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Abstract: Tree-like structures, characterized by hierarchical relationships and power-law distribu-
tions, are prevalent in a multitude of real-world networks, ranging from social networks to citation
networks and protein–protein interaction networks. Recently, there has been significant interest in
utilizing hyperbolic space to model these structures, owing to its capability to represent them with
diminished distortions compared to flat Euclidean space. However, real-world networks often display
a blend of flat, tree-like, and circular substructures, resulting in heterophily. To address this diversity
of substructures, this study aims to investigate the reconstruction of graph neural networks on the
symmetric manifold, which offers a comprehensive geometric space for more effective modeling of
tree-like heterophily. To achieve this objective, we propose a graph convolutional neural network
operating on the symmetric positive-definite matrix manifold, leveraging Riemannian metrics to fa-
cilitate the scheme of information propagation. Extensive experiments conducted on semi-supervised
node classification tasks validate the superiority of the proposed approach, demonstrating that it
outperforms comparative models based on Euclidean and hyperbolic geometries.

Keywords: graph neural networks; tree-like structure; symmetric matrix manifold; information
propagation

1. Introduction

The prevalence of hierarchical tree-like structures, characterized by power-law dis-
tributions, is a ubiquitous phenomenon observed across various real-world applications,
encompassing domains from social networks [1,2] to data mining [3] and recommendation
systems [4]. This pervasive structural pattern has garnered significant attention within
the realm of computer science and network analysis due to its profound implications for
comprehending network dynamics, functionality, and evolution [5–7].

In recent years, there has been a burgeoning interest among researchers in employing
hyperbolic space modeling to elucidate tree structures. In contrast to the conventional Eu-
clidean spaces characterized by zero curvature, hyperbolic spaces, endowed with negative
curvature, offer a more nuanced measure of inter-nodal distances within a tree. More-
over, the intrinsic property of hyperbolic space to manifest exponential expansion aligns
seamlessly with the exponential proliferation inherent in tree growth dynamics.

The complexities inherent in real-world networks often entail a broad spectrum of
structural motifs, encompassing flat, tree-like, and circular substructures, thereby giving
rise to heterophily within the network. Heterophily contrasts with homophily, where nodes
sharing similar attributes tend to cluster together. As depicted in Figure 1, within the
overarching tree-like structure, the diverse properties of local substructures yield a variety
of graphs. The left graph shows cluster-forming sub-trees, reflecting homophily, while the
right graph exhibits hierarchical sub-trees, indicative of heterophily. Hyperbolic spaces
offer a nuanced depiction of hierarchical structures and exponential growth dynamics,
whereas Euclidean spaces are valued for their simplicity and intuitive geometric properties.
Regardless of whether one opts to model such networks within the framework of hyperbolic
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or Euclidean spaces, both approaches inevitably encounter challenges related to local
distortion, resulting in the inaccurate modeling of distances between nodes.

Figure 1. Illustration of homophily (left) and heterophily (right) derived from tree-like graphs. Colors
denote node categories.

To mitigate the limitations above, this study seeks to explore a more expressive
space that could tolerate structural heterophily. The aim is to encode the information
inherent in the graph topology into a continuous embedding space with less distortion,
thus enhancing the performance of the downstream node classification task. From a
geometric perspective, the quality of the embedding in geometric learning depends on the
compatibility between the intrinsic graph structure and the embedding space. In light of
this principle, we employ the Riemannian manifold of symmetric positive-definite matrices
to embed node representations. As shown in Figure 2, symmetric spaces have a rich
structure of totally geodesic subspaces, including flat (Euclidean) subspaces and tree-like
(hyperbolic) subspaces, facilitating the representations of various substructures within a
continuous space.

Figure 2. Illustration of graphs embedded in a continuous symmetric space with both flat and
tree-like substructures.

In Riemannian geometry, a Riemannian metric is a fundamental concept used to
define distances, angles, and other geometric properties on smooth manifolds. Various
Riemannian metrics have been proposed to guarantee the geometric properties of a sym-
metric positive-definite manifold (SPD), including the affine-invariant metric (AIM) [8],
log-Euclidean metric (LEM) [9,10], and log-Cholesky metric (LCM) [11]. Equipped with
these metrics, many Euclidean methods can be generalized into the domain of the Rieman-
nian manifold.

