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Abstract: Breast cancer represents a significant health concern, particularly in Saudi Arabia, where it
ranks as the most prevalent cancer type among women. This study focuses on leveraging eXplainable
Artificial Intelligence (XAI) techniques to predict benign and malignant breast cancer cases using
various clinical and pathological features specific to Saudi Arabian patients. Six distinct models were
trained and evaluated based on common performance metrics such as accuracy, precision, recall, F1
score, and AUC-ROC score. To enhance interpretability, Local Interpretable Model-Agnostic Explana-
tions (LIME) and SHapley Additive exPlanations (SHAP) were applied. The analysis identified the
Random Forest model as the top performer, achieving an accuracy of 0.72, along with robust preci-
sion, recall, F1 score, and AUC-ROC score values. Conversely, the Support Vector Machine model
exhibited the poorest performance metrics, indicating its limited predictive capability. Notably, the
XAI approaches unveiled variations in the feature importance rankings across models, underscoring
the need for further investigation. These findings offer valuable insights into breast cancer diagnosis
and machine learning interpretation, aiding healthcare providers in understanding and potentially
integrating such technologies into clinical practices.

Keywords: artificial intelligence; machine learning; explainable artificial intelligence; breast cancer;
classification; Saudi Arabia

1. Introduction

Over the past decade, there has been a significant growth in cancer diseases in the
Kingdom of Saudi Arabia. Several types of cancer, including colorectal, NHL, leukemia,
prostate, lung, liver, Hodgkin’s lymphoma, thyroid, kidney, brain, and breast, have been
increasing since 2012 [1]. For example, in 2020, the estimated mortality rate for this disease
reached 685,000, accounting for approximately 13.6% of all female cancer-related deaths [2].
In the Kingdom of Saudi Arabia, breast cancer constitutes approximately 15.9% of the
diagnosed cancer cases, as reported by the Ministry of Health in 2014 [3]. According to
the International Agency for Research on Cancer in 2020 [4], 27,885 new cancer cases and
13,069 deaths were identified in 2020 in Saudi Arabia. Colorectal cancer was identified as
having a high prevalence (14.4%), followed by breast cancer (14.2%), when both genders
(13,632 females and 14,253 males) of all age groups were considered. Colorectal cancer
was identified to be prevalent among males (19.3%), and breast cancer was identified to be
prevalent among females (29%). A total of 82,640 cases (39,241 males and 43,399 females)
were identified over the past five years, out of which breast cancer ranks first in relation to
new cases, with a cumulative risk of 3.01, and ranks second in relation to deaths over the
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past few years when all types of cancer are considered, with a cumulative risk of 0.93. The
effective management of cancer diseases in Saudi Arabia has been hampered by several
notable challenges. Among these challenges are the limited availability of early detection
screening programs, insufficient management guidelines, and a scarcity of resources for
diagnosis and treatment [5].

Among the various types of cancers prevailing in Saudi Arabia, breast cancer is one
of the major cancer types causing concern among younger females compared to Western
countries [6]. Several factors have been associated with the cause and determinants or
predictors of breast cancer in Saudi Arabia. These include factors such as age at first birth,
early menarche, gender, dietary factors, tobacco smoking, alcohol consumption, low-dose
irradiation, obesity, physical activity, lactation, hormonal factors, hormone replacement
therapy, steroid hormone receptors, mammographic density, benign breast disease, and
genetic factors [6]. Given the rising incident rates of breast cancer and a wider range of
etiological factors, there is an immediate need to adopt preventive strategies.

Artificial intelligence (AI) has proven its extraordinary abilities in solving a wide
range of tasks, resulting in widespread adoption in several industries. However, AI-
based solutions in healthcare have often been met with skepticism among practitioners.
This is due to the fact that these solutions operate using internal reasoning that is not
transparent, and their decisions are difficult to explain, causing healthcare professionals to
have reservations in trusting and comprehending them [7]. To address this issue, a new
field within AI called eXplainable AI (XAI) is gaining attention from both academic and
industrial researchers. In this research, our primary objective is to leverage the power
of XAI to facilitate the early and transparent detection of breast cancer. Early detection
can lead to timely treatment, improved prognosis, and significantly increase survival
rates. Additionally, the accurate classification of symptoms and tumors can help patients
avoid unnecessary treatments [8]. Machine Learning (ML) techniques have demonstrated
their robustness in the development of detection algorithms [9]. In this study, we aim to
explore a breast cancer dataset sourced from the University’s King Fahd Hospital (KFUH),
in Dammam, Kingdom of Saudi Arabia, using ML techniques. The dataset comprises a
range of features extracted from patients’ medical history, accompanied by corresponding
diagnostic labels indicating whether it is malignant or benign.

2. Background

Machine learning improves prediction accuracy without explicit programming and
has diverse applications. In breast cancer, ML techniques positively impact diagnosis and
survival prediction by analyzing imaging and blood sample data, and optimize treatments.
However, there is a scarcity of ML research on breast cancer in Saudi Arabia. Interpretability
techniques like LIME and SHAP address the transparency and trust issues in ML models.
Table 1 showcases research studies utilizing ML techniques in breast cancer diagnosis,
demonstrating their application in classifying various types of data, including tumor
symptoms, blood sample indicators, and imaging data.

Table 1. Summary of major studies assessing the impact of ML techniques on breast cancer diagnosis.

Authors Year Dataset Algorithms Variables/Inputs Results

Agarap [10] 2018
Wisconsin
Diagnostic Breast
Cancer (WDBC)

GRU-SVM, Linear
Regression (LR),
Multilayer
Perceptron (MLP),
Nearest Neighbor
(NN) search,
Softmax
Regression, and
Support Vector
Machine (SVM)

Digitized images
of a fine needle
aspirate (FNA)
tests on a
breast mass

MLP algorithm stands out
among the implemented
algorithms with a test
accuracy of ≈99.04%.
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Table 1. Cont.

