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Abstract: The usual concept of simulation methods for turbulent flows is to impose a certain (partial)
flow resolution. This concept becomes problematic away from limit regimes of no or an almost
complete flow resolution: discrepancies between the imposed and actual flow resolution may imply
an unreliable model behavior and high computational cost to compensate for simulation deficiencies.
An exact mathematical approach based on variational analysis provides a solution to these prob-
lems. Minimal error continuous eddy simulation (CES) designed in this way enables simulations in
which the model actively responds to variations in flow resolution by increasing or decreasing its
contribution to the simulation as required. This paper presents the first application of CES methods
to a moderately complex, relatively high Reynolds number turbulent flow simulation: the NASA
wall-mounted hump flow. It is shown that CES performs equally well or better than almost resolving
simulation methods at a little fraction of computational cost. Significant computational cost and per-
formance advantages are reported in comparison to popular partially resolving simulation methods
including detached eddy simulation and wall-modeled large eddy simulation. Characteristic features
of the asymptotic flow structure are identified on the basis of CES simulations.

Keywords: computational fluid dynamics; large eddy simulation (LES); Reynolds-averaged Navier-
Stokes (RANS) methods; hybrid RANS-LES methods

1. Introduction

The characteristic features of computational methods for simulations of turbulent
flows of practical relevance are well known. Reynolds-averaged Navier–Stokes (RANS)
methods are computationally very efficient, but they suffer from their inability to correctly
describe the physics of separated flows, which appear in most applications [1]. Large
eddy simulation (LES) methods have a significantly higher predictive power, but they
are often unaffordable because of the huge computational cost required for simulations
of high Reynolds number (Re) turbulent flows involving complex geometries [1–5]. The
most promising approach to overcome these issues is the design of hybrid RANS-LES
methods that combine elements of RANS and LES equations [2,5–9]. In most applications,
detached eddy simulation (DES) [10–13] and wall-modeled LES (WMLES) [14–16] methods
are applied. However, such hybrid RANS-LES suffer from basic problems, too. There
is significant uncertainty of predictions due to different models applied, regions where
different models and grids are applied, different mesh distributions, and set-up options to
manage the information exchange between flow regions [5]. Hence, all such predictions
need validation data, which are often unavailable. In addition, although such hybrid
RANS-LES are designed to reduce the cost of LES, it turns out that their computational cost
can be very significant, even comparable to LES cost if performance deficiencies need to be
addressed [17].

A closer look at concepts applied reveals that the predominant strategy to design
computational methods for simulations of turbulent flows is to impose a desired flow
resolution, usually by the setting of model viscosity. For example, a relatively large model
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viscosity aiming at zero flow resolution is applied in RANS methods, a relatively small
model viscosity aiming at an almost complete flow resolution is applied in LES methods.
In (partially) resolving simulation methods (including DES and WMLES), filter width
∆ is used as characteristic model length scale in simulations on relatively coarse grids.
The idea is to impose on the model side a resolution (model viscosity) ranging between
corresponding RANS and LES resolutions (model viscosities). The problem is that the
resolution imposed in this way does not need to determine the actual flow resolution (which
can be measured as explained below). The actual flow resolution involves two ingredients,
model contributions and resolved contributions, and the latter are not controlled by the
model contribution away from RANS and LES regimes.

The latter has significant consequences.

1. In this case, the hybrid RANS-LES model cannot properly handle the transition
between RANS and LES regimes, which requires the model to increase (decrease) its
contribution in response to a relatively low (high) actual flow resolution. Given the
uncertainty of the actual flow resolution, there is implied uncertainty of simulation
results. Hence, often unavailable validation data are required, and reliable predictions
of very high-Re turbulent flows are out of reach.

2. The mismatch between the imposed and actual flow resolution introduces hybridiza-
tion errors (see the discussion of minimal error methods below). To accomplish a
desired simulation performance, finer grids (higher computational cost) are then
needed to minimize hybridization errors [17].

3. The imbalance between the damping of fluctuations (controlled by the modeled vis-
cosity) and the resolved fluctuations can generate problems seen very often in hybrid
RANS-LES, which require the stimulation of fluctuations to trigger the development
of instantaneous turbulence or the damping of fluctuations to prevent the shifting
from RANS to LES within the boundary layer.

4. In particular, the modeled-stress depletion problem, the slow development of resolved
motion after a RANS-to-LES transition, is caused by this imbalance [10,18]. This
requires then empirical techniques to transfer energy from the modeled to the resolved
scales and vice versa.

Hybrid RANS-LES methods that do not suffer from the mismatch of imposed and ac-
tual resolution were recently introduced as continuous eddy simulation (CES)
methods [5,19–25]. Their characteristic feature is that CES methods enable the model
to read and properly respond to the actual flow resolution. The key to accomplish the latter
is a strict mathematical derivation via variational analysis. So far, the suitability of CES
methods was only tested for periodic hill flow at a relatively high Re. This application in-
cludes relevant features such as separation, recirculation, and natural reattachment, but its
complexity is not comparable with complex flow configurations seen in usual applications.
The motivation of this paper is a comprehensive evaluation of benefits of CES methods for
a moderately complex flow, the NASA wall-mounted hump flow that is frequently used for
the evaluation of turbulence models. Specific questions addressed are the following ones.

1. What are characteristic general differences between CES methods and simulation
methods that impose flow resolution independent of the actual resolved motion?

2. Do the conceptual advantages of CES methods imply specific practical advantages,
e.g., in regard to reliability of simulation results and computational cost?

3. Which insight can be obtained from the application of CES methods to extreme Re
regimes that cannot be reliably studied by any other approach?

The paper is organized in the following way. The modeling and computational ap-
proach is described in Section 2, and the hump flow simulation set up is described in
Section 3. Sections 4–6 deal with the evaluation of CES model performance, the comparison
with RANS and other hybrid RANS-LES, and the comparison with LES methods, respec-
tively. Very high-Re regimes are studied in Section 7, and conclusions are presented in
Section 8.



Fluids 2024, 9, 22 3 of 29

2. Modeling and Computational Approach

The CES models considered and their computational implementation are introduced
next.

2.1. CES Models Considered

CES hybridization can be applied to at least most popular turbulence models [19,24].
Typically, a RANS model involving a transport equation for the modeled kinetic energy
k combined with a scale equation for the modeled dissipation rate ϵ = k/τ or turbulence
frequency ω = 1/τ is considered, where τ refers to the modeled turbulence dissipation
time scale. Variational analysis of these equations is applied, which covers the transition
from RANS to LES by including partially resolving regimes. The latter enables it to establish
relationships between model parameters and resolution measures (as, e.g., L+, see below).
Used in a fully resolving mode, it is relevant to note that these equations correspond to
LES without any need to introduce an artificial length scale as given by filter width ∆. An
essential feature of this approach is the possibility to address the hybridization in several
ways based on the k equation or the scale equation.

Here, the approach is applied in regard to a two-equation eddy viscosity model (EVM),
in particular a k − ω model. The model is based on continuity and momentum equations,

∂Ũi
∂xi

= 0,
D̃Ũi

D̃t
= −1

ρ

∂ p̃
∂xi

+
∂(2νS̃ij)

∂xj
−

∂τij

∂xj
. (1)

The sum convention is applied throughout this paper. The tilde notation refers to space-
averaged variables. Specifically, expression D̃/D̃t = ∂/∂t + Ũj∂/∂xj represents the filtered
Lagrangian time derivative. The velocity vector components are denoted as Ũi, while p̃, ρ,
and ν represent pressure, fluid density, and kinematic viscosity, respectively. Rate-of-strain
tensor S̃ij is given by S̃ij = (∂Ũi/∂xj + ∂Ũj/∂xi)/2. In the momentum equation, the right-
hand side (RHS) incorporates the unknown model stress tensor, τij. According to the EVM
concept, τij = 2kδij/3 − 2νtS̃ij is applied here. Here, δij denotes the Kronecker symbol, and
νt represents the modeled viscosity of the flow. The latter is computed by νt = Cµk/ω,
where Cµ is a model parameter with standard value Cµ = 0.09.

Three hybrid CES RANS-LES models are considered here; see Table 1. CES-KO refers
to CES performed with the k − ω model. In particular, -KOS (-KOK, -KOKU) refers to
CES-KO performed by modifying the scale equation (the k equation, the turbulence time
scale in the k equation according to unified RANS-LES) [20]. Differences of these models
are discussed in Section 4. The equations involve the production of modeled kinetic energy
P = νtS2, which involves the characteristic strain rate S = (2S̃mnS̃nm)1/2. The turbulent
transport terms are given by

Dk =
∂

∂xj

[(
ν + νt

) ∂k
∂xj

]
, Dω =

∂

∂xj

[(
ν +

νt

σω

) ∂ω

∂xj

]
,

Dωc =
Cω

k
(ν + νt)

∂k
∂xj

∂ω

∂xj
. (2)

The model constants involved have values Cω1 = 0.49, β = 1.63, and σω = 1.8 [26]. The
integration of the ω equation through the viscous sublayer can cause numerical errors. To
avoid this problem, ω = 2ν/d2 was used at the first cells above the wall, where d refers to
the distance from the wall to the cell center of the first cell. These equations are applied in
conjunction with the elliptic blending approach used in our previous work to account for
wall damping [26] (in an RANS-mode for the entire flow field).
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Table 1. Summary of hybrid CES models considered where R = L2
+ [20].