In this study, we introduce a novel approach termed Riemannian graph convolu-
tional neural network (RGCN) aimed at effectively capturing tree-like heterophily within
graphs. RGCN operates on the Riemannian symmetric positive-definite matrix manifold
and utilizes pullback techniques to generalize Riemannian metrics, such as LEM and LCM,
to reconstruct key components of graph convolutional neural networks. In particular,
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the pullback technique first maps the embedding from the SPD manifold onto the tangent
space, proceeds with the operations of information propagation, and ultimately pulls the
resulting embeddings back to the SPD manifold. These information propagation com-
ponents encompass feature transformation, neighborhood aggregation, and non-linear
activation, as detailed in prior work [12]. Specifically, the integration of feature trans-
formation and non-linear activation enriches the expressive capacity of the SPD neural
network. Concurrently, the iterative process of neighborhood aggregation updates the node
embeddings by transporting neighboring features across the graph topology. Our exper-
imental results on semi-supervised node classification tasks substantiate the superiority
of our proposed methodology, consistently surpassing comparative models grounded in
Euclidean and hyperbolic geometries. The principal contributions of this research can be
outlined as follows:

• Introduction of a graph convolutional neural network framework operating on the Rie-
mannian symmetric positive-definite matrix manifold, facilitating graph embedding
with reduced distortion and enhanced expressiveness.

• Development of a comprehensive scheme of information propagation on the symmet-
ric positive-definite matrix manifold through the utilization of pullback techniques for
the generalization of various Riemannian metrics.

• Extensive experimental evaluations showing the significant performance enhance-
ments achieved by our proposed RGCN model compared to existing Euclidean and
hyperbolic baselines in the context of semi-supervised node classification tasks.

The rest of this paper is organized as follows. In Section 2, we briefly survey the related
works about GNNs and Riemannian manifolds of symmetric positive-definite matrices.
Section 3 introduces some preliminaries. Section 4 presents the details of our proposed
model. In Section 5, experimental results on eight benchmark datasets are shown and
analyzed to highlight the benefits of our approach. Finally, we conclude the paper in
Section 6.

2. Related Work
2.1. Graph Neural Networks

Contemporary graph neural network (GNN) models commonly embrace the message-
passing paradigm [13] to encode node representations, demonstrating significant achieve-
ments across tasks such as node classification [12], link prediction [14], and graph clas-
sification [15]. Advancements in this domain are typically categorized into two primary
branches: spectral approaches [16,17] and spatial approaches [12,18]. Spectral approaches
leverage graph spectral theory to define graph convolutional operations. Taking inspiration
from [19], which suggests approximating spectral filters via truncated Chebyshev polyno-
mial expansions of the graph Laplacian, ChebNet [17] introduces K-localized convolutions,
laying the groundwork for convolutional neural networks on graphs. Expanding upon this,
graph convolutional network (GCN) [12] restricts the K-localized convolution to K = 1,
employing multiple layers to implement rich convolutional filter functions. To address
both local and global consistency, deep graph convolutional neural network (DGCNN) [20]
extends GCN by integrating a convolutional operation with a positive pointwise mutual
information matrix. Conversely, spatial approaches directly aggregate neighborhood in-
formation around the central node. For example, GraphSAGE [12] introduces a versatile
inductive framework that samples fixed-size local neighborhoods and aggregates their
features using mean, long short-term memory (LSTM) or pooling mechanisms. Graph at-
tention network (GAN) [21] enhances this aggregation process with attention mechanisms,
assigning varying weights to aggregated neighborhoods through self-attention mecha-
nisms. Despite the robust theoretical foundation of spectral-based GCNs, spatial-based
GCNs demonstrate superior efficiency, generality, and adaptability. For deeper insights
into graph neural networks, numerous comprehensive surveys are available [22,23].