Authors Year Dataset Algorithms Variables/Inputs Results

Amrane
et al. [11] 2018 Unspecified

Naive Bayes (NB)
classifier and
k-nearest neighbor
(KNN)

Breast cancer
symptoms
(constant pain,
changes in the size,
color (redness),
skin texture
of breasts)

KNN gave the highest
accuracy (97.51%) with the
lowest error rate compared
to the NB classifier (96.19%).

Sherafatian [12] 2018 miRNA-seq
dataset

Tree-based
algorithms

Tumors and
symptoms

Classified three types of
tumors that can be used as
biomarkers

Tseng et al. [13] 2019 Clinical dataset

Random Forest
(RF), SVM, LR,
Bayesian
Classification (BC)

Serum
biomarkers and
clinicopathological
data

RF-based model was
determined to be the
optimal model to predict
breast cancer metastasis at
least 3 months in advance

Ferroni et al. [14] 2019 Clinical dataset

ML-Decision
Support System
with Random
Optimization

Demographic,
clinical and
biochemical data

the model was capable of
stratifying the testing set
into two groups of patients
with low- or high-risk of
progression

Omondiagbe
et al. [15] 2019 WDBC SVM, ANN & NB Tumors and

symptoms

A hybrid approach to breast
cancer diagnosis that
involves reducing the high
dimensionality of features
using linear discriminant
analysis (LDA), and then
applying the new reduced
feature dataset to SVM, was
adopted, resulting in an
accuracy of 98.82%,
sensitivity of 98.41%, and
specificity of 99.07%.

Tapak et al. [16] 2019 Clinical dataset NB, RF, SVM, LR
Various factors in
EHRs of breast
cancer patients

In the prediction of survival,
the average specificity of all
techniques was ≥94%, and
the SVM and LDA have
greater sensitivity (73%) in
comparison to other
techniques.

Mojrian [17] 2020 WDBC

Extreme learning
machine (ELM)
classification
model integrated
with radial basis
function (RBF)
kernel called
ELM-RBF, SVM

Symptoms

ELM-RBF outperformed the
linear SVM model, with an
RMSE, R 2 and MAPE equal
to 0.1719, 0.9374 and 0.0539,
respectively

Chaurasia &
Pal [18] 2020 WDBC LR, DT, SVC, KNN,

RF, NB Symptoms
All ML algorithms perform
best, with test accuracy
exceeding 90%
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Table 1. Cont.

Authors Year Dataset Algorithms Variables/Inputs Results

Turkki et al. [19] 2019 Clinical dataset DRC classifier tissue microarray
(TMA) samples

The accuracy (C-index) of
the DRS grouping was 0.60
(95% CI 0.55–0.65),
compared to 0.58 (95% CI
0.53–0.63) for human expert
predictions based on the
same TMA samples.

Abdar and
Makarenkov [20] 2019 WDBC

SVM, ANN,
confidence-
weighted voting
method and the
boosting ensemble
technique (CWV-
BANNSVM)

Symptoms

CWV-BANNSVM model
was able to improve the
performance of the
traditional machine learning
algorithms applied to BC
detection, reaching an
accuracy of 100%.

Abdar et al. [21] 2020 WDBC NB

SV-BayesNet-3-
MetaClassifier and
SV-Naïve
Bayes-3-MetaClassifier
achieved an accuracy of
98.07% (K = 10)

Singh [22] 2019 Clinical dataset K-NN, SVM, NB

K-NN classifier achieves the
highest classification
accuracy, at 92.105%,
followed by medium
Gaussian SVM, which
achieves a classification
accuracy of 83.684%

Liu et al. [23] 2018 Clinical dataset SVM, RF, DT,
Adaboost

Accuracy of RF is higher
than the other three
methods

Khourdifi and
Bahaj [24] 2018 Clinical dataset RF, NB, SVM,

K-NN
SVM gives the highest
accuracy, at 97.9%

2.1. Machine Learning for Accurate Predictive Analytics

ML, a subset of Artificial Intelligence, enhances the accuracy of prediction without
explicit programming [25]. It finds applications in email filtering, threat detection, the
automation of business processes, and areas requiring accurate predictive analytics [26].
ML encompasses supervised, unsupervised, semi-supervised, and reinforcement learning.
Supervised learning employs training data with defined variables [27,28], while unsuper-
vised learning identifies connections in unlabeled data [29]. Semi-supervised learning
allows the autonomous exploration of training data [30], and reinforcement learning en-
ables algorithmic decision making in multi-step processes [31]. ML utilizes various models
trained on sample data, including Artificial Neural Networks (ANNs), Bayesian networks,
and Support Vector Machines (SVMs) [32–34].

2.2. Machine Learning Techniques for Breast Cancer

ML techniques have been extensively studied and shown positive impacts in various
areas, including the classification of diagnostic data, the prediction of survival, and assess-
ing the risk of developing breast cancer [35–40]. Tahmassebi et al. [40] evaluated the impact
of ML using multiparametric MRI (mpMRI) for early breast cancer prediction and survival
outcomes. They identified relevant features for disease-specific survival prediction, such
as the lesion size, volume distribution, and mean plasma flow. Similarly, Sultan et al. [41]
employed ML algorithms on grayscale and Doppler ultrasound images of breast lesions to
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diagnose breast cancer with higher accuracy. In another study, Kate and Nadig [42] utilized
ML models to predict breast cancer survivability at different stages of the disease. They
found that the models achieved accurate predictions at each stage, but the training did not
help when examples from other stages were used.