Model CES Hybrid Equations Mode Control

CES-KOS:
Dk
Dt = P − ϵ + Dk,
Dω
Dt = Cω1 ω2

(
P
ϵ − β∗

)
+ Dω + Dωc

β∗ = 1 + R(β − 1)

CES-KOK:
Dk
Dt = P − ψβϵ + Dk,
Dω
Dt = Cω1 ω2

(
P
ϵ − β

)
+ Dω + Dωc

ψβ = 1 + β − β∗

CES-KOKU:
Dk
Dt = ψ−1

βu (P − ψ2
βuϵ + Dk),

Dω
Dt = Cω1 ω2

(
P
ϵ − β

)
+ Dω + Dωc

ψ2
βu = ψβ

The essential new feature of the equations in Table 1 is the mode control relation, which
relates the model parameters, β∗, ψβ, ψ2

βu, to flow resolution measures. These relations
were obtained by variational analysis; see the beginning of this subsection. To simplify
the analysis, cross-diffusion term Dωc (which acts as a damping function) is neglected.
In addition, the substantial derivatives of k and ω are neglected, too. It is possible to
involve the latter terms [22], but this approach implies the need to consider more complex
equations. Given the objective to demonstrate the basic advantages of the CES approach,
no attempt is made to consider this option. In particular, β∗, ψβ, ψ2

βu are determined as
functions of L+ = L/Ltot, which is the turbulence length scale resolution ratio involving
modeled (L) and total contributions (Ltot) [19]. The modeled contribution is calculated
by L = ⟨k⟩3/2/⟨ϵ⟩. The brackets refer to averaging in time. The total length scale is
calculated correspondingly by Ltot = k3/2

tot /ϵtot. In these relations, we have ktot = ⟨k⟩+ kres,
where kres =

(〈
ŨiŨi

〉
−

〈
Ũi

〉〈
Ũi

〉)
/2. Correspondingly, ϵtot is the sum of modeled and

resolved contributions, ϵtot = ⟨ϵ⟩+ ϵres. Here, the resolved contribution is calculated by
ϵres = ν

(〈
∂Ũi/∂xj∂Ũi/∂xj

〉
−

〈
∂Ũi/∂xj

〉〈
∂Ũi/∂xj

〉)
.

The dependence of model parameters β∗, ψβ, ψ2
βu on L+ has essential implications.

The current computational strategy for turbulent flow simulations is the use of models
being unaware of the actual flow resolution, which has significant consequences as dis-
cussed in the introduction. In contrast to that, the CES approach informs the model via
resolution measures as given by L+ about the actual flow resolution. The latter enables
the model to adjust its contribution to the simulation: the model contribution decreases
(increases) if there is (there is not) a significant amount of resolved motion. This ability
is the essential requirement of a functional RANS-LES swing. It is also worth noting that
the CES approach minimizes the hybridization error [24]: there is no mismatch between
the resolution imposed by the model and the actual resolution seen in simulations, which
minimizes computational cost.

2.2. Computational Approach

The three hybrid CES models considered (the CES-KOS, CES-KOK, and CES-KOKU
models) were implemented in the OpenFOAM open-source platform, a widely used com-
putational fluid dynamics tool [27]. Numerical simulations were conducted using a finite-
volume-based method, and a time-marching scheme was utilized to solve the unsteady
turbulent flow equations on various numerical grids. The iterative solution process in-
volved the application of both implicit and explicit time-step schemes. It should be noted
that simulations employing an explicit Euler scheme suffer from instability issues. There-
fore, to ensure stability and accuracy, the implicit backward-Euler time integration scheme,
known for its second-order accuracy in time, was employed as one of the standard Newton
sub-iteration methods in this study.

The spatial discretization of the diffusive and gradient terms in the governing equa-
tions was performed using a central difference scheme with Gaussian integration. For
the convective part of the momentum equation, a second-order GammaV scheme was
initially applied for a few time steps. Then, we switched to the bounded second-order van
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Leer scheme after achieving improved stability. The turbulent transport terms were also
discretized using the second-order van Leer scheme, ensuring continuity and numerical
stability. The consideration of the van Leer scheme in the CES framework is motivated by its
ability to effectively capture discontinuities and shock waves in turbulent flow, particularly
in wall-bounded separated flows. This is attributed to its ability to transport and handle
steep gradients without generating spurious oscillations and unphysical negative mixing
ratios [28,29].

The remaining flow terms were discretized using the second-order limitedLinearV scheme.
The pressure–velocity coupling was handled by the PISO algorithm, which dynamically
adjusts the pressure gradient along the flow direction to maintain a constant mass flow
rate [30]. The iterative solution process employed a preconditioned bi-conjugate gradient
technique with diagonally incomplete LU preconditioning for all flow variables except
pressure at each time step [31]. To solve the Poisson equation for pressure, an algebraic
multi-grid solver was utilized.

3. Hump Flow Simulation Set-Up

We applied the CES and other models to moderately complex separated flow simu-
lations: flow over a wall-mounted hump geometry, commonly referred to as the NASA
hump model, which serves as a representative model for the upper surface of an airfoil.
The experimental setup and design of the 2D streamwise-periodic hump flow are shown in
Figure 1. The experimental studies of this flow, boundary conditions and the set-up of flow
simulations are described next. Throughout the article, the standard values for hump chord
length and free-flow velocity are c = 420 mm and Ure f = 34.6 m/s, respectively. Using
these quantities, all variables shown below were made dimensionless.

Figure 1. Wall-mounted hump geometry. Left: Experimental setup [32]; right: 2D Computational
layout.

3.1. Flow Configuration

Seifert and Pack [32] developed a wall-mounted hump model to investigate unsteady
flow separation, reattachment and flow control at a high Reynolds number
Re = cρre f Ure f /µ ≈ 936 K based on chord length c and freestream velocity Ure f . Here, µ
is dynamic viscosity and abbreviation re f indicates the reference freestream conditions,
which are determined at axial point x/c = −2.14. The model reflects the upper surface
of a 20-thick Glauert–Goldschmied airfoil that was originally designed for flow control
purposes in the early twentieth century. As a benchmark for comparison, we used the
experiment conducted by Greenblatt et al. [33] without flow control. This benchmark case
has been extensively documented on the NASA Langley Research Center’s Turbulence
Modeling Resource webpage and has been widely used for evaluating different turbulence
modeling techniques, as discussed in the 2004 CFD Validation Workshop. We see in Figure 1
a strongly convex region just before the trailing edge, which induces flow separation. The
flow over the hump model exhibits significant separation at the trailing edge of the hump,
accompanied by a free shear layer extending from the crest of the hump. At x/c = 0.65, the
flow over the hump model experiences a breakage, followed by reattachment at x/c = 1.1
due to a pronounced adverse pressure gradient. The hump has a length of c = 420 mm
and a peak height of 53.7 mm, with a predominantly two-dimensional flow and accounting
for end-plate side walls. The estimated freestream Mach number is approximately 0.1. At
the high Re = 936 K considered, accurately predicting the boundary layer’s reattachment
and subsequent recovery to an equilibrium state poses significant challenges.
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The discretization of the domain employed in the numerical simulation spans Lx ×
Ly × Lz = 6.14c × 0.909c × 0.2c in the streamwise (x), wall-normal (y), and spanwise (z)
directions, respectively, with the origin of the coordinate system situated at the leading
edge of the hump, thereby establishing an entrance point at x/c = −2.14 and an exit point
at x/c = 4.0. By locating the inlet patch upstream of the hump, the turbulent boundary
layer is fully developed before reaching the hump region. For computational purposes, the
top-wall boundary is set at y/c = 0.9009. The span-wise boundary is normally constrained
in the range of 0 to 0.4c [34,35]. In particular, You et al. [35] used Lz = 0.2c. Thus, the
present study uses a corresponding span-wise size of 0.2c.

3.2. Boundary Conditions

Incoming boundary condition: To generate the necessary inflow, a RANS simulation
of a channel flow with zero pressure gradient was performed using internal plane mapping
techniques [36,37]. This precursor simulation produced inlet conditions matching experi-
ments for velocity and turbulent kinetic energy [36]. Figure 2 (left) shows the precursor
domain visually integrated with the main simulation. The precursor velocity contour was
generated using a computational grid with 162 nodes in the flow direction, 62 along the
walls, and additional 24 across the span. The recycling method by Simens et al. [38] was
leveraged to effectively manage the mean velocity data. The mean flow velocity data was
extracted from the recycling plane at x/c = −6 downstream of the hump leading edge,
as recommended by Simens et al. [38]. However, the mapping plane was deliberately
positioned at x/c = −2.14 to ensure that the velocity and turbulence characteristics attain
a steady state by the time the flow reaches the mapping plane.