Researchers have observed that numerous graphs, including social networks and bio-
logical networks, often manifest a pronounced hierarchical structure [24]. Krioukov et al. [25]
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emphasized that the strong clustering and power-law degree distribution properties in such
graphs can be ascribed to a latent hierarchy. Recent investigations have underscored the re-
markable representational efficacy of hyperbolic spaces in modeling underlying hierarchies
across diverse domains, such as taxonomies [26,27], knowledge graphs [28,29], images [30],
semantic classes [31], and actions [32], yielding promising outcomes. Liu et al. [33] and
Chami et al. [34] have proposed hyperbolic graph convolutional networks (HGCNs), ex-
tending GCNs to hyperbolic spaces for capturing hierarchical structures in graphs. Recently,
a series of GNNs have emerged in these spaces, executing graph convolution on various
Riemannian manifolds to accommodate diverse graph structures, such as hyperbolic space
on tree-like graphs [25], spherical space on spherical graphs [35], and their Cartesian
products [36,37].

2.2. Riemannian Manifold of Symmetric Positive-Definite Matrices

The utilization of symmetric positive-definite (SPD) matrices for data representation
has been a topic of extensive investigation, primarily leveraging covariance matrices to
capture the statistical dependencies among Euclidean features [38,39]. Recent research
endeavors have shifted towards the development of foundational components of neural
networks within the covariance matrix space. This includes techniques for feature trans-
formation, such as mapping Euclidean features to covariance matrices using geodesic
Gaussian kernels [40], non-linear operations applied to the eigenvalues of covariance ma-
trices [41], convolutional operations employing SPD filters [42], and the Frechét mean [43].
Furthermore, proposals for Riemannian recurrent networks [44] and Riemannian batch
normalization [45] have been put forth. In comparison to these prior approaches, our
proposal introduces an adaptive framework utilizing the pullback paradigm to construct
the information propagation component with both LEM and LCM.

3. Preliminaries and Problem Definition

In this section, we initially introduce the preliminaries and notation essential for
constructing an SPD embedding space. Subsequently, we define the problem of semi-
supervised node classification on the SPD manifold.

3.1. Riemannian Manifold

A smooth manifold M extends the concept of a surface to higher dimensions. At each
point x ∈ M, there is an associated tangent space TxM, representing the first-order
approximation of M around x, which is locally Euclidean. The Riemannian metric gx(·, ·) :
TxM×TxM → R defined on the tangent space TxM induces an inner product, enabling
the derivation of geometric concepts. The pair (M, g) constitutes a Riemannian manifold.
The transition between the tangent space and the manifold is facilitated by the exponential
and logarithmic maps, denoted as expx(v) : TxM → M and logx(y) : M → TxM,
respectively. Here, expx(v) projects the vector v ∈ TxM onto the manifold M at point
x, while logx(y) projects the vector y ∈ M back to the tangent space TxM. For further
elucidation, please consult the mathematical references [46].

3.2. Geometry of SPD Manifold

SPD matrices constitute a subset of the Euclidean space Rn(n+1)/2, and various well-
established Riemannian metrics exist on the SPD manifold. Here, we briefly provide an
overview of two such metrics, namely, LEM [9] and LCM [11]. The matrix logarithms
log : Sn

++ → Sn and loglcm : Sn
++ → Ln are defined as follows:

loglem(S) = Uln(Λ)U⊤, (1)

loglcm(S) = ϕ(L (S)), (2)

where S = UΛU⊤ denotes the eigenvalue decomposition, L = L (S) represents the
Cholesky decomposition, ϕ(L) = ⌊L⌋ + ln(D(L)) signifies a coordinate transformation
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from the Ln
+ manifold onto the Euclidean space Ln, ⌊L⌋ denotes the strictly lower triangular

part of L, and D(L) represents the diagonal elements. It is noteworthy that, topologically,
Ln ≃ Sn ≃ Rn(n+1)/2, as their metric topology stems from the Euclidean metric tensor.
Leveraging the matrix logarithm, Arsigny et al. [9] propose LEM via Lie group translation,
while Lin et al. [11] introduce LCM based on the Cholesky logarithm, establishing an
isometry between Sn

++ and Ln
+. In this investigation, we posit that LEM and LCM are

fundamentally analogous, reflecting a high-level mathematical abstraction.
The Riemannian metric and corresponding geodesic distance under the LEM are

expressed as follows:

glem
S (V1, V2) = gE(loglem

∗,S (V1), loglem
∗,S (V2)), (3)

dlem(S1, S2) = ∥loglem(S1), loglem(S2)∥F, (4)

where S ∈ Sn
++, V1, V2 ∈ TSSn

++ are tangent vectors, loglem
∗,S (·) denotes the differential map

of the matrix logarithm at S, gE represents the standard Euclidean metric tensor, and ∥ · ∥F
stands for the Frobenius norm.