ML techniques have also been applied to analyze data from blood samples. Aslan
et al. [37] employed four different techniques, including ANN, SVM, K-NN, and extreme
learning machine (ELM), on a clinical dataset of blood samples. The dataset included
parameters such as glucose, insulin, HOMA, leptin, adiponectin, resistin, and MCP1.
They observed that ELM outperformed ANN with an accuracy of 83.8% compared to 77%
for ANN.

Furthermore, ML techniques have been used to predict the need for different types of
treatments, such as surgery, and to avoid unnecessary procedures. Bahl et al. [43] examined
high-risk breast lesions (HRLs) diagnosed with image-guided needle biopsy. In their study
analyzing 1006 HRLs, they found that 97.4% (37 out of 38) of malignancies could have
been diagnosed through surgery, while 30.6% (91 out of 297) of surgeries for benign lesions
could have been avoided. These studies demonstrate the effectiveness of ML techniques
in breast cancer diagnosis, survival prediction, analyzing imaging and blood sample data,
and optimizing treatment decisions.

2.3. Scarcity of Machine Learning Research in Saudi Breast Cancer

The extensive literature review conducted in this study identified that there are very
few studies focusing on research related to the application of ML and AI techniques
in breast cancer diagnosis and screening in Saudi Arabia. Zain et al. [44–46] studied
the effectiveness of various ML algorithms including NB, K-NN, and fast decision tree
(REPTree) for predicting breast cancer recurrence and found that K-NN produced a better
prediction without principal component analysis (F-measure = 72.1%). Similarly, Sultana
et al. [47], using SVM and Multi-Classifiers, identified that SVM offered a high accuracy
and F-score in comparison with multi-classifiers. El Rahman [48], in a different context,
proposed an algorithm for improving the methods used to detect breast cancer by analyzing
DNA data and detecting the problem in DNA samples in Saudi Arabia. The need for
extensive research in this field was considered to be of high importance, given the rising
number of new cases related to breast cancer in Saudi Arabia, which is actively deploying
innovative technologies for healthcare services as a part of its transformation from a
traditional to digital and sustainable healthcare system [49].

2.4. Machine Learning Interpretation and Explanation in Breast Cancer

The field of artificial intelligence (AI) has witnessed significant advancements, particu-
larly in machine learning (ML) algorithms. While these algorithms can achieve impressive
results in various tasks, their internal workings are often complex and opaque [31]. This
lack of transparency can hinder trust and limit the practical application of ML models,
especially in healthcare settings where interpretability and the justification of decisions are
crucial. Explainable Artificial Intelligence (XAI) addresses this challenge by encompassing
a set of techniques that aim to make the internal workings and decision-making processes
of ML models interpretable by humans [31]. By incorporating XAI methods, we can gain
insights into how models arrive at their predictions, fostering trust and enabling a deeper
understanding of the factors influencing the model’s outputs.

In the field of breast cancer detection and treatment, various models in deep learning
and machine learning, such as gradient boosting and random forest algorithms, have been
utilized [32,33]. To address the need for interpretability in the healthcare industry, research
has focused on overcoming the transparency issues associated with machine learning
models. One approach is LIME (Local Interpretable Model-Agnostic Explanations), which
has been introduced to resolve transparency and trust issues in AI model predictions [50].
LIME is an interpretable model that plays a crucial role in building trust in the field
of artificial intelligence and machine learning. It ensures that the classifiers in LIME
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make predictions in an uninterrupted manner, helping to maintain trust in the outputs.
By addressing the lack of clarity faced by doctors during breast cancer detection, LIME
contributes to making the diagnostic process more transparent and understandable [50].

In the field of machine learning, understanding intractability is crucial. Doshi [34]
employed interpretability tools, such as Generalized Additive Models (GAMs) and the
SHAP Python package, to examine their functionality and identify potential issues. Bua [35]
introduced the network dissection framework to quantify latency-causing representations
in convolutional neural networks, highlighting the synchronization between hidden units
and semantic concepts. They resolved latency issues using supervised and unsupervised
learning techniques.

SHAP (Shapley additive explanations), introduced by Lundberg and Lee in 2017 [36],
addresses the challenge of interpreting machine learning results accurately. It assigns a
unique identifier to each feature and consists of two components: measuring the importance
of predictions based on additive features and providing theoretical results with appropriate
solutions. Although SHAP has resolved many issues, it is not recommended for deep
learning algorithms due to its slow performance. EL5 (Explain Like I’m 5) [38] follows
the principles of LIME and aims to address questions at the level of a five-year-old child.
It utilizes datasets, web-based articles, PDFs, and documents to provide comprehensive
answers to simple questions.

2.5. Research Objective

The main objective of our research, using eXplainable Artificial Intelligence (XAI), is to
identify the key risk factors associated with breast cancer in the Saudi Arabian population
and quantitatively analyze the degree of their influence using machine learning. We lever-
age eXplainable Artificial Intelligence (XAI) techniques to enhance the interpretability of
our machine learning models when used for breast cancer prognosis. By incorporating XAI,
we aim to improve trust and transparency in the model’s decision-making process. Under-
standing how the model arrives at its predictions can empower healthcare professionals to
have greater confidence in its outputs and facilitate clear communication with patients.

Through the use of XAI on a real dataset, we identified several crucial risk factors,
including age, gender, age at menarche, age of first birth, family history, hormone replace-
ment therapy, and breast density. Our research problem centered around determining
which factors might indicate a higher risk of breast cancer and analyzing the degree of their
effect. By doing so, we hope to provide valuable insights that healthcare providers can use
to establish effective screening and early detection protocols. In our research, we endeavor
to address the following questions:

RQ1: Do the proposed ML models generate consistent lists of the most important
features?