0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

Figure 2. Pre-computational strategy. (Left): an illustration of plane mapping; (right): the mean
streamwise velocity profile at x/c = −2.14 obtained from an independent quasi-streamwise-periodic
precursor simulation.

Hence, the predicted velocity and turbulence characteristics (turbulence kinetic energy)
were systematically recorded in samples at the mapping plane during each iteration over
250c/Ure f time units. This compiled a comprehensive flow library. Samples were then
extracted, extrapolated, and fed in as inflow conditions at the main simulation’s inlet
plane. Figure 2 (right) shows the time-averaged streamwise velocity profile at the inlet
plane (mapping plane). This profile closely resembles the velocity profile reported by
You et al. [35] at the same axial position.

Additional boundary conditions: The test case involves a 2D flow configuration con-
fined within a channel bounded by two solid walls. The top wall of the channel is treated
with no-stress and no-slip boundary conditions, ensuring that there is no shear stress and
velocity parallel to the wall. On the other hand, the bottom wall is subjected to viscous
adiabatic boundary conditions, accounting for the effect of viscosity without heat transfer.
To align with experimental conditions, several simulations reported in previous workshops
employed upper-wall symmetry or slip-wall boundaries, which better mimic the experi-
mental setup. Regarding the exit boundary condition, the outflow patch is characterized by
symmetric z-axis boundary conditions, ensuring a balanced flow through the boundary.
Conversely, the inflow patch is treated with distinct convective boundary conditions, where
the convective speed is determined based on the mean streamwise velocity at the outlet
patch. This approach allows for maintaining the appropriate convective properties at the
inflow boundary and ensures consistency with the downstream flow behavior.
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3.3. Simulation Set-Up

A series of simulations were conducted on the hump model using four different grid
resolutions: coarse, medium, fine and very fine. These grids, denoted as G1, G2, G3, and G4
respectively, are presented in Table 2 and Figure 3. Here, ∆y+ refers to the non-dimensional
wall distance of the first grid point.

Table 2. The grids applied.

Run Grid Grid Points Resolution
Inflow
(Generation)
Plane

Min. Wall
Spacing ∆y+

G1 Coarse 480 K 323 ×62 × 24 plane mapping,
x/c = −2.14 0.0001 1.25

G2 Medium 960 K 417 × 72 × 32 plane mapping,
x/c = −2.14 0.00001 0.75

G3 Fine 1.7 million 482 × 90 × 40 plane mapping,
x/c = −2.14 0.000005 0.25

G4 Very fine 3.9 million 723 × 135 × 40 plane mapping,
x/c = −2.14 0.000001 0.2

Figure 3. Computational grids. From left to right: coarse grid—G1, medium grid—G2, fine grid—G3,
and finer grid—G4.

In the preliminary G1 simulation, we employed a grid comprising 323 × 62 × 24 nodes
in streamwise, wall-normal, and spanwise directions, respectively. The mesh configuration
was designed to concentrate nodes near the wall and around the hump model in order
to accurately capture the intricacies of the boundary layer. The mesh was refined in the
streamwise and spanwise directions to accommodate the overall flow dynamics. In order to
prevent disturbances from propagating upstream, the grid was additionally and selectively
refined near the outlet in the streamwise direction, creating a buffer zone. The streamwise
G1 mesh spacing corresponded to eight points per boundary layer thickness, denoted here
as δre f . In terms of wall units (derived from the wall shear and evaluated at the inlet),
the G1 mesh resolution perpendicular to the wall was determined as ∆y+ = 1.25. Using
this initial mesh configuration, three additional levels of mesh refinement were obtained.
The medium-mesh G2 simulation involved 417 × 72 × 32 nodes in the streamwise, wall-
normal, and spanwise directions, while the fine-mesh G3 simulation utilized 482 × 90 × 40
nodes in the same directions. This yielded a resolution of 12 and 16 points per δre f for
G2 and G3 respectively. The grid points in the wall-normal direction corresponded to
∆y+ = 0.75 for G2 and ∆y+ = 0.25 for G3. The hump region’s unique features required
a more targeted grid concentration due to the presence of shear layers, separation, and
reattachment. Hence, the G4 grid has a higher mesh density concentrated on the hump
surface in the near-wall area. This was achieved by refining the streamwise resolution of
the G3 grid by a factor of 1.5 in the inner region closer to the wall. Thus, the resulting G4
grid had 723 × 135 × 40 points, with a wall-normal spacing of ∆y+ = 0.2 and 20 points per
δre f . The spanwise direction features the same mesh distribution as the G3 grid. The G4
simulation results were only used to further support the main comparisons.

The iterative computations generated a cumulative maximum Courant–Friedrichs–
Lewy (CFL) number of 0.4, which corresponds to 8.2 × 10−3c/are f ≈ 0.1 × 10−4 time-step
for the Mach = 0.1 case, where are f is the typical speed of sound. The flow characteristics
were studied at three Reynolds numbers: Re = (936 K, 5 M, 10 M). Experimental data for
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comparisons were only available for Re = 936 K. Before averaging span-wise turbulent
quantities, all simulations were run for 500 flow-through times (FTT).

The flow resolution was determined via 0 ≤ L+ = L/Ltot ≤ 1, which characterizes
the model contribution to the total characteristic length scale Ltot of turbulent motions. In
particular, L+ = 0 corresponds to LES conditions where model contribution L is negligible
compared to resolved contribution Ltot, whereas L+ = 1 corresponds to RANS conditions
where all the flow is modeled. CES simulations started with an initial value of L+ = 1,
equivalent to RANS modeling. Subsequently, the values of L+ undergo dynamic updates
by considering averaged values of modeled and resolved kinetic energies and dissipation
rates, K, kres, ϵ, and ϵres. The required variables were obtained by employing a temporal
smoothing technique, beginning at the initial time and extending up to a maximum of
2000 FTT. In line with this, the resolution variables presented below represent averaged
values obtained from a span of 575,000 time-steps, representing a total duration of 500 con-
vective time units (1 CTU or FTT = c/U∞). After reaching the 1500 CTU mark, the mean
quantities were further averaged over a period of 500 CTU to eliminate any transient effects,
while also considering average values in the spanwise direction. Figure 4 illustrates the
result of characteristic mean values of L+ and k+ = k/ktot. The variations correspond
to expectation: a coarser grid and a higher Re increase the relative amount of resolved
motion. In correlation with corresponding periodic hill flow simulations [20], the grid and
Re variations cover almost resolving LES-type simulations via Re = 936 K (G3 case) and
basically modeled RANS-type simulations via Re = 10 M (G1 case).

Figure 4. Simulations were run on (G1, G2, G3) grids at Re = (936 K, 5 M, 10 M). Left and right plots
illustrate the characteristic mean values of L+ and k+. Pink, Yellow, and Cyan represent G1, G2, G3,
respectively.

4. CES Model Performance

Characteristic CES features are described next. In particular, we consider the reflection
of resolution variations and simulation performance. The influence of the CES version
considered (see Table 1) was studied in preparation to these analyses. It was found that
the use of CES-KOKU is less appropriate for the flow considered, probably because the
CES-KOKU hybridization concept is not as simple and stable as CES-KOS and CES-KOK
concepts. CES-KOS was found to provide the most accurate results; see the reference to
corresponding CES-KOK characteristics in Table 3. Thus, the CES-KOS model (or simply
the KOS model) is considered from now on.

Table 3. CES-KOS and CES-KOK results: Separation and reattachment points depending on the grids
applied.

Methods
Separation Reattachment Bubble Length Error in Bubble
Location (x/c) Location (x/c) ∆x/c Length Prediction (%)

Exp. [33] 0.665 ± 0.005 1.10 ± 0.005 0.435 –
CES-KOS–G1 0.6642 1.135 0.4708 8.2
CES-KOS–G2 0.6669 1.1144 0.4475 2.9
CES-KOS–G3 0.6737 1.1100 0.4363 0.3
CES-KOS–G4 0.6680 1.1000 0.432 0.7
CES-KOK–G3 0.6752 1.1333 0.4581 5.3
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4.1. Resolution Variations

Figure 5 and Table 4 show velocity fluctuations (u, v, and w) for different Re and
resolution conditions, in particular the Re = 5 M(G3, G1) and Re = 936 K(G3, G1) cases.
The Re = 936 K (G3) case shows a variety of small-scale vortices which indicate a high level
of resolution, i.e., this case is at least relatively close to being well resolved. On the other
hand, the Re = 5 M (G1) case shows an instationary RANS-type regime: fluctuations are still
present, but small-scale turbulence structures are not resolved anymore. The intermediate
cases (Re = 936 K (G1) and Re = 5 M (G3)) represent transition regimes in between well-
resolved simulations and instationary RANS simulations. Additional observations are the
following ones. First, for the highly resolved case, the proximity to the wall has little impact
on fluctuation patterns, the spatial extent and frequency of fluctuations is about the same.
Second, grid coarsening and higher Re cause continuous changes in fluctuations without
sudden shifts. The most noticeable change is the spatial clustering of fluctuations, while
the overall strength of fluctuations remains largely unaffected. Under instationary RANS
conditions, fluctuations are still present (they do not vanish). In particular, they can be as
strong as under almost resolving conditions.