Similarly, the Riemannian metric and geodesic distance under LCM are defined as

glcm
S (V1, V2) = g̃L(L(L−1V1L−⊤) 1

2
, L(L−1V2L−⊤) 1

2
), (5)

dlcm(S1, S2) = {∥⌊L1⌋ − ⌊L2⌋∥2
F + ∥ln(D(L1))− ln(D(L2))∥2

F}
1
2 , (6)

where S ∈ Sn
++, V1, V2 ∈ TSSn

++, X 1
2
= ⌊X⌋+D(X)/2, and g̃L(·, ·) denotes the Riemannian

metric on Ln
+, defined as

g̃L(X1, X2) = gE(⌊X1⌋, ⌊X2⌋) + gE(D(L)−1D(X1),D(L)−1D(X2)). (7)

3.3. Problem Definition

In this study, we delve into semi-supervised graph representation learning within the
SPD space. For clarity and without loss of generality, we define a graph G = (V , E , X),
where V = {v1, · · · , vn} represents the node set and E = {(vi, vj)|vi, vj ∈ V} denotes the
edge set. The edges are encapsulated in the adjacency matrix A, where Aij = 1 if (vi, vj) ∈ E
and 0 otherwise. Each node vi is characterized by a feature vector xi ∈ Rd, and matrix
X ∈ R|V|×d represents the collective features of all nodes. We now formalize the problem
at hand.

Definition 1 (Semi-supervised graph representation learning in the SPD space). Given
a graph G = (V , E , X), the objective of semi-supervised graph representation learning in the
SPD space is to ascertain an encoding function Φ : V → Z that maps each node v to a vector
z within an SPD space. This encoding should encapsulate the intrinsic complexity of the graph
structure, leveraging information from a subset of labeled nodes to enable accurate label predictions
for unlabeled nodes.

4. SPD Graph Convolutional Networks

Our approach, RGCN, introduces an innovative graph neural network framework
constructed on the SPD manifold. Drawing upon the foundation established by HGCN,
we conduct graph convolution operations within the substituted Euclidean space and
subsequently pull the embeddings back to the SPD manifold. Following the paradigm
of GCN and HGNN architectures, RGCN comprises three essential components: feature
transformation, neighborhood aggregation, and non-linear activation.

4.1. Mapping from Euclidean to SPD Spaces

RGCN initially projects input features onto the SPD manifold using the exp map.
Let xE ∈ R represent input Euclidean features, which may be generated by pre-trained
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Euclidean neural networks. The objective is to devise a transformation that maps these
Euclidean features to a point within the SPD space. To achieve this, we learn a linear map
that converts the input Euclidean features into a vector of dimension n(n + 1)/2, which
is reshaped to form the lower triangle of an initially zero matrix A ∈ Rn×n. Subsequently,
we apply the exponential map to transition the coordinates from the substituted Euclidean
space to the original manifold Sn

++. For instance, in the case of LEM, we define a sym-
metric matrix U ∈ Sn such that U = A + A⊤, followed by the exp map as the inverse of
Equation (1):

Z0 = explem(U); (8)

whereas for LCM, we directly employ the exp map as the inverse map of Equation (2):

Z0 = explcm(A) = S (Φ(A)), (9)

where S (·) represents the inverse of the Cholesky decomposition, Φ(L) = ⌊L⌋+ exp(D(L))
signifies a coordinate transformation from the Euclidean space Ln onto the Ln

+ manifold.
This one-time mapping process enables input features to operate within the SPD mani-
fold seamlessly.