RQ2: Which features have the most significant impact on the model’s decision-making
process?

RQ3: What obstacles are encountered in the context of our study when implementing
eXplainable Artificial Intelligence (XAI)?

To the best of the authors’ knowledge, our study is the first of its kind to investigate
Saudi Arabian data in a manner similar to ours. This uniqueness highlights the significance
of our research, as it fills a gap in the existing knowledge. The outcomes of our research
have the potential to inform decision making, shape policies, and guide future studies,
benefiting stakeholders in Saudi Arabia and beyond.

3. Materials and Methods
3.1. Data Source

We obtained our dataset from the University’s King Fahd Hospital (KFUH), affiliated
with Imam Abdulrahman Bin Faisal University (IAU) in Dammam, Kingdom of Saudi
Arabia. Our study was conducted with the approval of the Standing Committee for
Research Ethics on Living Creatures (SCRELC), and we received ethical approval with
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reference number IRB -2020-13-371. The dataset consists of 4206 cases reported between
2017 and 2018, each with a patient ID number and a malignant or benign breast cancer
diagnosis. We extracted several clinical and demographic features, including age, gender,
age at menarche, age at first birth, family history, hormone replacement therapy, and breast
density. Table 2 provides basic descriptive statistics for these features.

Table 2. Description of extracted features.

Variable Types of Variables Description

Age Age years Age at breast cancer diagnosis or screening

Gender Categorical variable Male (0), Female (1)

Complain (CC) Categorical variable

0 = Screening
1 = Pain
2 = Lump
3 = Scar
4 = Moles
5 = Skin retracting

6 = Tissue thickening
7 = Nipple discharge
8 = Nipple inversion
9. Other

Age Menarche (AM) Discrete variable Age at first menstruation

Age at first birth (AB) Discrete variable Age of women at birth of first child

Hormone Replacement
Therapy (HRT) Categorical variable Indicates whether the patient has undergone any hormone

replacement therapy.

Family Health History (FHx) Categorical variable History of breast cancer in a first-degree relative

Density Class (DC) Categorical variable

1 = Almost entirely fat
2 = Scattered fibro glandular densities
3 = Heterogeneously dense
4 = Extremely dense
5 = Unknown or different measurement system

BI-RADS Breast imaging reporting and
data system

1: Benign
2: Malignant

3.2. Machine Learning for Diagnosis Prediction

We investigated how machine learning can predict patient diagnoses using various al-
gorithms. Each model’s hyperparameters were carefully tuned to optimize the performance
for Bi-RADS score prediction. Here is an overview of the models used:

1. Random Forest: Tuned parameters include the number of trees, their maximum depth,
and the minimum samples per leaf. This helps prevent overfitting and improves
generalization to unseen data.

2. Logistic Regression: Regularization strength (C) was tuned to control the model’s
complexity and prevent overfitting, leading to more accurate predictions.

3. Decision Trees: Tuning focused on the maximum depth, minimum samples per leaf,
and splitting criteria (like Gini impurity) to control the tree’s complexity and enhance
interpretability and generalizability.

4. Neural Network: The number of hidden layers, neurons per layer, and learning rate
were tuned. These are crucial for the model to effectively learn complex data patterns.

5. Naive Bayes: The smoothing parameter (alpha) was tuned to address sparse data and
avoid overfitting.

6. Support Vector Machine (SVM): Tuning focused on the kernel type, regularization
parameter (C), and kernel coefficient (gamma) to enable SVM to find the optimal
separating hyperplane.

Our variables were converted to numerical values for modeling purposes. We used
Python 3.11.0 for the analysis and default parameters, except for model evaluation (ex-
plained later). Figure 1 depicts the proposed model.
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In addition to machine learning, XAI techniques like LIME and SHAP were used to
understand the model’s predictions. These methods helped us grasp how models make
predictions and identify the most influential features. LIME and SHAP also assisted in
identifying potential model issues, improving the performance, and gaining insights into
the underlying data. Overall, our approach explored how machine learning can predict
diagnoses while providing a deeper understanding of the models’ inner workings.
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Figure 1. Explanation of individual predictions. A model predicts the patient’s type of cancer if none,
and LIME highlights the symptoms in the patient’s history that led to the prediction. The set of risk
factors contributing to the “Cancer” prediction. With this approach, a doctor can make an informed
decision about whether to trust the model’s prediction.

3.2.1. Model Performance and Hyperparameter Tuning

Cross-validation, a common machine learning technique, was employed for both the
model performance assessment and hyperparameter tuning. In this study, we utilized a
5-fold cross-validation strategy for both purposes.

Hyperparameter Exploration

Optimizing the model’s performance often hinges on the meticulous selection of hy-
perparameter values. We explored various configurations for each machine learning model:

• Specific Hyperparameters: Tuning focused on parameters specific to each model’s ar-
chitecture. For instance, the number of trees and their maximum depth were explored
for Random Forest, while the kernel type and cost parameter (C) were investigated for
Support Vector Machines (SVMs).

• Tuning Method: Due to our dataset size, a random search approach was employed
to efficiently evaluate a range of hyperparameter values. Random search samples
hyperparameter values randomly from a defined range, enabling the exploration of a
significant portion of the hyperparameter space while being computationally efficient
for smaller datasets.

• Key Observations: Valuable insights were gained from the exploration process. For ex-
ample, the Random Forest performance improved with an increasing number of trees,
up to a certain point. In contrast, SVM achieved better accuracy with a linear kernel
compared to a non-linear kernel for this specific dataset. These findings informed the
final selection of hyperparameters used in our final models.