Figure 5. Instantaneous snapshots of velocity fluctuations u, v, w in xz planes organized in four
blocks containing nine plots each. The upper left and right blocks show the Re = 5 M (G3, G1) cases,
The lower left and right blocks show the Re = 936 K (G3, G1) cases. In each block, u, v, w (top to
bottom) are shown at y = (0.01, 0.05, 0.1)c (left to right). The color scale is defined in Table 4. Positive
(negative) fluctuations are shown by red (blue) regions.

Table 4. Range of velocity fluctuations for the cases described in Figure 5.

Fluc. y/c = 0.01 y/c = 0.05 y/c = 0.1

u −0.01 ≤ u ≤ 0.01 −0.02 ≤ u ≤ 0.02 0.04 ≤ u ≤ 0.04
v −0.01 ≤ v ≤ 0.01 −0.02 ≤ v ≤ 0.02 0.04 ≤ v ≤ 0.04
w −0.01 ≤ w ≤ 0.01 −0.02 ≤ w ≤ 0.02 0.04 ≤ w ≤ 0.04

Figure 6 shows local flow resolution variations L+ = L/Ltot, k+ = k/ktot, ϵ+ = ϵ/ϵtot
caused by grid variations; corresponding variations due to Re changes are presented below.
L+ profiles confirm expectations. We have LG3

+ ≤ LG2
+ ≤ LG1

+ , indicating that coarser grids
result in higher L+ values due to a lower resolution. L+ values become larger with smaller
distance from the walls because of effective grid coarsening. Notably, the variation of L+ in
space is smooth, indicating the same resolution of physically equivalent regions without
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oscillations of L+. It may be seen that ϵ+ is close to unity except very close to the wall. The
use of approximation ϵ+ = 1 away from the walls results in L+ = k3/2

+ . Correspondingly,
we see related variations of L+ and k+. Overall, the resolution features seen here are found
to be very similar to corresponding features observed for periodic hill flows [20,26].
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Figure 6. Grid effects on flow resolution indicators L+, k+, and ϵ+, respectively, obtained by CES-KOS
at x/c = 1.1, where Re = 936 K.

4.2. Flow Simulations

Figure 7 presents the influence of the mesh resolution on CES-KOS predictions of velocity
profiles. It is observed that grid refinement can significantly affect the local variations of mean
velocity profiles. At the initial station point (x/c = 0.65), which is located just upstream of the
separation region, the CES-KOS simulation using the G1 grid fails to accurately estimate the
velocity profile. This discrepancy arises from an underestimation of the adverse pressure gra-
dient due to the cumulative blockage effect in the flow region. As a result, the boundary layer
within the G1 grid domain exhibits a considerable momentum, leading to early separation and,
consequently, a larger recirculation zone. However, as the mesh density increases as given for
G2, G3, and G4 grids, the prediction of velocity profile improves significantly. Particularly, for
the well-resolving G3 and G4 cases, the predicted velocity profile at the axial point x/c = 0.65
closely matches the experimental result. The CES-KOS model used on G4 effectively captures
the momentum of the attached flow immediately after separation, indicating the importance of
sufficiently fine spatial mesh resolutions along the thin shear layer for the accurate estimation
of the velocity profile and identification of the reattachment point. Figure 8 shows the overall
flow pattern depending on G1 and G3 grids in terms of streamline plots. This figure confirms
the larger recirculation zone obtained by using the G1 grid. Table 3 summarizes the separation
and recirculation zone characteristics under different grid variations. Clearly, a significant
reduction in the length of the separation bubble is observed as the grid becomes more refined.
The separation bubble is quantified by

δbubble =
1

0.435

[
(x/c)rea − (x/c)sep − 0.435

]
. (3)

Here, (x/c)rea and (x/c)sep refer to reattachment and separation points, respectively, and
0.435 is the experimental bubble length.
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Figure 7. Experimental data vs CES-KOS results on several grids for the streamwise velocity ⟨U⟩/Ure f
at various axial positions.
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Figure 8. CES-KOS simulation results of time-averaged velocity streamlines at Re = 936 K on G3

(left) and G1 (right).

The performance of the CES-KOS model is further evaluated by comparisons with
measured Reynolds stresses, pressure and skin friction coefficients. Figure 9 shows such
comparisons with the baseline experiment at axial points x/c = (0.65, 0.8) for the four grids
considered. The modeled stress contributions are relatively small. For the fine G3 and G4
grids, the results show accurate CES-KOS predictions at x/c = 0.65. At x/c = 0.8, the CES-
KOS implied stresses tend to overestimate the measured stresses, especially near the lower
wall. Similar features were observed for corresponding periodic hill flow simulations [20].
In regard to the latter simulations, such discrepancies can be attributed to the fact that the
experiments underestimated Reynolds stress components.
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Figure 9. Grid variation effects on CES-KOS results: The first and second columns shows the normal
streamwise Reynolds stress ⟨uu⟩/U2

re f and turbulent shear stress ⟨uv⟩/U2
re f at axial positions x/c =

(0.65, 0.8), respectively. In the third column, the pressure coefficient and skin friction distributions
are compared with experimental baseline data.

The last column in Figure 9 shows the influence of mesh refinements on Cp and C f
distributions compared to experimental data [33]. Here, the coefficients of pressure and
skin friction [36] are calculated by

Cp =
p − pre f

(1/2)ρre f U2
re f

, C f =
τwall

(1/2)ρre f U2
re f

, (4)

where τwall is the viscous wall shear stress calculated from the wall surface (boundary). Cp
profiles demonstrate varying characteristics across different flow regions. Initially, in the
range 0 ≤ x/c < 0.65, the turbulent flow progresses towards the base of the hump model
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on the upstream side, resulting in a high-pressure zone. As the flow passes over the hump
and moves downstream, the curvature of the streamlines leads to a linear decrease in Cp.
The lowest surface pressure is observed at the origin of the hump (at x/c = 0), followed
by flow separation indicated by the inflection in Cp profiles near x/c = 0.665 ± 0.005.
Reattachment occurs between x/c = 1.095 and 1.105, where the surface pressure gradually
recovers to approximately the freestream value. Figure 9 shows that the estimated Cp peak
deviates from the experimental value by approximately 5% for the G1 grid and 3% for the
G2 grid. This discrepancy is likely influenced by the applied grid type and the presence of
end plates, which act as a barrier. However, refining the computational grid enhances the
agreement between the experiment and simulation, with G3 and G4 grids closely resembling
the suction peak profile within the separated zone. The CES-KOS simulation using G3
and G4 grids accurately captures the separation region and final pressure recovery, albeit
slightly overestimating the pressure coefficient immediately after separation. Although
the predicted reattachment point in the recirculation zone is slightly smaller than the
experimental value, it does not significantly impact the size of the separation bubble.
Similar findings have been reported in previous studies. The applied CES-KOS model
provides better estimates of the pressure coefficient than the unsteady RANS model used
by Capizzano et al. [39]. C f plots exhibit overall agreement across all simulations, with G3
and G4 grids achieving a higher level of accuracy. Thus, quality mesh density as given by
G3 and G4 grids greatly improves both primary and secondary suction peak predictions,
particularly within the recirculation zone where delayed flow reattachment leads to a slight
downstream shift.

5. CES vs. Resolution Imposing Methods

The conceptual advantage of CES methods is the model’s ability to properly respond
to variations of flow resolution. However, what is the relevance of this advantage to the per-
formance of simulations? After preparing the discussion of this question by corresponding
comparisons with RANS results in the next subsection, the latter question is addressed via
comparisons of CES with PANS and PITM predictions. Instead of the CES setting R = L2

+

(see Table 1), PANS applies a prescribed constant value of R. Alternatively, within PITM,
an R setting is applied that is supposed to reflect R = k+. More specifically, R = C∆∆2/3

+
is applied, where ∆+ = ∆/Ltot and C∆ = 1.06 [5,20]. Both PANS and PITM impose flow
resolution, i.e., these methods are well appropriate to see the difference to the CES concept.
In contrast to CES and PANS, the PITM concept involves filter width ∆. For the latter,
volume filter width ∆ = (∆x∆y∆z)1/3 is applied. These comparisons are complemented
in the third subsection by comparisons with one of the most popular hybrid RANS-LES
methods: DES. The latter concept is based on the idea to impose LES resolution away from
the wall to enable, e.g., much better simulations of separated turbulent flows.