4.2. Feature Transformation

The feature transformation employed in the standard GCN is utilized to map the
embedding space of one layer to the embedding space of the next layer, aiming to capture
large neighborhood structures. In our approach, we aim to learn transformations of points
on the SPD manifold. However, SPD space lacks the notion of a vector space structure.
To address this, we extend the framework provided by HGCN and derive transformations
within this space. The core concept is to leverage the matrix exponential (exp) and logarithm
(log) maps, enabling us to perform Euclidean transformations using substituted Euclidean
subspaces Sn or Ln. Assuming W is an n′ × n weight matrix, we define the SPD linear
transformation as follows:

W ⊗ Z := exp(W log(Z)W⊤), (10)

where both the exp and log maps can be formulated using techniques such as the log-
Euclidean metric (LEM) or log-Cholesky metric (LCM).

4.3. Neighborhood Aggregation

Neighborhood aggregation stands as a pivotal operation within GCNs, enabling the
capture of intricate neighborhood structures and features. Let us consider that xi aggre-
gates information from its neighbors (xj)j ∈ N (i) with associated weights (wj)j ∈ N (i).
While mean aggregation in Euclidean GCNs computes the weighted average ∑j∈N (i) wjxj,
an analogous operation in hyperbolic space, known as the Fréchet mean, lacks a closed-form
solution. To address this, we propose aggregation within substituted Euclidean subspaces
Sn or Ln employing an attention mechanism.

In GCNs, attention learns the significance of neighbors and aggregates their informa-
tion based on their relevance to the central node. Yet, attention on Euclidean embeddings
often overlooks the tree-like structure prevalent in many real-world graphs. Thus, we
further propose an SPD attention-based aggregation operation. Given SPD embeddings
(Zi, Zj), we initially map Zi and Zj to substituted Euclidean subspaces Sn or Ln to compute
attention weights wij using concatenation and a Euclidean multi-layer perceptron (MLP).
Subsequently, we propose SPD aggregation to update node embeddings as follows:

wij = SOFTMAXj∈N (i)(MLP(log(Zi)∥log(Zj))), (11)

AGG(Zi) = exp( ∑
j∈N (i)

wijlog(Zj)). (12)
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Similar to Euclidean aggregation, RGCN employs a non-linear activation function,
σS (·), to learn non-linear transformations. Specifically, RGCN applies the Euclidean non-
linear activation in substituted Euclidean subspaces Sn or Ln, and then, maps back to the
SPD manifold Sn

++:
σS (Z) = exp(σE(log(Z))). (13)

It is worth noting that the exponential and logarithm maps are instantiated by both the
log-Euclidean metric (LEM) and log-Cholesky metric (LCM).

4.4. RGCN Architecture

Having introduced all the building blocks of RGCN, we now summarize the model
architecture, as illustrated in Figure 3. Given a graph G = (V , E) and input Euclidean
features (xE)i∈V , the first layer of RGCN maps from Euclidean to SPD space. RGCN
then stacks multiple SPD graph convolution layers. At each layer HGCN transforms and
aggregates neighbor’s embeddings in the substituted Euclidean subspaces. Hence, the
information propagation in an RGCN layer is:

Hℓ
i = W ⊗ Zℓ−1

i (feature transformation)

Yℓ
i = AGG(Hℓ

i ) (neighborhood aggregation)

Zℓ
i = σS (Yℓ

i ) (non-linear activation)

(14)

SPD embeddings (Z)i∈V of the last RGCN layer can then be used to predict node labels.
For the node classification task, we directly classify the nodes on the SPD manifold using
the SPD multinomial logistic loss.

Input 
Euclidean 

feature 
𝑥 ∈ ℝ

Linear map to  𝑥 ∈

ℝ ×( )/

Reshape to lower triangular 
matrix  𝑨 ∈ ℝ ×

Exponential map to SPD 
matrix  𝒁 ∈ 𝒮

Feature transformation on  
Euclidean 𝒮  or ℒ

Neighborhood Aggregation 
on  Euclidean 𝒮  or ℒ

Non-linear activation

SPD 
embedding  
𝒁 ∈ 𝒮

Algorithm Flow

Mapping from Euclidean to 
SPD spaces Graph Convolutional Layer

Figure 3. Schematic of RGCN.