Model Evaluation Metrics

To evaluate our model’s accuracy, we utilized an accuracy classification score (Equation
(1)), defined as the proportion of correctly predicted instances to the total number of
instances in the dataset, expressed as a percentage. Our target variable, Bi-RADS, was used
to classify each case based on the provided features.

We employed additional metrics to gain a more comprehensive understanding of the
models’ strengths and weaknesses:

• Precision (Equation (2)) focuses on positive predictions, representing the ratio of true
positives to the total number of elements labeled as positive.
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• Recall (Equation (3)) focuses on completeness, capturing the model’s ability to identify
all positive cases. It represents the ratio of true positives to the total number of elements
that belong to the positive class.

• F1-Measure (Equation (4)) combines precision and recall into a single score, addressing
the limitations of using just one metric.

Accuracy =
tp + tn

tp + tn + fp + fn
(1)

Percision =
tp

tp + fp
(2)

Recall =
tp

tp + fn
(3)

F1 = 2 ∗ (precision ∗ recall)
(precision + recall)

(4)

4. Results

In this study, we aimed to develop XAI models for predicting benign and malignant
breast cancer diagnoses. The dataset consisted of the diverse clinical and pathological
features of breast cancer patients, and we trained six different models using this data. The
performance of these models was evaluated using widely used metrics such as accuracy,
precision, recall, F1 score, and AUC-ROC score. The evaluation results of these models are
presented in Table 3, showing the performance of the algorithms using the specified metrics.

Table 3. Machine learning models’ performance.

Algorithm Accuracy Precision Recall F1 Score AUC-ROC

Random Forest (RF) 0.72 0.69 0.77 0.73 0.72
Logistic Regression (LR) 0.67 0.64 0.71 0.67 0.67
Decision Trees (DT) 0.65 0.62 0.71 0.66 0.65
Neural Network (NN) 0.63 0.58 0.82 0.68 0.63
Naïve Bayes (NB) 0.60 0.57 0.71 0.63 0.60
Support Vector Machine (SVM) 0.59 0.59 0.52 0.55 0.59

The results of the study showed that the Random Forest model performed the best,
with an accuracy of 0.72, precision of 0.69, recall of 0.77, F1 score of 0.73, and AUC-ROC
score of 0.72. The Random Forest model had the highest performance metrics among all the
models, indicating that it can accurately predict whether a breast cancer diagnosis is benign
or malignant. In contrast, the Support Vector Machine model had the lowest performance
among all the models, with an accuracy of 0.59, precision of 0.59, recall of 0.52, F1 score
of 0.55, and AUC-ROC score of 0.59. The Logistic Regression, Decision Tree, K-Nearest
Neighbor, and Naive Bayes models had lower performance metrics than the Random Forest
model, with values ranging from 0.60 to 0.67. Figures 2–6 depict the performance metrics
for these ML models.

The ROC curves presented in Figures 2–6 serve as important visualizations for assess-
ing the discriminative capabilities of our machine learning models. While these curves
provide valuable insights into the models’ performance, it is important to address the
specific observation regarding the limited number of data points.
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4.1. RQ1: Do the Proposed ML Models Generate Consistent Lists of the Most Important Features?
In Other Words, Do LIME and SHAP Yield Similar Results in Terms of Explainability?

To enhance the trust and transparency of our proposed models, we utilized LIME,
an XAI approach. Initially, our analysis revealed that the RF model achieved the highest
accuracy, at 72%, while Support Vector Machine had the lowest accuracy, at 59%, as
presented in Table 3. However, understanding why these models performed at these levels
and what factors contributed to their accuracy is a complex task that can be challenging
for humans [1]. To address this issue, we employed a black box explainer, which provided
critical insights into the prediction models and extracted the essential features influencing
their accuracy to enhance the interpretability of our models.

To address RQ1, we employed the LIME (Local Interpretable Model-Agnostic Ex-
planations) approach to explain the six machine learning (ML) models and calculate the
importance of their features. In order to gain deeper insights using LIME, we selected a
single instance (Instance 50) at random from our dataset to be explained by all the models.
By utilizing LIME, we were able to interpret and compare the results generated by the six
ML algorithms. Figures 7–11 visualize the importance of individual features in each ML
model using LIME.

The LIME figures show the contribution of each feature to the model’s prediction for a
specific test instance, which is indicated by the values in the “Value” column. The feature
values are scaled to have a mean of 0 and a standard deviation of 1, and the contribution of
each class (Benign or Malignant) to the prediction is indicated by the blue of the bar, where
blue indicates Benign, and orange indicates Malignant.
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Table 4 presents a comprehensive list of the features and their respective importance
when predicting whether a given instance is classified as Benign or Malignant for each
utilized model. Overall, the results indicate some similarities among the eight features
in the models. However, there are notable differences in the importance rankings across
the proposed models. Biopsy was identified as the primary feature (the most important
feature) for Random Forest, Decision Tree and Neural Network, while density was the most
important feature for Logistic Regression and Support Vector Machine. Overall, the order of
features was different for every model. When we look at the top features for explainability
for all six models, we see significant differences across the models. For instance, while
biopsy was one of the top features for most of the models, this was not the case for SVM. As
a summary, the features that were listed as the top three were, generally, biopsy (5 times),
HRT (5 times), FHX (3 times), density (3 times) and age (2 times). When analyzing the
models’ behavior as we progress down the list, we can observe that while there are some
differences in the top four feature rankings, the models tend to simplify their assessment of
features as we move towards the end. This trend becomes evident in positions 6, 7, and 8,
where the least important features tend to be shared among the models.

