Effect of Polymer and Crosslinker Concentration on Static and Dynamic Gelation Behavior of Phenolic Resin Hydrogel
Abstract
:1. Introduction
2. Results and Discussion
2.1. Static Gelation in Ampoules
2.2. Static Gelation in Porous Media
2.3. Dynamic Gelation in Porous Media
2.3.1. Analysis of Dynamic Gelation Process
2.3.2. The Effect of Polymer and Crosslinker Concentration on Dynamic Gelation
2.3.3. Analysis of Water Flooding after Dynamic Gelation
3. Conclusions
4. Materials and Methods
4.1. Materials
4.2. Experimental Methods
4.2.1. Static Gelation in Ampoule Bottles
4.2.2. Static gelation in Porous Media
4.2.3. Dynamic Gelation in Porous Media
4.2.4. Water Flooding after Dynamic Gelation in Porous Media
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Al-Muntasheri, G.A.; Nasr-El-Din, H.A.; Peters, J.A.; Zitha, P.L.J. Investigation of a High-Temperature Organic Water-Shutoff Gel: Reaction Mechanisms. SPE J. 2006, 11, 497–504. [Google Scholar] [CrossRef]
- Banerjee, R.; Patil, K.; Khilar, K.C. Studies on Phenol-Formaldehyde Gel Formation at a High Temperature and at Different pH. Can. J. Chem. Eng. 2006, 84, 328–337. [Google Scholar] [CrossRef]
- Aldhaheri, M.; Wei, M.Z.; Zhang, N.; Bai, B.J. A Review of Field Oil-Production Response of Injection-Well Gel Treatments. SPE Res. Eval. Eng. 2019, 22, 597–611. [Google Scholar] [CrossRef]
- Khurshid, I.; Afgan, I. Geochemical Investigation of Electrical Conductivity and Electrical Double Layer Based Wettability Alteration During Engineered Water Injection in Carbonates. J. Petrol. Sci. Eng. 2022, 215, 110627. [Google Scholar] [CrossRef]
- Zhou, B.B.; Kang, W.L.; Yang, H.B.; Zhu, T.Y.; Zhang, H.W.; Li, X.X.; Sarsenbekuly, B.; Sarsenbek, T. Preparation and Properties of an Acid-Resistant Preformed Particle Gel for Conformance Control. J. Petrol. Sci. Eng. 2021, 197, 107964. [Google Scholar] [CrossRef]
- Ki, D.Y.; Woo, K.Y.; Lee, S.B. Static and Dynamic Properties of the Backbone Network for the Irreversible Kinetic Gelation Model. Phys. Rev. E 2000, 62, 821. [Google Scholar] [CrossRef] [PubMed]
- Dolan, D.M.; Thiele, J.L.; Willhite, G.P. Effects of pH and Shear on the Gelation of a Cr(III)-Xanthan System. SPE Prod. Oper. 1998, 13, 97–103. [Google Scholar] [CrossRef]
- Kolnes, J.; Stavland, A.; Thorsen, S. The effect of temperature on the gelation time of xanthan/Cr(III) systems. In Proceedings of the SPE International Conference on Oilfield Chemistry, Anaheim, CA, USA, 20–22 February 1991. SPE 21001-MS. [Google Scholar]
- Bhasker, R.; Stinson, J.; Willhite, G.; Thiele, J. The effects of shear history on the gelation of polyacrylamide/chromium (VI)/thiourea solutions. SPE Reserv. Eng. 1988, 3, 1251–1256. [Google Scholar] [CrossRef]
- Carvalho, W.; Djabourov, M. Physical Gelation under Shear for Gelatin Gels. Rheol. Acta 1997, 36, 591–609. [Google Scholar] [CrossRef]
- McCool, S.; Li, X.P.; Willhite, G.P. Flow of a Polyacrylamide/Chromium Acetate System in a Long Conduit. SPE J. 2009, 14, 54–66. [Google Scholar] [CrossRef]
- Seright, R. Use of Preformed Gels for Conformance Control in Fractured Systems. Old Prod. Facil. 1997, 12, 59–65. [Google Scholar] [CrossRef]
- Abete, T.; De Candia, A.; Del Gado, E.; Fierro, A.; Coniglio, A. Static and Dynamic Heterogeneities in a Model for Irreversible Gelation. Phys. Rev. Lett. 2007, 98, 088301. [Google Scholar] [CrossRef] [PubMed]
- Sun, Z.; Wang, S.; Zhu, Q.; Cao, X.; Lv, K.; Feng, Y.; Yin, H. Insights into Polyacrylamide Hydrogels Used for Oil and Gas Exploration: Gelation Time, Gel Strength, and Adhesion Strength. Energy Fuels 2023, 37, 19548–19561. [Google Scholar] [CrossRef]