5. Experiments

In this section, we present our experimental evaluation to validate the effectiveness of
the proposed method and analyze the results.

5.1. Experimental Setup

Datasets. Our evaluation employs several real-world graph datasets, encompassing
two tree-like graphs labeled as Disease and Airport, five tree-like heterophily graphs
(hyperlink networks of universities including Texas, Wisconsin, and Cornell, as well
as webpage graphs discussing related topics such as Squirrel and Chameleon), and two
benchmark homophily graphs (Cora, and PubMed). Gromov’s δ-hyperbolicity [34], an index
derived from group theory, quantifies the tree-like structure of a graph. A lower δ value
indicates a stronger tendency towards a tree-like structure, i.e., a hierarchical arrange-
ment. Specifically, δ = 0 represents a fully tree-like structure. The data’s statistics and
hyperbolicity metrics are summarized in Table 1.
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Table 1. Data statistics.

Dataset #Node #Feature #Class #Edge δ-Hyperbolicity

Disease 1044 1000 2 1043 0
Texas 183 1703 5 295 1

Wisconsin 251 1703 5 466 1
Cornell 183 1703 5 280 1
Squirrel 5201 - 5 198,493 1.5
Chameleon 2277 - 5 31,421 1.5
PubMed 19,717 500 3 88,651 3.5
Cora 2708 1433 7 5429 11

Baselines. We benchmark our proposed model against various baselines: (1) Shallow
Euclidean models, specifically MLP; (2) Euclidean GNN models, comprising GCN [12],
SGC [47], GAT [21], SAGE [48], GeomGCN [18], GCNII [49], and H2GCN [50]; and (3) hyper-
bolic GNN models, namely, HGCN [34], HAT [51], LGCN [52], and HyboNet [53]. Table 2
presents a comparative analysis of these models, delineating their respective capabilities
in terms of global tree-likeness modeling, local heterophily perception, and interactional
proficiency with neighboring information.

Table 2. Comparison of model capabilities regarding tree-like structure modeling, tree-like heterophily
modeling, and neighbor interaction. A checkmark (✓) indicates the presence of the capability, while
a cross (×) denotes its absence.

Model Type Model Tree Heterophily Neighbor

Shallow model MLP × × ×

Euclidean GNNs

GCN [12] × × ✓
SGC [47] × × ✓
GAT [21] × × ✓

SAGE [48] × × ✓
GCNII [49] × × ✓

GeomGCN [18] × ✓ ✓
H2GCN [50] × ✓ ✓

Hyperbolic GNNs

HGCN [34] ✓ × ✓
HAT [51] ✓ × ✓

LGCN [52] ✓ × ✓
HyboNet [53] ✓ × ✓

SPD model RGCN ✓ ✓ ✓

Experimental Details. We adhere to a consistent data splitting strategy employed in
previous studies [18,34]. Specifically, nodes within the Disease category are partitioned
into training (30%), validation (10%), and test (60%) sets. For other categories such as
Texas, Wisconsin, Cornell, Squirrel, and Chameleon, the node distribution is set at 70%,
15%, and 15%, respectively. However, for Cora and PubMed, we utilize 20 labeled training
examples per class. Our methodology closely mirrors the parameter configurations and
optimization techniques outlined in the original works.

The implementation of the proposed RGCN is realized using PyTorch and PyTorch
Geometric (PyG), a specialized deep learning library tailored for graph-structured data
and built upon PyTorch. To ensure equitable model comparisons across datasets, we
employ identical data splitting and 10-fold cross-validation procedures, reporting av-
erage F1 scores and standard deviation. Specifically, for RGCN, we report optimal re-
sults within LEM and LCM, adjusting the following hyperparameters: (1) hidden layer
dimension (dim ∈ 3, 5, 7, 10, 15), (2) number of propagation layers (layer ∈ 2, 3, 4, 5, 6),
(3) dropout rate (dropout ∈ 0, 0.1, 0.5, 0.7, 0.9), (4) learning rate (lr ∈ 0, 0.005, 0.01, 0.05, 0.1),
and (5) weight decay (∈ 0, 1 × 10−4, 1 × 10−3, 1 × 10−2, 0.1). RGCN employs early stopping
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with 100 epochs based on validation set performance. The experiments are conducted on an
Intel(R) Xeon(R) Gold 5220 CPU @ 2.20 GHz, Quadro @ RTX 6000 hardware configuration.