5.1. CES vs. RANS

Two-dimensional steady RANS simulations (simply referred to as RANS in this subsec-
tion) are performed with the CES-KOS model by setting L+ = 1. Comparisons of streamlines
obtained by CES-KOS using the G3 grid and RANS are shown in Figure 10 for Re = 936 K.
It may be seen that the RANS simulation significantly overpredicts the separation bubble.
This is consistent with the known performance of standard RANS models, which have been
reported to overestimate the separation bubble length by approximately 35% [40], regardless
of the mesh distribution and quality. The overestimation is caused by a low turbulence level
in the separated shear layer [39–41]. In particular, Figure 10a,b correspond to a 0.3% and a
16.1% increase in the cross-sectional area of the separated bubble, respectively.

In the top row of Figure 11, we compare velocity profiles predicted by the CES-KOS
model and the corresponding RANS model. It may be seen that the RANS simulation
underestimates the flow velocity at the onset of separation and it predicts a delayed reat-
tachment. The difference of accuracy is about 8% at x/c = 0.65 and is less than 5% at
x/c = 1.2. Beyond x/c = 1.2, the prediction remains consistent and comparable. We note
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that the CES-KOS model provides velocity profiles that deviate from the corresponding ex-
perimental data by no more than 3% at every position. Figure 11 also compares streamwise
stresses and Reynolds shear stresses. The RANS model significantly overestimates these
stresses, particularly near the hump’s wall. On the contrary, the CES-KOS model offers a
more precise alignment with measured normal and Reynolds shear stresses.

Figure 10. Comparison of velocity streamlines for (a) CES-KOS and (b) RANS at Re = 936 K using
the G3 grid.
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Figure 11. CES-KOS and RANS results: mean velocity profiles, Reynolds stresses, pressure and skin
friction coefficients on G3 at Re = 936 K.

The accuracy of CES-KOS and RANS models in regard to predictions of pressure
(Cp) and skin friction (C f ) coefficients is shown in the last column of Figure 11. In the
reattachment zone, the RANS model fails to accurately capture the sudden decrease in
the secondary peak of turbulent kinetic energy and the corresponding pressure coefficient
profile. The skin friction plot illustrates that the RANS model predicts a significantly larger
recirculation zone and late recovery due to low turbulent mixing in the freestream. In con-
trast, the CES-KOS model provides C f predictions that closely align with the measured data,
exhibiting a notable increase in turbulent energy towards the end of the recirculation zone.
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Table 5 compares the separation and reattachment points obtained by CES-KOS and
RANS models to the measured values, where other RANS results are included. Corre-
sponding characteristics are also presented in Table 5. The CES-KOS model predicts a
separation bubble length that closely matches the measured length, with separation identi-
fied at x/c = 0.6737, slightly downstream of the experimental points (x/c = 0.665 ± 0.005).
Furthermore, the CES-KOS model accurately predicts reattachment in agreement with the
measurements, while the RANS model estimates a somewhat higher surface pressure up-
stream of separation. The estimated variation in separation bubble length is approximately
0.3% for the CES-KOS model and 16.1% for the RANS model.

Table 5. Separation and reattachment locations obtained by the listed models. Notation–G3 refers to
simulations made by combining the simulation model with the corresponding settings of these methods.

Methods
Separation Reattachment Bubble Length Error in Bubble
Location (x/c) Location (x/c) ∆x/c Length Prediction (%)

Exp. [33] 0.665 ± 0.005 1.10 ± 0.005 0.435 –
CES-KOS–G3 0.6737 1.1100 0.4363 0.3
RANS–G3 0.645 1.150 0.505 16.1
RANS (Lardeau and
Billard [42]) – 1.188–1.305 – –

URANS
(Capizzano et al. [39]) – 1.25 – –

PANS-G3 0.5833 1.2833 0.70 60.9
PITM-G3 0.6301 1.2166 0.5865 34.8
DES (Probst et al. [43]) 0.656 1.143 0.487 11.95
SST-DES
(Ren et al. [44]) 0.654 1.12 0.466 7.13

5.2. CES vs. PANS and PITM

Let us switch now to corresponding PANS and PITM simulation results, which were
obtained by using corresponding PANS and PITM settings in the model applied. In regard
to periodic hill flow simulations, it was found that PANS and PITM concepts to prescribe a
desired flow resolution are hardly effective: such prescribed flow resolution does not really
control the actual flow resolution measured by L+ or k+ [20]. On top of that, an unphysical
behavior of flow resolution parameters was found close to boundaries. Corresponding features
were found in regard to the NASA hump flow simulations presented here. An example is
given for the PANS concept in Figure 12. The actual flow resolution measured by k+ is found
to be well above or below the prescribed flow resolution R, and the near-wall behavior of k+
shows major differences from the prescribed R. The RHS plot of Figure 12 shows that k+ is
clearly affected by the grid in contrast to the idea of constant flow resolution.
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Figure 12. PANS concept validation for Re = 936 K at x/c = 1.2. The plot on the left shows k+
obtained by PANS in response to different prescribed constant R values, the corresponding L+ plots
are shown in the middle. On the RHS, k+ obtained by PANS in response to a constant R = 0.1 is
shown on different grids.
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Figure 13 presents the mean velocity streamlines obtained from CES-KOS, PANS,
and PITM simulations on the G3 grid. The CES-KOS model predicts a separation bubble
approximately 0.3% larger than the experiments. On the other hand, PITM and PANS
predict separation bubbles 34.8% and 60.9% larger than the experiments, respectively; see
Table 5.

Figure 13. Time-averaged velocity streamlines obtained by CES-KOS, PITM, and PANS simulations
at Re = 936 K on the G3 grid.

In Figure 14, normalized velocity profiles are compared with the experimental results
at two positions. PANS and PITM models properly predict streamwise velocity above
the boundary shear layer region. However, they fail to accurately predict the velocities
near the lower wall of the hump within the boundary layer region. In contrast, CES-
KOS profiles provide reliable predictions of the normalized velocity profile both in the
separation zone and after reattachment. Unlike PANS and PITM, the CES-KOS model
accurately captures the rapid fluctuations of the shear layer and the mixing of the wake at
the center of separation and downstream of reattachment, as well as the swift transition to
a turbulent boundary layer. It shows significant improvements over PANS and PITM.
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Figure 14. CES-KOS, PANS, and PITM simulation results on G3 at Re = 936 K: Profiles of the mean
velocity at the given positions, pressure and skin friction coefficients.

Figure 14 also shows the variations of the pressure and skin friction coefficients for the
three different hybrid models. All employed models accurately estimate the mean pressure
upstream of the hump. However, notable differences lie in the strength and location of
the leeward low-pressure gradient, which directly influences the location of the separation
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region. PANS and PITM models predict significantly lower streamwise pressure gradients
on the downstream side of the hump, leading to a delayed pressure recovery and a larger
separation bubble. Conversely, the CES-KOS model predicts a moderate recovery of Cp and
a smaller separation bubble. Among all the models considered, the PANS model predicts
the earliest separation on the hump surface and the largest recirculation zone. C f plots
show remarkable performance deficiencies of both PANS and PITM models. In summary,
the CES-KOS model provides the most accurate prediction of the reattachment zone, with
reattachment occurring just beyond the base of the hump at x/c = 1.1100.

A look at Figure 15, which shows separation and reattachment point predictions for
the methods listed in Table 5, shows something interesting: PANS and PITM methods
produce results that are not as good as RANS simulations, which is in contradiction to the
idea of the design of hybrid RANS-LES methods.
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Figure 15. Separation and reattachment point predictions for the methods listed in Table 5.

5.3. CES vs. DES

We continue the comparison of CES results by comparing them with the results of DES
(one of the most popular hybrid RANS-LES methods) obtained by Probst et al. [43]. DES
hybrid RANS-LES are known to sensitively depend on simulation settings; performance
shortcomings need to be often compensated by flow-dependent empirical adjustments. In
the following, comparisons are presented with zonal improved delayed DES (IDDES) and a
non-zonal approach based on a shear layer-adapted (SLA) definition of the subgrid length
scale (the filter size ∆). The zonal IDDES method is based on the shear stress transport
(SST) model. It applies a synthetic turbulence generator at a (flow-dependent) RANS-LES
interface positioned at x/c = 0.5; therefore, this approach is referred to as zonal. Instead
of using extra effort for a precursor simulation to provide proper inflow conditions, the
idea of this approach is to introduce synthetic turbulence close to the separation point.
In non-zonal DES approaches, the delay of transition to developed 3D turbulence occurs
because instability is “blocked” by an excessive level of eddy viscosity in the initial region
of the shear layers, which results from the convection of eddy viscosity from the attached
upstream boundary layer treated by RANS [43]. In the SLA-DES version, this problem is
addressed by empirical modifications of the subgrid length scale.