- Khurshid, I.; Afgan, I. Novel insights into the geochemical evaluation of polymer drive composition on surfactant retention in carbonates using the surface complexation modeling. Sci. Rep. 2022, 12, 17542. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.Y.; Jiang, X.R.; Ji, W.J.; Song, W.Q.; Cao, Y.M.; Yan, F.; Luo, C.; Yuan, B. The New Low Viscosity and High-Temperature Resistant Composite Hydrogel. Chem. Pap. 2023, 77, 3561–3570. [Google Scholar] [CrossRef]
- Yu, H.Y.; Ma, Z.F.; Tang, L.; Li, Y.S.; Shao, X.Z.; Tian, Y.X.; Qian, J.; Fu, J.; Li, D.; Wang, L.; et al. The Effect of Shear Rate on Dynamic Gelation of Phenol Formaldehyde Resin Gel in Porous Media. Gels 2022, 8, 185. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.Y.; Yu, J.F.; Ji, W.J.; Zheng, J.P.; Wang, Y.F. Dynamic Gelation of the HPAM/Phenol-Formaldehyde Resin Gel under Oscillatory Shear: Critical Gelation Shear Rate and Reformation. Chem. Pap. 2021, 75, 1313–1322. [Google Scholar] [CrossRef]
- Yu, H.Y.; Ji, W.J.; Zheng, J.P. Dynamic and Static Gelation Behavior of Phenol Formaldehyde Resin Gel System in Ampoule Bottles and Porous Media. Oil Gas Sci. Technol. 2020, 75, 55. [Google Scholar] [CrossRef]
- Albonico, P.; Bartosek, M.; Malandrino, A.; Bryant, S.; Lockhart, T.P. Studies on Phenol-Formaldehyde Crosslinked Polymer Gels in Bulk and in Porous Media. In Proceedings of the SPE International Symposium on Oilfield Chemistry, San Antonio, TX, USA, 14–17 February 1995. SPE 28983. [Google Scholar]
- Bryant, S.L.; Rabaioli, M.R.; Lockhart, T.P. Influence of Syneresis on Permeability Reduction by Polymer Gels. SPE Prod. Oper. 1996, 11, 209–215. [Google Scholar] [CrossRef]
- Shi, J.; Wei, X. Synthesis and Evaluation of Polymer Oil Displacement Agent Crosslinked by Phenolaldehyde Resin Prepolymer. Adv. Fine Petrochem. 2003, 7, 45–48. [Google Scholar]
- Sydansk, R. A New Conformance-Improvement-Treatment Chromium(III) Gel Technology. In Proceedings of the DOE Symposium on Enhanced Oil Recovery, Tulsa, OK, USA, 17–20 April 1988. SPE/DOE 17329. [Google Scholar]
- Reddy, B.R.; Eoff, L.; Dalrymple, E.D.; Brown, D. Natural Polymer-Based Compositions Designed for Use in Conformance Gel Systems. SPE J. 2005, 10, 385–393. [Google Scholar] [CrossRef]
- Mokhtari, M.; Ozbayoglu, M.E. Laboratory Investigation on Gelation Behavior of Xanthan Crosslinked with Borate Intended to Combat Lost Circulation. In Proceedings of the SPE International Production and Operations Conference and Exhibition, Tunis, Tunisia, 8–10 June 2010. SPE 136094. [Google Scholar]
- Smith, J.E. The Transition Pressure: A Quick Method for Quantifying Polyacrylamide Gel Strength. In Proceedings of the SPE International Conference on Oilfield Chemistry, Houston, TX, USA, 8–10 February 1989. SPE 18739. [Google Scholar]
- Prada, A.; Civan, F.; Dalrymple, E.D. Evaluation of Gelation Systems for Conformance Control. In Proceedings of the SPE Improved Oil Recovery Conference, Tulsa, OK, USA, 3–5 April 2000. SPE 59322. [Google Scholar]
- Park, P.J.; Sung, W. Polymer Translocation Induced by Adsorption. J. Chem. Phys. 1998, 108, 3013–3018. [Google Scholar] [CrossRef]
- Delshad, M.; Kim, D.H.; Magbagbeola, O.A.; Huh, C.; Pope, G.; Tarahhom, F. Mechanistic Interpretation and Utilization of Viscoelastic Behavior of Polymer Solutions for Improved Polymer-Flood Efficiency. In Proceedings of the SPE Improved Oil Recovery Conference, SPE Improved Oil Recovery Conference, Tulsa, OK, USA, 20–23 April 2008. SPE 113620. [Google Scholar]