Table 4. Ordered list of features ranked by importance, as determined by LIME. Features in bold or
underlined indicate consistency across the models’ lists.

Feature Rank 1 2 3 4 5 6 7 8

RF Biopsy Fhx HRT Density Age Complain AM AB
LR Density Biopsy HRT Fhx Age Complain AB AM
DT Biopsy Fhx Age Density HRT Complain AM AB
NN Biopsy HRT Density Fhx AB Complain Age AM
NB HRT Biopsy Fhx Complain Density AM Age AB

SVM Density Age HRT Complain Biopsy Fhx AB AM

Figure 7 shows the results obtained from the LIME analysis when explaining the
logistic regression. LIME explained the probability by comparing the actual class to the
targeted class values. Based on the LIME explanation plot and the associated prediction
probabilities, it appears that the model predicted the instance to be malignant with a
probability of 0.56. The LIME plot provides some insight into the features that contributed
most to this prediction, with density being the most important feature, with a value of
1.0. However, it is important to note that the LIME explanation should be interpreted
with caution considering the context of the model. Overall, the model’s performance for
this instance seems to be relatively uncertain, with a predicted probability of only 0.56.
A further investigation of the specific features that contributed to this prediction could
potentially improve the model’s performance.
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Figure 8 shows the LIME explanation plot, which provides an explanation for the
decision made by the Random Forest Classification model for the given test instance.
It highlights the most important features that influenced the model’s decision, and the
direction of their impact on the prediction. For the Benign class, the features that contributed
the most to the prediction were biopsy, age, CC, and Age_1st_birth. For example, the model
predicted a higher probability of being benign when biopsy was less than or equal to 0.00,
age was between 49.00 and 55.00, CC was less than or equal to 0.00, and Age_1st_birth was
greater than 25.00. For the Malignant class, the features that contributed the most to the
prediction were Fhx, HRT, density, and Age_menarche. For example, the model predicted
a higher probability of malignancy when the Fhx was less than or equal to 0.00, HRT was
less than or equal to 0.00, density was less than or equal to 1.00, and Age_menarche was
greater than 12.
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In Figures 9–12, we present an insightful analysis of the Decision Tree, Neural Net-
work, Naïve Bayes, and Support Vector Machine models. These figures provide a visual
representation of how each model processes and interprets the data.

Examining the LIME (Local Interpretable Model-Agnostic Explanations) explanation
plot and the associated prediction probabilities, we can gain a further understanding of
the models’ predictions for a specific instance. Starting with the Decision Tree model, it
confidently predicted the instance to be malignant with a probability of 1.00. This high
probability suggests that the model’s decision-making process, based on the provided
features, strongly supports the classification of malignancy.

Moving to the Neural Network model, we observe a lower probability of 0.66 for
predicting malignancy. This indicates a relatively moderate confidence level compared to
the Decision Tree model. The Neural Network might have incorporated more complex
patterns and interactions among the features to arrive at its prediction. The Naïve Bayes
model also predicted the instance to be malignant, albeit with a slightly lower probability
of 0.63. Naïve Bayes models assume independence among the features, and although this
assumption might not hold perfectly in real-world scenarios, it still yielded a reasonable
prediction for this instance.

Surprisingly, the Support Vector Machine model took a different stance by predicting
the instance to be benign, with a probability of 0.54. This model’s decision boundary
might be influenced by different feature combinations, leading to a divergence from the
other models’ predictions. Overall, these explanations provide valuable insights into
the reasoning behind each model’s prediction. The Decision Tree model exhibited the
highest confidence in predicting malignancy, while the Neural Network, Naïve Bayes,
and Support Vector Machine models demonstrated varying degrees of confidence and
divergent predictions. Such information can be instrumental in understanding the strengths,
weaknesses, and interpretability of these machine learning models in the context of the
given dataset.
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4.2. RQ2: Which Features Have the Most Significant Impact on the Model’s Decision-Making
Process?

To address RQ2, we employed Logistic Regression, as suggested by previous work [51],
and utilized SHAP to present a summary plot for a single instance. Figure 13 displays a
combined visualization of the feature importance and effects, offering insights into the
model’s behavior. The y-axis ranks the features based on their importance, while each
point on the summary plot represents a Shapley value for a specific feature and data
point, positioned according to its Shapley value. The color of each point represents the
corresponding feature value on a low-to-high scale. Overlapping points in the vertical
direction depict the distribution of Shapley values for each feature. By examining the
summary plots for each class, we can discern the relationship between feature values
and their impact on predictions for each class. This comprehensive understanding of the
model’s behavior provides valuable insights at a global level. Moreover, when analyzed
per failure class, it enables the extraction of localized insights on behavior patterns.

The results indicate that density, age, and Fhx are the top three factors influencing
the model’s behavior and decision making. Density and Fhx exhibit varying amounts
of contributing values to the model’s decision. Notably, age and Age_menarche demon-
strate the highest number of contributing values. This information can be leveraged by
domain experts to either confirm or challenge the model’s behavior, enabling them to make
informed decisions about placing trust in the model’s predictions.
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decisions.

The decision plot in Figure 14 provides an insightful representation that offers a
comprehensive view of the models’ decisions in the context of cumulative SHAP values
for feature predications. Through a unique mapping technique, this plot captures the
intricate interplay between input features and their respective contributions to prediction
outcomes. As the cumulative SHAP values accumulate, the decision plot offers an intuitive
understanding of how varying feature combinations influence the model’s decision-making
process. This visualization not only enhances interpretability, but also serves as a valuable
tool for identifying the key drivers behind specific predictions, enabling practitioners and
researchers to gain deeper insights into the model’s behavior and decision rationale.
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4.3. RQ3: What Obstacles Are Encountered in the Context of Our Study When Implementing
eXplainable Artificial Intelligence (XAI)?