Figure 16 shows mean velocity, Reynolds shear stress, and skin friction coefficient
C f and pressure coefficient Cp in comparison with IDDES and DDES + ∆SLA (the latter
is referred to simply as DDES below) profiles from Probst et al. [43]. The mean velocity
predictions are similar and in agreement with the experimental data. Figure 16 also con-
trasts the total shear stress profiles obtained by zonal and non-zonal DES approaches with
corresponding CES-KOS profiles. It may be seen that DDES results at x/c = 0.65 and
IDDES results at x/c = 0.8 reveal obvious shortcomings in comparisons with experimental
data. The final two plots in the second row of Figure 16 show the profiles of skin friction
and pressure coefficients compared to the experimental results. Evidently, all the hybrid
models exhibit a similar pattern, an accurate capturing of the underlying data trends.
Nevertheless, upon closer examination, slight variations become apparent between the
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profiles of the applied models. While the zonal IDDES approach induces a brief yet notice-
able decrease in skin friction immediately downstream of the separation point, the DDES
model produces a more sustained and continuous evolution of the skin friction coefficient
beyond that region, ultimately matching the downstream experimental data with greater
accuracy. The CES-KOS model demonstrates an enhanced accuracy in determining the
separation and reattachment points in the separation region, as evidenced in Table 5. In the
post-reattachment region, the DES models performed poorly, resulting in an overestimation
of both the bubble length and the skin friction coefficient profile. Corresponding separation
and reattachment characteristics are shown in Figure 15 in comparison with characteristics
of other methods.
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Figure 16. CES-KOS on G4 and DES [43] simulation results at Re = 936 K: Profiles of mean velocity
and shear stress at given positions, pressure and skin friction coefficients. Here, DDES + ∆SLA means
DDES with Shear Layer Adapted (SLA) subgrid length-scale.

6. CES vs. LES Methods

We continue with the comparison of CES-KOS with LES methods, in particular LES
on coarse grids (which are known to suffer from issues like significant overestimation
of turbulent kinetic energy), WMLES, and WRLES. These comparisons are presented for
the Re = 936 K case by using, basically, G3 and G4 grids. The LES model applied is the
constant coefficient Smagorinsky model. Implicit LES (iLES) of Avdis et al. [45] (involving
9.4 M grid points) is partially involved. The deficiencies of both the constant coefficient
Smagorinsky LES model and iLES are known, but they are widely used in applications.
They are involved here to demonstrate their shortcomings for the flow considered.

6.1. CES vs. LES

Figures 17 and 18 provide an immediate impression of differences between CES-KOS
and LES. In particular, Figure 17 shows snapshots of velocity contours on the very coarse
G1 grid. It may be seen that the CES-KOS model generates much more fine-scale structures
compared to the LES model, which acts merely in an almost RANS regime. Figure 18 shows
corresponding velocity streamlines of the two models considered on the G3 grid. The LES
model produces a much smaller recirculation zone and an elongated separation bubble,
which arises from the larger dissipation rate and subsequent fluid motion towards the
wall. These effects lead to an early reattachment downstream, contributing to the observed
difference in behavior between the two models.
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Figure 17. Snapshots of resolved velocity fluctuations in a xy-plane on the G1 grid at Re = 936 K:
(a) CES-KOS and (b) LES (constant coefficient Smagorinsky) model.

Figure 18. Velocity streamlines on the G3 grid at Re = 936 K: (A) CES-KOS and (B) LES (constant
coefficient Smagorinsky model).

The first row of Figure 19 shows velocity profiles at axial positions x/c = (0.65, 0.8, 1.2)
in the pre-separation, mid-separation, and post-separation regions. Both CES-KOS and
LES yield similar velocity profiles in the attached region just before flow separation at
x/c = 0.65. The second row of Figure 19 shows profiles of Reynolds streamwise normal
stress and turbulent shear stress at x/c = 0.8. The LES model significantly underestimates
the resolved turbulent shear stress due to the insufficient flow resolution. In addition, the
LES model overestimates the intensity of Reynolds streamwise normal stress. This increase
in normal stress corresponds to a significant decrease in the length of the separation bubble,
and it contributes to enhanced momentum transport and early reattachment.
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Figure 19. CES-KOS, LES, and iLES [45] simulation results on the G3 grid at Re = 936 K: Mean
velocity profiles, Reynolds stresses, pressure and skin friction coefficients.

The last two plots of Figure 19 compare the profiles of the pressure and skin friction
coefficients obtained on G3 by also involving iLES of Avdis et al. [45]. All the models
under consideration predict well the Cp values on the upstream side (x/c < 0) and the
downstream side (x/c > 0.90) of reattachment. The CES model accurately captures the
minimum surface pressure at x/c = 0, while the LES models consistently underestimate
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the peak negative pressure. LES and iLES indicate early separation occurring upstream at
x/c = 0.6710 and x/c = 0.658, respectively. This results in a reduced separation bubble
length, as indicated by the plateau in the Cp plot. The underprediction of peak pressure
and early separation is likely due to modeled stress depletion in this region, where the
average cell size of the applied mesh is small. The CES-KOS model effectively deals with
these challenges, providing reliable predictions of peak negative pressure and reattachment
location, albeit with a slight delay in separation. Figure 19 also presents a corresponding
comparison of skin friction coefficient profiles. The level of accuracy of these methods
varies. The CES-KOS model accurately captures the observed peak in the skin friction
profile, particularly in the region of 0.1 < x/c < 0.2. This plateau likely results from
relaminarization due to a favorable pressure gradient in that region. In contrast, LES
overshoots the peak and exhibits early reattachment, which is attributed to an excessive
eddy viscosity in the boundary shear layer and early transition induced by modeled stress
depletion. Nevertheless, every model properly predicts the size of the separation bubble.

6.2. CES vs. WMLES, WRLES

Figure 20 presents a comparison of CES-KOS with results obtained by WMLES [16]
and WRLES [46]. In particular, streamwise velocity profiles, streamwise Reynolds normal
stress and shear stress profiles are shown. In regard to mean velocity, we see that the
CES-KOS model and WRLES perform very well. Prediction deficiencies are observed
with respect to WMLES predictions, particularly within the boundary layer region at all
positions. The WMLES near-wall velocity gradient deviates from experimental values. This
discrepancy may stem from the neglect of streamwise gradients (du/dx) in the equilibrium
wall model applied, which (due to continuity constraints in nearly incompressible flows)
could contribute to inaccuracies in the overall velocity profile. With respect to the stresses
shown in Figure 20, we observe distinct differences between the predictions of methods
considered. CES-KOS and WRLES provide realistic predictions. On the other hand (like
RANS), WMLES significantly overpredicts Reynolds streamwise normal stress (by a factor
of at least 3) and underpredicts Reynolds shear stress at x/c = 0.65.
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Figure 20. CES-KOS, WMLES [16], and WRLES [34,46] simulation results on the G4 grid at Re = 936 K:
Mean velocity profiles and Reynolds stresses.

Figure 21 illustrates that all methods exhibit a reasonable agreement with the exper-
imental pressure coefficient profiles. Predictions from WRLES match the experimental
measurement profile downstream and the model is capable of mimicking the dominant
features of the flow. However, within the reattachment region, the second wall pressure
peak is underpredicted by WRLES compared to CES-KOS and WMLES. Figure 21 also
displays the mean skin friction coefficient obtained by CES-KOS, WMLES, and WRLES
simulations, demonstrating their agreement with experimental values. In the separation
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zone, from 0 ≤ x/c ≤ 0.65, WRLES underpredicts the skin friction coefficient, while
WMLES overestimates the actual peak. In regard to post-reattachment, however, the C f
profiles of WRLES and CES-KOS match relatively well, despite using different frameworks,
mesh sizes, and grid resolutions.
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Figure 21. CES-KOS, WMLES [16], and WRLES [34,46] simulation results on the G4 grid at Re = 936 K:
Pressure and skin friction coefficients.

Overall, WRLES and CES-KOS models provide the most accurate estimates of the
separation bubble length, with reattachment occurring around x/c = 1.095 and x/c =
1.1100, respectively, slightly downstream of the hump (see Table 6).

Table 6. Separation and reattachment locations obtained by the listed models.

