within that space. Therefore, the model may lose its grasp of the overall
spatial characteristics when lacking object localization information, thereby affecting its
performance.

Table 1. The proposed model scores using the XE loss trained on a single object, multiple objects, and
no object localization at all.

Model BLEU-1 BLEU-4 BLEU-4 BLEU-4

Gen3DQA+DGCN
(single object) 36.22 10.31 34.15 63.82

Gen3DQA+DGCN
(multiple object) 36.71 10.17 33.29 63.17

Gen3DQA+DGCN
(w/o object localization) 35.83 9.89 31.85 60.85

To further validate the model performance of the proposed method, Table 2 shows
image captioning metric scores for different types of question validation sets based on
different methods. Our experiments tested the answer text effects of several different
framework combinations. These metrics are employed to evaluate the effectiveness of
various models in natural language tasks, reflecting the proximity of the generated text
to human performance. Notably, among all indicators, the Gen3DQA+DGCN model
demonstrates superior performance. This indicates the model’s capability in handling
scenarios with multiple objects and its robustness in object localization. This result provides
important insights into understanding the model’s performance in real-world applications
and guides future efforts to further improve model performance.
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Table 2. Image captioning metric scores for different types of question validation sets based on
different methods.

Model BLEU-1 BLEU-4 Rouge Meteor

Gen3DQA+DGCN 39.72 12.41 36.32 72.41
Baseline1+DGCN 34.14 9.37 31.36 66.37
Baseline2+DGCN 29.78 8.47 28.46 61.48
Baseline3+DGCN 32.58 8.92 29.33 66.92
VoteNet+MCAN 29.46 6.08 30.97 12.07

ScanRefer+MCAN 27.85 7.46 30.68 11.97
Gen3DQA+ATAE-LSTM 38.72 10.46 33.74 71.39

Gen3DQA+DGEDT 39.43 11.18 33.98 70.38
Gen3DQA+InterGCN 39.15 11.84 35.17 70.93

Baseline 1. Lxmert: Learning cross-modality encoder representations from transformers. Baseline 2. Vilbert:
Pretraining task-agnostic visiolinguistic representations for vision-and-language tasks. Baseline 3. 12-in-1:
Multi-task vision and language representation learning.

Experiments were conducted using scene data from ScanNet, and the interior design
evaluation accuracy is given in Table 3. The varying effects of our model under differ-
ent conditions can be observed. Specifically, our model exhibited a slight performance
enhancement when handling multiple objects compared to single-object scenarios. This
suggests that our model has an advantage in dealing with complex scenarios, enabling
it to better capture the relationships and interactions among multiple objects. However,
we also noticed a moderate decline in the model’s performance when object localization
information was removed. This highlights the crucial role of object position information for
the accuracy and effectiveness of the model, as the spatial arrangement of objects directly
influences people’s perception and experience within a space. These findings underscore
the importance of considering object localization in interior design applications and suggest
avenues for further improving our model’s performance in real-world scenarios.

Table 3. Comparison of the interior design evaluation accuracy based on different methods.

Model Accuracy

Gen3DQA+DGCN 91.53
Baseline1+DGCN 74.82
Baseline2+DGCN 69.06
Baseline3+DGCN 71.92
VoteNet+MCAN 70.38

ScanRefer+MCAN 72.49
Gen3DQA+ATAE-LSTM 76.39

Gen3DQA+DGEDT 84.29
Gen3DQA+InterGCN 81.53

In the user interaction process, individuals start by submitting an indoor point cloud
scene and subsequently inputting text to ask questions about the scene. However, our
model has restrictions on the types of questions it can handle. Although it can respond to
queries concerning physical attributes like color, position, and distance, it can also address
inquiries regarding the style or atmosphere of the indoor scene.

5. Conclusions

In this study, we leverage advanced techniques of transformer encoder–decoder and
graph convolutional networks to address the challenge of evaluating interior designs from
different aspects in a 3D environment. Our framework integrates a 3D question-answering
task (3DQA) with a dual-graph convolutional network (DualGCN) to comprehensively
evaluate 3D indoor scene design. By generating textual descriptions of RGB-D internal
scenes through text-form questions and sentiment analysis, we can leverage textual data to
obtain 3D scene information effectively.
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Leveraging their ability to extract hidden contextual representations, we employ pre-
trained models such as BiLSTM and BERT for sentence encoding. Incorporating both the
SynGCN and SemGCN modules within the DualGCN framework allows us to account for
both semantic correlation and syntactic structure in sentiment analysis. This integration
enhances the overall accuracy and robustness of the evaluation process.

We introduce a new task: evaluating interior designs in a 3D environment. By pro-
viding a framework designed for this task, we enable users to evaluate 3D interior scene
designs efficiently. Our system allows users to interact with scenes through text input,
promoting user engagement and enhancing the overall user experience.

Discussion: Although our framework shows promising results, some issues are still
worthy of discussion and follow-up. First, the effectiveness of our approach can be further
evaluated and validated through large-scale user studies involving designers, architects,
and end users. In addition, incorporating user feedback mechanisms can enhance the
model’s understanding of personal preferences and design styles. Expanding to include
additional modalities such as audio and video data can enhance the evaluation process,
providing a more holistic comprehension of the scene. In terms of practical applications,
this technology could offer valuable guidance for people’s everyday interior decoration
choices and serve as a guiding tool for the design of movie sets and game environments.
This is because humans, especially those without a background in design, often have basic
perceptions of space but may lack the ability to deduce specific details. In the future, our
model may integrate and infer textual information further, potentially incorporating large
language models like ChatGPT for enhanced analysis and synthesis.

Limitations and Future Work: Despite its potential, our framework has certain limi-
tations. Relying on pre-trained models could potentially introduce biases or limitations
inherent in the training data. Moreover, the scalability of the system to large and complex
scenes warrants further investigation. Traditional interior design assessment is primarily
conducted by humans. In comparison to human evaluation, our model still exhibits differ-
ences in terms of diversity, comprehensiveness, and detail. Regarding diversity, our model’s
capability is limited to addressing specific types of questions, such as those concerning
style/atmosphere that can be inferred based on factors like color and placement. However,
it cannot answer subjective questions related to factors like the reasonableness of design
arrangements or direct judgments of good/bad. In terms of comprehensiveness and detail,
factors such as the texture details of furniture also influence the style and atmosphere of a
design, but our current model lacks the precision to address such aspects.

Moving forward, our focus will be on overcoming these limitations by investigating
methods to mitigate bias in pre-trained models and improving the scalability and efficiency
of the framework. Additionally, we plan to extend our approach to other domains such
as virtual reality and augmented reality, enabling immersive and interactive evaluations
of spatial designs. In conclusion, our research establishes a groundwork for future ex-
plorations in evaluating interior design within 3D environments, opening avenues for
innovative advancements in the field.
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