Assessing the effectiveness and utility of these explanations is a complex task that
requires appropriate evaluation metrics and criteria to be defined. Furthermore, striking a
balance between the explanation accuracy and simplicity poses a challenge. While complex
models may provide accurate predictions, the explanations can be difficult for end users
without technical expertise. Another significant challenge arises from the compatibility is-
sues that can arise when different models attempt to explain a single instance. In the context
of this research, it was observed that machine learning models exhibited discrepancies in
their explanations for the same instance. This discordancy highlights the need for a further
investigation of the underlying reasons behind such inconsistencies. To address this chal-
lenge, future research should explore the factors contributing to the discrepancies among
models when explaining a single instance. This may involve analyzing the differences in
model architectures, training data, or decision boundaries [52]. Additionally, it is important
to assess these discrepancies’ impact on the models’ interpretability and trustworthiness.
Understanding and addressing the compatibility issues among models when explaining
individual instances is crucial for enhancing the reliability and applicability of eXplainable
Artificial Intelligence (XAI). By identifying the sources of discrepancies and developing
techniques to mitigate them, we can improve the consistency and coherence of model
explanations. This will ultimately contribute to the broader goal of building transparent
and trustworthy AI systems.

5. Discrepancies in Explanation Methods across Algorithmic Models: Analysis and
Proposed Solutions

In this section, we delve into the intriguing discrepancies uncovered when applying
explanation methods, specifically LIME and SHAP, across various machine learning al-
gorithms. We explore the underlying causes of these inconsistencies and offer potential
solutions to address them within the context of the algorithms under consideration. The
discrepancies observed in the outcomes of the LIME and SHAP explanations when applied
to different machine learning models can be attributed to several factors:

1. Algorithmic Complexity: The diverse nature of algorithms, from the simplicity of
logistic regression to the complexity of neural networks, can influence how these
methods interpret their output [53].

2. Feature Importance Sensitivity: Certain algorithms might assign varying degrees
of importance to different features. This can lead to fluctuations in the explanation
outcomes, as LIME and SHAP might respond differently to these varying importance
levels [54].
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3. Interactions and Nonlinearity: The complex interactions between features in algo-
rithms like decision trees and neural networks can complicate the way LIME and
SHAP interpret their behavior. Nonlinearities and interactions may not align with the
assumptions these methods make [55].

5.1. Proposed Solutions

To address the noted discrepancies and foster more reliable explanations, we suggest
the following strategies, tailored to the specific algorithms under analysis:

1. Algorithm-Specific Surrogate Models: Constructing surrogate models that mimic
the behavior of each algorithm could lead to more accurate explanations. These
models can be designed to capture the nuances of algorithmic interactions, potentially
improving the alignment with LIME and SHAP explanations [56].

2. Model-Agnostic Ensembles: Employing ensemble techniques that combine LIME and
SHAP explanations across various algorithms can provide a more holistic view. By
averaging or weighting the explanations, the influence of algorithmic idiosyncrasies
can be minimized [57].

3. Feature Engineering and Selection: Prioritizing feature engineering and selection
tailored to each algorithm’s behavior might mitigate discrepancies. Focusing on
features with a high impact within the context of each algorithm can help align the
LIME and SHAP explanations.

5.2. Unveiling the Challenges and Opportunities in eXplainable Artificial Intelligence (XAI)

Explainable Artificial Intelligence (XAI) unfolds a spectrum of challenges and oppor-
tunities that shape its role in the realm of AI. On the one hand, XAI encounters formidable
challenges that require careful consideration and innovative solutions [57]. On the other
hand, it presents significant opportunities to enhance trust, transparency, and the inter-
pretability of machine learning models. By delving into the challenges and embracing the
opportunities, we can unlock the full potential of XAI in various domains.

In terms of challenges, XAI confronts complexities in several key areas. Firstly, the
evaluation of the explanations provided by machine learning models poses a formidable
task [52]. Assessing the effectiveness and utility of these explanations demands the def-
inition of appropriate evaluation metrics and criteria to measure their quality and com-
prehensibility. Striking a balance between the explanation accuracy and simplicity also
emerges as a challenge [58]. While complex models may yield accurate predictions, the
explanations they generate can be difficult for non-technical end users to understand. Addi-
tionally, the compatibility issues arising when different models attempt to explain a single
instance introduce complexities that warrant further investigation [50]. Furthermore, in the
design of machine learning algorithms, the process of feature selection, whereby a subset
of relevant features is chosen for model inputs, holds significant importance. However, it is
acknowledged that feature selection can introduce nuances in the subsequent interpretation
outcomes, particularly when employing methods like LIME and SHAP. To address the
impact of feature selection discrepancies on the interpretation outcomes, several strategies
can be considered:

1. Sensitivity Analysis: Conduct sensitivity analyses by varying the feature subsets used
for different machine learning models. This allows for a comprehensive exploration
of how explanations change with varying input spaces.

2. Ensemble Explanations: Employ ensemble explanation techniques that consolidate
the explanations generated by models with different feature sets. By aggregating
diverse explanations, these ensemble methods can provide a more comprehensive
view of the model behavior across varying input spaces.

3. Consistency Measures: Develop measures to quantify the consistency of explanation
outcomes when feature selection varies. This can aid in identifying the degree of
stability in feature importance rankings and contributions.
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5.3. Receiver Operating Characteristic (ROC) and Precision-Recall (PR) Analysis

The ROC curves, prominently featured in Figures 2–6, offer a visualization of the
models’ ability to discriminate between true positives and false positives across varying
threshold values. A notable observation pertains to the inclusion of three data points within
these curves. We made this strategic choice to present a succinct portrayal of the overall
performance trend.