Methods
Separation Reattachment Bubble Length Error in Bubble
Location (x/c) Location (x/c) ∆x/c Length Prediction (%)

Exp. [33] 0.665 ± 0.005 1.10 ± 0.005 0.435 –
CES-KOS–G3 0.6737 1.1100 0.4363 0.3
LES-G3 0.6710 1.1018 0.4308 1.7
iLES (Avdis et al. [45]) 0.658 1.079 0.421 3.2
WRLES (Uzun and
Malik [34,46]) 0.659 1.095 0.436 0.23

WMLES (Iyer and
Malik [16]) 0.637–0.655 1.035–1.105 0.398– 0.45 3.4–8.5

6.3. Cost Scalings

Computational cost differences of methods considered are addressed next by including
DES in addition to CES-KOS, WMLES, and WRLES. By following Mokhtarpoor et al. [26],
we consider two main cost factors, the number, N, of grid points applied and Nt, the
number of time steps performed. Hence, simulation cost C can be calculated by

C = NNt = TN/∆t. (5)

Here, we apply T = Nt∆t, where T is the constant total physical simulation time and
∆t is the simulation time step. Both N and ∆t are known to vary with Re according to
N = α1Reβ1 , ∆t = α2Re−β2 , where α1, α2, β1, and β2 are constants [26].

For the flow considered, the dependence of N and ∆t can only be assessed for the
CES-KOS model. For the given data, N = (0.96, 1.7, 3.9) M and ∆t = (1, 0.5, 0.25)10−5 for
Re = (0.936, 5, 10) M, respectively, the least-squares errors of N and ∆t of the CES-KOS
model are minimized by the cost scalings given in Table 7. The latter scalings agree well with
the scalings for the unified hybrid RANS-LES model presented by Mokhtarpoor et al. [26].
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Table 7. Scaling factors and total cost estimates (N/∆t) for WRLES [47], WMLES [47], DES [15,43,48],
and CES-KOS.

Methods N ∆t C/T = N/∆t

KOS N = 492 Re0.545 ∆t = 0.0213 Re−0.554 N/∆t = 23,097 Re1.099

WRLES N = 0.00164 Re1.86 ∆t = 0.0393 Re−0.857 N/∆t = 0.0417Re2.72

WMLES N = 4.7 Re1.0 ∆t = 1.886 × 10−6 Re−0.143 N/∆t = 2.492 × 106 Re1.143

DES N = 2895 Re0.545 ∆t = 0.04 Re−0.554 N/∆t = 72,375 Re1.099

To enable a comparison with corresponding computational cost of WRLES and WM-
LES, we follow Yang et al. [47]. The Reynolds number scaling reported in Table 7 follows
from Yang et al. [47]: their ReLx corresponds to Re considered here, and the ∆t scaling
arises from the inverse scaling of Nt considered by Yang et al. [47]. The combination with
corresponding N and ∆t used for the Re = 0.936 M case ((N = 210M, ∆t = 0.03 × 10−5)
for WRLES and (N = 4.4M, ∆t = 0.0264 × 10−5) for WMLES) enables the calculation of
factors of Re scalings; see Table 7.

To the authors’ knowledge, there are no analyses of the scaling of computational cost
of DES with Re available so far. However, from a computational viewpoint, DES is very
similar to unified RANS-LES methods characterized by N ∼ Re0.55 [26], which is equivalent
to the CES-KOS N scaling observed here. In regard to DES ∆t scaling, there is no reason
for the DES scaling to differ from the corresponding CES-KOS scaling. Thus, we apply the
CES-KOS Re scaling for DES, too. For the Re = 936 K case considered, we know the DES
cost: the latter is characterized by N = 5.2 M and ∆t = 2 × 10−5. The DES cost data are
used to determine the Re scaling factors in Table 7.

An illustration of these cost scalings is given in Figure 22. Relevant observations
are the following ones. Costs of C/T = 1015 are currently feasible, as demonstrated by
WRLES. A usual Re range of many complex turbulent flows is 106 ≤ Re ≤ 109. Hence,
several decades are probably required before WRLES can be made applicable to many
relevant turbulent flows. On the contrary, WMLES, DES, and CRES-KOS are applicable
to 106 ≤ Re ≤ 109. However, WMLES costs are more than two orders of magnitude
higher than the corresponding CES-KOS costs, and CES-KOS costs are only 32% of the
corresponding DES costs. The latter can be attributed to the fact that CES-KOS was derived
by minimizing the hybridization error.
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Figure 22. Cost scalings for the listed methods according to Table 7.

7. Very High-Re Simulations

Usually applied computational methods like RANS, LES, WMLES, and DES face
significant problems with respect to predictions of high-Re flows for which validation data
are unavailable. The application of LES is restricted by resolution requirements that need to
be satisfied; RANS methods are known to be unreliable, and hybrid RANS-LES like WMLES
and DES suffer from the uncertainty of their predictions caused by unknown simulation
settings needed to ensure agreement with validation data. In contrast, the CES-KOS model
applied here incorporates a physics-based mechanism to respond to changes in resolved
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motion as given by an increasing Re. It is, therefore, of interest to study implications
of increasing Re on the flow structure. This is achieved next by extending the previous
simulations at Re = 936 K by simulations at Re = 5 M and Re = 10 M. The grids applied
and time step settings for these simulations are described above.

7.1. Re Effects on Flow Resolution

Figure 23 shows the profiles of resolution indicators L+, k+, and ϵ+ at x/c = 1.2 for
the Re = 5 M and Re = 10 M cases. Relevant observations are the following ones. First, a
coarser grid and a higher Re increase the amount of modeled motion reflected by higher
L+ and k+ values, i.e., the mode interaction mechanism does work correctly. In particular
for the Re = 10 M case, we have simulations that are truly in between RANS and LES
regimes, i.e., far from well-resolved regimes. Second, very similar to the Re = 936 K case,
ϵ+ is close to unity except the cases when it is very close to the walls. It is of interest to see
slight deviations from unity for the Re = 10 M case. Third, very similar to the experience
obtained from periodic hill flow simulations [20], we see smooth variations of L+, k+, and
ϵ+ in the space without oscillations, i.e., physically equivalent regions are equivalently
resolved. These features are fully consistent with corresponding features at Re = 936 K
seen in Figure 6.
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Figure 23. Grid effects on flow resolution indicators L+, k+, and ϵ+ obtained by CES-KOS at x/c = 1.2
for Re = (5, 10) M.

7.2. Re Effects on Flow Structures

Before considering the Re effect on flow structures, it is of interest to clarify the influ-
ence of the grid for high-Re cases. The latter question is addressed in terms of Table 8, which
shows differences between CES-KOS G3 and G4 grid results with respect to separation and
reattachment characteristics. Increasing Re leads to a marginal increase in the separation
region, consistent with the flattening effect of Re on the size of the separation bubble, as
previously reported by Uzun and Malik [34] and corroborated by Rumsey et al. [40] and
Seifert and Pack [32]. We see that G4 grid simulations imply slightly more consistent results
in regard to predictions of separation an reattachment points, but these differences are
indeed very small. The latter supports the suitability of using the G3 grid for these Re cases.
The difference in separation bubble lengths between Re = 5 M and Re = 10 M cases is only
2.5%, indicating an almost asymptotic Re regime.
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Table 8. CES results: Summary of CES-KOS separation and reattachment points for high-Re cases.

Cases Re
Separation Reattachment Bubble Length Error in Bubble
Location (x/c) (x/c) ∆x/c Length Prediction (%)

Exp. [33] Re = 936 K 0.665 ± 0.005 1.10 ± 0.005 0.4350 –

Re = 936 K 0.6737 1.1100 0.4363 0.3
G3 Re = 5 M 0.6713 1.2167 0.5454 –

Re = 10 M 0.6641 1.2165 0.5524 –

Re = 936 K 0.6680 1.100 0.4320 0.7
G4 Re = 5 M 0.6725 1.2025 0.5300 –

Re = 10 M 0.6812 1.2245 0.5433 –

The influence of increasing Re = (936 K, 5 M, 10 M) on the flow structure was studied
based on G3 grid simulations. Figure 24 illustrates that higher Re values have a negligible
influence on the velocity profile of the flow (it is worth noting that the experimental data
shown here as a reference do only apply to the Re = 936 K case). Hence, the mean velocity
profiles also indicate an asymptotic flow behavior.
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Figure 24. Very high-Re results: Normalized velocity profile ⟨U⟩/Ure f on G3 at Re = (936 K, 5 M,
10 M) compared to experimental measurements at x/c = (0.65, 0.8, 1.0).

Correspondingly, Figure 25 illustrates the effect of Re on pressure and skin friction
coefficients. While the overall wall pressure distribution remains largely unaffected, increas-
ing Re minimally reduces the primary maximum peak due to energized flow dynamics and
increased turbulence. This is consistent with findings by Vatsa et al. [40]. The secondary
pressure peak also flattens for higher Re, indicating low recovery and delayed reattachment.
C f profiles show more noticeable differences across Re. The profiles show maxima at
x/c ≈ 0.1 − 0.65 that increase in magnitude over the hump surface as Re increases. This is
due to an increased intensity of turbulent fluctuations and larger-scale structures in the flow,
leading to a stronger pressure gradient and higher skin friction coefficients. C f profiles vary
little in the separation region across all Re cases. Although the separation regions are nearly
identical, the lowest-Re case experiences early reattachment at x/c ≈ 1.1100, while the
reattachment points occur at approximately x/c ≈ 1.2167 and x/c ≈ 1.2165 for Re = 5 M
and 10 M, respectively. Overall, while increasing Re shows negligible pressure coefficient
effects, the skin friction coefficient and bubble length show Reynolds number sensitivity.
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Figure 25. Very high-Re results: Pressure and skin friction coefficient distributions on G3 at Re =

(936 K, 5 M, 10 M) compared with experimental data.