- Chauveteau, G.; Tabary, R.; Renard, M.; Omari, A. Controlling In-Situ Gelation of Polyacrylamides by Zirconium for Water Shutoff. In Proceedings of the SPE International Symposium on Oilfield Chemistry, Houston, TX, USA, 16–19 February 1999. SPE 50752. [Google Scholar]
- Yu, H.Y.; Wang, Y.F.; Zhang, J.; Lv, P.; Shi, S.L. Dynamic Gelation of HPAM/Cr(III) under Shear in an Agitator and Porous Media. Oil Gas Sci. Technol. 2015, 70, 941–949. [Google Scholar]
- Savins, J.G. Non-Newtonian Flow Through Porous Media. Ind. Eng. Chem. 1969, 61, 18–47. [Google Scholar] [CrossRef]
- Hirasaki, G.J.; Pope, G.A. Analysis of Factors Influencing Mobility and Adsorption in the Flow of Polymer Solution Through Porous Media. SPE J. 1974, 14, 337–346. [Google Scholar] [CrossRef]
- Camilleri, D.; Engelson, S.; Lake, L.W.; Lin, E.C.; Ohno, T.; Pope, A.G.; Sepehrnoori, K. Description of an Improved Compositional Micellar/Polymer Simulator. SPE Reserv. Eng. 1987, 2, 427–432. [Google Scholar] [CrossRef]
No | HPAM, % | PFR, % | Static Gelation in Ampoule Bottles | Static Gelation in Porous Media | ||
---|---|---|---|---|---|---|
IGT, h | FGT, h | IGT, h | FGT, h | |||
1 | 0.15 | 0.6 | 14 | 27 | 25 | 45 |
2 | 0.2 | 0.6 | 12 | 21 | 17 | 40 |
3 | 0.25 | 0.6 | 9 | 16.5 | 10 | 29 |
4 | 0.3 | 0.6 | 7 | 14.4 | 8 | 23 |
5 | 0.2 | 0.3 | 14.3 | 30 | 20 | 45 |
6 | 0.2 | 0.9 | 9.5 | 18 | 10 | 35 |
HPAM, wt% | PFR, wt% | Speed, mL/min | K, μm2 | Viscosity, mPa‧s |
---|---|---|---|---|
0.15 | 0.6 | 0.5 | 7.22 | 2.1 |
0.2 | 0.6 | 0.5 | 8.08 | 3.7 |
0.25 | 0.6 | 0.5 | 8.28 | 6.3 |
0.3 | 0.6 | 0.5 | 8.99 | 4.2 |
0.2 | 0.3 | 0.5 | 7.07 | 5.7 |
0.2 | 0.9 | 0.5 | 8.49 | 1.6 |
No | HPAM , % | PFR , % | Dynamic Gelation in Porous Media | |
---|---|---|---|---|
IGT, h | FGT, h | |||
1 | 0.15 | 0.6 | 40 | 105 |
2 | 0.2 | 0.6 | 25 | 95 |
3 | 0.25 | 0.6 | 20 | 80 |
4 | 0.3 | 0.6 | 14 | 46 |
5 | 0.2 | 0.3 | 35 | 106 |
6 | 0.2 | 0.9 | 20 | 80 |
HPAM, wt% | PFR , wt% | Speed, mL/min | K, μm2 | Porosity | n | C’ | Shear Rate, s−1 |
---|---|---|---|---|---|---|---|
0.2 | 0.3 | 0.5 | 7.07 | 0.352 | 0.573 | 2.29 | 4.34 |
0.2 | 0.6 | 0.5 | 8.08 | 0.367 | 0.440 | 2.29 | 3.71 |
0.2 | 0.9 | 0.5 | 8.48 | 0.371 | 0.445 | 2.29 | 3.61 |
0.15 | 0.6 | 0.5 | 7.22 | 0.353 | 0.645 | 2.29 | 4.43 |
0.25 | 0.6 | 0.5 | 8.28 | 0.369 | 0.427 | 2.29 | 3.63 |
0.3 | 0.6 | 0.5 | 8.99 | 0.373 | 0.346 | 2.29 | 3.28 |
HPAM , wt% | PFR , wt% | K, μm2 | Speed, mL/min | Residual Resistance Coefficient | |
---|---|---|---|---|---|
ad | bd | ||||
0.15 | 0.6 | 7.22 | 0.5 | 98 | 77 |
0.2 | 0.6 | 8.08 | 0.5 | 101 | 33 |
0.25 | 0.6 | 8.28 | 0.5 | 112 | - |
0.3 | 0.6 | 8.99 | 0.5 | 150 | 3 |
0.2 | 0.3 | 7.07 | 0.5 | 104 | 46 |
0.2 | 0.9 | 8.49 | 0.5 | 140 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ji, W.; Chang, B.; Yu, H.; Li, Y.; Song, W. Effect of Polymer and Crosslinker Concentration on Static and Dynamic Gelation Behavior of Phenolic Resin Hydrogel. Gels 2024, 10, 325. https://doi.org/10.3390/gels10050325
Ji W, Chang B, Yu H, Li Y, Song W. Effect of Polymer and Crosslinker Concentration on Static and Dynamic Gelation Behavior of Phenolic Resin Hydrogel. Gels. 2024; 10(5):325. https://doi.org/10.3390/gels10050325
Chicago/Turabian StyleJi, Wenjuan, Bei Chang, Haiyang Yu, Yilin Li, and Weiqiang Song. 2024. "Effect of Polymer and Crosslinker Concentration on Static and Dynamic Gelation Behavior of Phenolic Resin Hydrogel" Gels 10, no. 5: 325. https://doi.org/10.3390/gels10050325