5.2. Experimental Results

The proposed RGCN model is initially assessed in the context of node classification to
gauge its discriminative capacity across tree-like and grid-like structures. Table 3 presents
performance comparisons between different models, encompassing those operating within
Euclidean and hyperbolic spaces. Notably, models leveraging hyperbolic geometry exhibit
substantial performance gains over several comparative models, particularly evident in
datasets resembling tree structures, such as the Disease dataset, exhibiting complete tree-
like structures when δ = 0. This underscores the efficacy of hyperbolic geometry in adeptly
capturing hierarchical structures within graphs. As illustrated in the table, the proposed
RGCN achieves peak performance on three out of four datasets, displaying slightly lower
performance only on Cora, which tends towards Euclidean geometry. This underscores the
effectiveness of symmetric positive-definite (SPD) geometry as an adaptive mixed space,
encompassing both Euclidean and hyperbolic subspaces, for modeling intricate graphs
comprising hierarchical and grid-like structures. Particularly noteworthy is the relative per-
formance enhancements of 13.7% and 2.2% achieved by RGCN compared to methods solely
based on Euclidean or hyperbolic geometry, respectively, on the real network Airport with
δ = 1. In summary, the utilization of SPD geometry by RGCN surpasses individual models
grounded in hyperbolic and Euclidean geometries in modeling complex networks, with ex-
perimental outcomes validating the effective exploitation of SPD geometric properties in
crafting neural network modules, thereby enhancing experimental performance.

Table 3. Node classification performance on various δ-hyperbolicity tree-like graphs (F1 score ± std).

Space Model Disease Airport PubMed Cora

Euclidean

GCN [12] 69.7 ± 0.4 81.4 ± 0.6 78.1 ± 0.2 81.3 ± 0.3
GAT [21] 70.4 ± 0.4 81.5 ± 0.3 79.0 ± 0.3 83.0 ± 0.7

SAGE [48] 69.1 ± 0.6 82.1 ± 0.5 77.4 ± 2.2 77.9 ± 2.4
SGC [47] 69.5 ± 0.2 80.6 ± 0.1 78.9 ± 0.0 81.0 ± 0.1

Hyperbolic

HGCN [34] 82.8 ± 0.8 90.6 ± 0.2 78.4 ± 0.4 81.3 ± 0.6
HAT [51] 83.6 ± 0.9 – 78.6 ± 0.5 83.1 ± 0.6

LGCN [52] 84.4 ± 0.8 90.9 ± 1.7 78.6 ± 0.7 83.3 ± 0.7
HyboNet [53] 96.0 ± 1.0 90.9 ± 1.4 78.0 ± 1.0 80.2 ± 1.3

SPD RGCN 96.9 ± 0.9 92.6 ± 1.8 79.4 ± 1.2 80.5 ± 1.5

Moreover, Table 4 presents the outcomes of graph neural network models predicated
on Euclidean, hyperbolic, and symmetric positive-definite (SPD) geometries for node
classification tasks on heterophily graphs. Notably, on intricate heterophily graphs, models
grounded in hyperbolic geometry (e.g., HGCN and HyboNet) do not consistently surpass
MLP. Specifically, hyperbolic models outperform the conventional homophily model GCN
across nearly all five graph datasets; nevertheless, in comparison to heterophily models,
they demonstrate superior performance solely on the Squirrel and Chameleon graphs,
potentially attributable to disparities in specific graph structures.

Given that RGCN comprehensively harnesses the attributes of the SPD manifold, com-
patible with both Euclidean and hyperbolic geometries, it achieves the most remarkable
classification results across all five datasets when compared to all comparative methodolo-
gies. In the outcomes pertaining to the initial three datasets, RGCN outshines the Euclidean
heterophily graph model H2GCN, while in the results on the latter two datasets, RGCN’s
performance also eclipses that of the hyperbolic model HyboNet. This unequivocally
validates the geometric versatility of the SPD manifold and underscores the superiority of
the proposed RGCN in modeling representation capabilities.
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Table 4. Node classification performance on heterophily graphs (F1 score ± std).