7.3. Asymptotic Re Regime

The question about the asymptotic flow regime is certainly of interest. It matters
to our understanding to see whether there are asymptotically stable regimes of wall-
bounded turbulent flows involving flow separation. More specifically, this question relates
to our understanding of which geometric conditions enable an asymptotically stable flow
configuration [49], what is the corresponding concrete flow structure, and which Re are
needed to accomplish an asymptotic flow structure. Also, to provide comprehensive
support for the validity and predictive power of simulation methods, evidence is needed
for simulation predictions for an extended range of Re, including almost asymptotic Re
regimes. This leads to the question of what are almost asymptotic Re regimes. As shown
here, the computational cost of simulation methods depends significantly on Re. There is
the question about the applicability of WRLES and experiments to provide validation data
at required high Re.

The prediction of reattachment points and their convergence is well appropriate to
address the question about the existence of an asymptotic Re regime. Existing experience
for the flow considered is summarized in Table 9 and visualized in Figure 26. Without
paying attention to CES-KOS results that are also shown, it may be seen that existing
observations do not provide a conclusive answer to the question about the asymptotic
regime. The large scatter of data does hardly allow conclusions about the asymptotic trend;
in particular, no conclusion can be drawn about how the reattachment points vary with
Re. It is of interest to note that the codes applied clearly have an influence on reattachment
point predictions; see the RANS-type results in the last rows of Table 9 [40].
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Figure 26. Reattachment points vs. Re for different methods. The corresponding data are given in
Table 9. The blue line shows logistic function 1.229/(1 + e−0.3857(10−6Re+4.842)).
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Table 9. Summary of reattachment points in Figure 26 for various methods. The upper and lower
parts correspond to Mach numbers of 0.1 and 0.25, respectively.

Methods Reference Re Reattachment Point (Xr)

Exp. Greenblatt et al. [33] 936 K 1.10 ± 0.005
RANS Lardeau & Billard [42] 936 K 1.3050
LES Avdis et al. [45] 936 K 1.0790
LES (WRLES) Uzun and Malik [46] 936 K 1.0950
Hybrid (WMLES) Iyer and Malik [16] 936 K 1.035–1.1050

Hybrid (DES) Probst et al. [43],
Radoslav & Roger [50] 936 K 1.1520, 1.1050

Hybrid (SST-DES) Ren et al. [44] 936 K 1.1200
Hybrid (STM) Woodruff [51] 936 K 1.0800–1.1900
Hybrid (KOS) (936 K, 5 M, 10 M) (1.1100, 1.2025, 1.2255)

Exp. Vatsa et al. [40] 4.2 M 1.21 ± 0.05
URANS (FUN2D) Vatsa et al. [40] (4.2 M, 16 M) (1.3330, 1.3100)
RANS (TLNS3D) Vatsa et al. [40] (4.2 M, 16 M) (1.2700, 1.2550)
RANS (CFL3D) Vatsa et al. [40] (4.2 M, 16 M) (1.3040, 1.2830)

On the other hand, CES-KOS enables a clear conclusion about how reattachment
points vary with Re. We obtain xr = 1.229/(1 + e−0.3857(10−6Re+4.842)), which is also shown
in Figure 26. The CES-KOS predictions are well supported by corresponding RANS-type
predictions. Something that matters in this regard is the fact that the CES-KOS result,
xr = 1.229/(1 + e−0.3857(10−6Re+4.842)), is supported over a very large range of Re values.
This avoids problems of corresponding curve fits supported by narrow Re ranges [52],
which are inapplicable to larger Re [20].

We note that CES-KOS results are also in meaningful agreement with correspond-
ing periodic hill flow studies indicating the existence of an asymptotic Re regime for
Re ≥ 2.6 M [20]. A discussion of similarities of conclusions about asymptotic Re regimes
predicted for canonical wall-bounded turbulent flows (channel flow, pipe flow, and zero-
pressure gradient turbulent boundary layers) can be found elsewhere [53,54].

8. Conclusions

The paper reported the first application of CES methods to a moderately complex,
relatively high-Re turbulent flow: the NASA wall-mounted hump flow. Also, for the first
time, we presented comprehensive comparisons of CES methods with RANS, LES, and
several hybrid RANS-LES as PANS, PITM, DES, and WMLES. The following conclusions
can be drawn in regard to questions Q1–Q3 posed in the introduction.

In regard to Q1, one of the most serious limitations of existing computational methods
for turbulent flows of practical relevance is their dependence on data needed for validation.
Practically, this excludes reliable predictions. Usual practice of hybrid RANS-LES is a choice
of simulation settings that enables a good agreement with validation data, as reported here,
for example, in regard to versions of DES and WMLES. WRLES does not suffer from the
latter problem, but it also needs validation data to confirm the suitability of grids.

1. From a general viewpoint, the advantage of CES methods demonstrated here was
an excellent simulation performance independent from adjustments of simulation
settings. The latter advantage is based on the model’s ability to adjust the model to
changing flow conditions (the amount of resolved motion). A grid dependence of
simulation results was found if extremely coarse grids are applied.

2. The implementation of a sensibilization of the model to the degree of flow resolu-
tion is not the only requirement to enable a performance as demonstrated here in
regard to CES methods. An equally important condition is the mathematically correct
implementation of an appropriate model sensitivity. The latter was demonstrated
here via comparisons with PANS and PITM methods, demonstrating a simulation
performance that is outperformed by CES methods.
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3. Contrary to CES, other popular simulation methods impose a certain desired flow
resolution: this applies to RANS, LES, and other hybrid RANS-LES. This inherent
model inflexibility generates a sensitive dependence on simulation parameter set-
tings, for which optimal solutions cannot be found for every flow. In addition, this
concept does not ensure that the desired imposed resolution is actually realized. This
can imply higher computational cost (finer grids) to compensate for performance
deficiencies [17].

In regard to Q2, by considering both simulation performance and computational cost,
what are the implications of the results reported here in regard to simulations of turbulent
flows of practical relevance? The focus of the following is at least partially on resolving
simulation methods.

1. Table 7 speaks a clear language in regard to the use of WRLES: for decades to come,
WRLES will be inapplicable to many relevant turbulent flows. The use of WRLES also
faces questions from a simulation performance view point. Figure 21, for example,
shows that the use of WRLES is no guarantee for excellent simulation results. The
latter can be attributed to a significant conceptual issue of WRLES: the inclusion of
the filter width as length scale, which can be unphysical.

2. The most popular hybrid RANS-LESes are DES and WMLES. Both depend on a
variety of simulation settings, as specified here, which need to be adjusted to (often
unavailable) validation data. The computational costs of DES and WMLES are well
above the CES cost; see the discussion related to Table 7. Performance-wise, CES-KOS
was shown to perform better than DES versions and WMLES. These differences may
be attributed to the CES feature to be a minimal error simulation method.

3. PANS and PITM were introduced as alternatives to DES and WMLES. Figure 15 in
conjunction with other related figures shows something interesting: the use of hybrid
RANS-LES is no guarantee to obtain simulation results better than corresponding
RANS prediction; the opposite may be the case. The underlying conceptual issue is the
idea to impose a desired flow resolution. The latter does not only not determine the
actual flow resolution, but the mismatch implied can deteriorate simulation results.

In regard to Q3, the question about the asymptotic flow structure is certainly relevant.
This relates to an understanding of which geometric conditions enable an asymptotically
stable flow configuration, what is the corresponding concrete flow structure, and which
Re are needed to accomplish an asymptotic flow structure. CES methods certainly offer
advantages with respect to addressing such questions based on their ability to adjust the
model to the changing flow resolution. The following observations were obtained here:

1. The structural effects of increased Re on the mean velocity field are relatively small;
there are only very minor variations. This speaks for the consideration of an Re
range that is relatively close to an asymptotic regime. Correspondingly, the pressure
coefficient distribution is little affected by increasing Re.

2. On the other hand, the skin friction coefficient distribution and bubble length were
identified as sensitive measures of Reynolds number dependence. Both are clearly
affected by higher Re in response to an increased intensity of turbulent fluctuations
and larger-scale structures in the flow.

3. Reattachment point predictions were used to specifically ask about the potential
existence of an asymptotic Re regime for the flow considered. CES-KOS predictions
confirm that there is an asymptotic Re regime. The Re = 10 M case is at least very
close to this asymptotic regime. This conclusion is well supported by corresponding
RANS predictions. This observation is in meaningful agreement with corresponding
periodic hill flow studies indicating the existence of an asymptotic Re regime for
Re ≥ 2.6 M [20].
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