While the limited data points might not encapsulate every nuanced performance as-
pect, they convey a directional understanding of the models’ performance across threshold
settings. By maintaining the original graph structure, we preserve the high-level insights
these curves offer. The ROC curves provide valuable insights into the models’ overall
discriminative capabilities, and our interpretations underscore that the depicted trends are
indicative of broader performance dynamics.

The Precision–Recall (PR) curves, which are also prominently displayed in Figures 2–6,
offer a critical lens through which we can assess the performance of our machine learning
models. In particular, PR curves hold special relevance when dealing with imbalanced class
distributions, a common scenario in real-world applications. A noteworthy observation
emerges from the AUPRC values, some of which are equal to or less than 0.5, signaling a
nuanced aspect of model behavior.

An AUPRC value below 0.5 prompts inquiries into the models’ sensitivity and their
effectiveness in recognizing rare positive instances amidst a sea of negative ones. This
observation emphasizes the challenges that arise when handling imbalanced data, where
correctly identifying positive instances becomes even more crucial.

These issues manifest as discrepancies among the explanations provided by different
models, highlighting the need to unravel the underlying reasons behind such inconsisten-
cies [59].

Amidst these challenges, XAI offers compelling opportunities. The enhanced trust
and acceptance of machine learning models can be achieved by providing understandable
explanations that shed light on the decision-making process. This empowers users to gain
insights into the rationale behind AI-generated decisions and engenders confidence in the
model’s predictions [60]. Furthermore, XAI facilitates collaborative decision making by
fostering effective interaction between humans and AI systems [61]. Explanations enable
users to comprehend the reasoning behind AI-generated decisions, enabling them to make
more informed judgments based on a combination of human expertise and model insights.

Another significant opportunity lies in XAI’s potential to identify biases and errors in
machine learning models. Through the analysis of explanations, researchers can uncover
instances where models exhibit biased behavior or make incorrect predictions [62]. This
discovery process paves the way for model improvement and fairness, ensuring the ethical
deployment of AI technologies. Moreover, XAI techniques enable researchers to gain deeper
insights into the relationships and patterns embedded within the data. The exploration
of model explanations uncovers hidden insights, identifies critical features, and guides
further research, propelling knowledge discovery in the domain.

Furthermore, XAI plays a vital role in meeting regulations and addressing ethical
considerations. The transparency and interpretability of XAI models ensure adherence
to regulations such as the General Data Protection Regulation (GDPR), fostering the re-
sponsible and accountable deployment of AI in sensitive domains [63,64]. Addressing
these challenges through innovative techniques and methodologies will pave the way for
transparent, trustworthy, and interpretable machine learning models. Ultimately, this will
promote the widespread adoption of XAI, benefiting diverse domains and stakeholders
alike.

5.4. Potential Reasons for Model Performance

Our experiments revealed that Random Forest emerged as the best-performing model
for predicting Bi-RADS scores in this study, while SVM exhibited lower performance. Here
are some possible explanations:
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• Random Forest Strength:

Handling Complexities: Random Forests are ensemble methods that combine multiple
decision trees [53]. This ensemble approach can effectively capture non-linear relation-
ships within the data, potentially a strength for Bi-RADS prediction where various factors
contribute to the score.

• Robustness to Overfitting:

Random Forest’s inherent bagging technique (randomly selecting subsets of features
for each tree) helps prevent overfitting [65], a common challenge in machine learning,
particularly when dealing with complex datasets.

• Potential Challenges with SVM:

Data Separability: SVMs excel at finding the optimal hyperplane to separate data
points belonging to different classes [66]. However, if the data are not linearly separable in
the feature space, the SVM performance might suffer. Depending on the characteristics of
your dataset, the Bi-RADS scores might not be perfectly separated using linear boundaries.

Kernel Selection: SVM performance heavily relies on the chosen kernel function [65].
While we explored different kernels, it is possible that a more suitable kernel type (beyond
the ones investigated) could improve SVM’s performance for this specific dataset.

6. Conclusions

Our research demonstrates the application of eXplainable Artificial Intelligence (XAI)
in predicting the risk factors associated with breast cancer in the Saudi population. Through
the evaluation of various classifiers, the Random Forest model emerged as the top performer,
exhibiting high accuracy, precision, recall, F1 score, and AUC-ROC score values. This
indicates its effectiveness in accurately distinguishing between benign and malignant
breast cancer diagnoses.

The utilization of a black box explainer yielded valuable insights into the prediction
models, uncovering the most influential features that contribute to their accuracy. These
insights have the potential to enhance decision making in breast cancer diagnosis and
treatment, enabling medical professionals to prioritize relevant factors and customize
interventions accordingly. Additionally, the validation analysis of features ensures align-
ment with existing medical knowledge, reinforcing trust in the model’s predictions. The
transparency and interpretability offered by XAI play a crucial role in fostering trust in
the model’s predictions, empowering medical professionals to make well-informed assess-
ments of its reliability. Furthermore, identifying influential features opens avenues for
further research, providing deeper insights into the underlying biological or clinical mecha-
nisms related to breast cancer. This has the potential to drive advancements in knowledge,
uncover novel biomarkers, and enhance our understanding of risk factors. In summary,
our study highlights the practical implementation of XAI in improving decision making,
bolstering model trust and interpretability, and generating valuable research insights in
the field of breast cancer. By harnessing the capabilities of XAI, we can contribute to more
accurate diagnoses, personalized treatment strategies, and advancements in breast cancer
research, ultimately leading to improved patient outcomes.
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