Dataset Texas Wisconsin Cornell Squirrel Chameleon

MLP 80.8 ± 4.7 85.2 ± 3.3 81.9 ± 6.4 63.6 ± 2.1 72.8 ± 1.5

GCN [12] 55.1 ± 5.1 51.7 ± 3.0 60.5 ± 5.3 38.2 ± 1.6 60.4 ± 2.1
SAGE [48] 82.4 ± 6.1 81.1 ± 5.5 75.9 ± 5.0 41.6 ± 0.7 58.7 ± 1.6

GeomGCN [18] 66.7 ± 2.7 64.5 ± 3.6 60.5 ± 3.6 38.1 ± 0.9 60.0 ± 2.8
GCNII [49] 77.5 ± 3.8 80.3 ± 3.4 77.8 ± 3.7 56.6 ± 2.1 67.3 ± 2.4

H2GCN [50] 84.8 ± 7.2 86.6 ± 4.6 82.7 ± 5.2 51.0 ± 4.2 69.5 ± 1.8

HGCN [34] 70.1 ± 3.3 83.2 ± 4.5 79.4 ± 4.4 62.3 ± 1.5 74.9 ± 1.5
HyboNet [53] 72.2 ± 4.9 86.5 ± 4.5 77.2 ± 4.7 69.1 ± 1.6 78.7 ± 0.9

RGCN 89.9 ± 6.6 88.7 ± 3.8 85.9 ± 5.1 75.3 ± 1.4 80.3 ± 0.6

5.3. Analysis and Discussion

In this subsection, we analyze the sensitivity to hyperparameters regarding the em-
bedding dimension and propagation layer.

For the hidden layer dimension, Figure 4 illustrates that on graphs biased towards
hierarchical structures, such as Disease and Airport, optimal performance is attained at
larger feature dimensions. Conversely, on graphs biased towards grid-like structures, such
as Cora and PubMed, optimal performance is achieved at smaller dimensions, specifically
at five dimensions. This variance in representation space dimensions due to geometric
structural disparities aligns with the expectations of this study, indicating that the symmet-
ric positive-definite (SPD) space encompasses both Euclidean and hyperbolic subspaces,
enabling adaptive encoding of distinct spatial structures.

3 5 7 10 15
Dimensions

75

80

85

90

95

F1
 S

co
re

F1 Score for Different Dimensions
Disease
Airport
Pubmed
Cora

Figure 4. Classification results under different dimension settings.

Regarding the number of propagation layers, as depicted in Figure 5, the challenge
of over-smoothing has long impeded graph neural networks from effectively capturing
long-distance dependency relationships. Consequently, optimal performance of graph
neural network models is typically achieved with fewer layers. The analysis of the number
of propagation layers validates this observation. Although the optimal layer settings may
vary due to different graph properties, optimal performance is generally attained within
four layers, with a risk of over-smoothing when surpassing this threshold.
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Figure 5. Classification results under different propagation layer settings.

6. Conclusions

In this study, we systematically reconstructed the components of information prop-
agation in classical Euclidean graph convectional networks, such as linear feature trans-
formations, information aggregation, and non-linear activation functions, to symmetric
manifold spaces, specifically symmetric positive-definite matrix spaces. By integrating
Riemannian geometry with the log-Euclidean metric (LEM) and log-Cholesky metric (LCM)
in pullback techniques, we develop a comprehensive scheme of information propagation
on the symmetric positive-definite matrix manifold. Experimental results show that the pro-
posed model outperforms its Euclidean and hyperbolic geometry counterparts on complex
network data exhibiting implicit hierarchy. The efficacy of this approach further validates
the applicability of deep learning to symmetric manifolds, offering a novel avenue for pro-
cessing data with intricate structures. Although this study demonstrates the superiority of
SPD manifolds over Euclidean and hyperbolic geometries for graph embedding, the neural
network operations defined on SPD manifolds are computationally expensive. To enhance
the scalability of SPD geometry on large-scale graph data, we will focus on the efficiency
optimization of SPD neural networks in the future.
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