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Abstract: Analysis of non-Markovian systems and memory-induced phenomena poses an everlasting
challenge in the realm of physics. As a paradigmatic example, we consider a classical Brownian
particle of mass M subjected to an external force and exposed to correlated thermal fluctuations. We
show that the recently developed approach to this system, in which its non-Markovian dynamics
given by the Generalized Langevin Equation is approximated by its memoryless counterpart but
with the effective particle mass M* < M, can be derived within the Markovian embedding technique.
Using this method, we calculate the first- and the second-order memory correction to Markovian
dynamics of the Brownian particle for the memory kernel represented as the Prony series. The second
one lowers the effective mass of the system further and improves the precision of the approximation.
Our work opens the door for the derivation of higher-order memory corrections to Markovian
Langevin dynamics.
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1. Introduction

Physical systems exhibiting memory are ubiquitous in nature [1,2]. The examples that
have recently attracted researchers’ interest span from quantum stochastic processes [3,4]
and quantum simulations [5,6] to spin glasses [7], active matter [8-13], protein-folding
kinetics [14], and even animal mobility [15]. The dependence of the system’s present state
on its past is usually a consequence of its complex nature, as is the case in e.g., viscoelastic
setups [16-19], but the time-nonlocality may also originate from the interactions of the
system with its environment and manifest as e.g., hydrodynamic memory [20-22].

Dynamics of systems with memory is often modeled by non-Markovian stochastic
processes and, in general, their complete characterization requires knowledge of an infinite
set of multidimensional probability distributions. In contrast, describing Markovian sys-
tems requires only information on their initial state and a transition probability distribution,
which makes their analysis radically easier. It is tempting to describe a complicated non-
Markovian setup with its Markovian simplification; however, merely erasing the memory
from the model does not allow us to track the effects related to the non-Markovian character
of the physical system. The choice is therefore between a more complete model that is
generally impossible to analyze and its simplification, which may not include the key
features of the original setup.

It is worth mentioning two papers [23,24] on the problem of correspondence between
a non-Markovian process with memory and its Markovian memoryless counterpart. Un-
fortunately, the exact results are obtained only for linear systems (a free Brownian particle
and a harmonic oscillator, which both are Gaussian processes). In these cases, the original
process with memory can be replaced by a nonstationary Markovian one, but these two are
not equivalent from the perspective of the theory of stochastic processes.

Recently, a new approximation method has been proposed, namely the effective mass
approach [25], which is a compromise between these two limiting cases. In this method,
the original model is reduced to a Markovian one that nevertheless captures the memory
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effects of the original non-Markovian system. The remnants of the memory are reflected in
the effective mass of the memoryless setup.

A paradigmatic model of a system with memory is a Brownian particle exposed to
correlated thermal fluctuations. The dynamics of such a setup can be described with a
Generalized Langevin Equation (GLE), in which the memory is characterized by a integral
damping kernel [26]. The form of the kernel determines the dissipation experienced by
the particle and the correlation of thermal noise acting on it. For example, in Maxwell’s
model of viscoelasticity, the kernel is represented as an exponentially decaying function
characterized by a single relaxation time [19]. This model can be generalized to a sum of
exponentials with multiple characteristic times so that it can serve as an approximation for
other memory profiles. The GLE with this kernel can be represented as a multidimensional
Markovian problem via the Markovian embedding procedure [27-29]. In this article, we
develop the effective mass approach starting from the Markovian embedding technique. In
doing so, we derive not only the first-order memory correction to the memoryless dynamics,
as was the case in the original work [25], but also the second-order one.

The paper is organized as follows. In Section 2, we describe the model of interest,
namely a Brownian particle in a correlated thermal bath. In Section 3 we derive the first-
order correction to the approximate equation that allows us to track the memory effects
with a Markovian model. Next, in Section 4 we derive the second-order correction. Section
5 contains their validation. Finally, we summarize the results in Section 6.

2. Model

We consider a Generalized Langevin Equation describing the dynamics of a Brown-
ian particle of mass M exposed to correlated Gaussian thermal fluctuations #/(t), which
reads [26]

Mo(t) = —F/OtK(t—s)v(s)ds+G(x,t) (), 1)

where T is the friction coefficient, K() is the memory kernel, G(x, t) is an external deter-
ministic force and the dot represents the derivative with respect to time . According to
the fluctuation—dissipation theorem [30], the kernel K(t) characterizing the memory of the
system is related to the autocorrelation function of thermal fluctuations as

(n(t)y(s)) = TkgTK(t —s), 2

where kp is the Boltzmann constant and T is the temperature of the system.
Next, we consider a class of integrable memory kernels K(t) for which

/ TK(dt =1, / IK(£)dt is finite. 3)
0 0

The first integral is related to the finite dissipation (damping) strength; see Equation (4.17)
in Ref. [31]. The second one refers to the finite memory time; see Equation (4.18) in the same
reference. The specific form of the kernel K(t) depends on the characteristics of environment
and coupling between the thermal bath and the particle. One of the most commonly
encountered dissipation mechanisms appears in Maxwell’s model of viscoelasticity, in
which the particle is coupled to the environment through a spring and dashpot connected
in series [19]. The resultant memory kernel decays exponentially and reads

1
K(t) = —e /T, (4)
T
where 7. is the memory time. In complex environments there might be more than one
time scale characterizing the relaxation of the medium. The memory kernel can then be
generalized to a sum of exponential decays, i.e., as the Prony series [32-35]
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N Ci _t/t
K(t) =) —eH, (5)

i=1 G

where c; are the weights of the constituents of the kernel and, by virtue of the condition in
Equation (3),
ZCi =1 (6)
1
Such a memory model is also known as the Generalized Maxwell’s model, but it can also
serve as an approximation for other, more complicated kernels [19,22,29,36].

3. Effective Mass Approach

The integro-differential Equation (1) describes the two-dimensional non-Markovian
process {x(t),v(t)}. In Ref. [25], the authors show a method which allows this equation
to be approximated by a much simpler memoryless Langevin one; however, with renor-
malized mass M* of the Brownian particle. The derivation relies on expanding the term
under the integral in Equation (1) into a Taylor series. Then, if the kernel decays sufficiently
quickly, i.e., the memory time 7. is short, higher-order terms in 7. can be neglected, and the
integral can be approximated by two contributions—one proportional to the velocity v(t)
representing the friction, and another proportional to the acceleration o(t) that introduces
a correction to the particle mass. The resultant equation then reads [25]

M*o(t) = —To(t) + G(x,t) + &(t), (7)

where ¢(t) is the white noise obeying (&(t)(s)) = 2TkgTé(t —s), and
M*:M—F/ K(H)dt = M — AM ®)
0

is the effective mass of the particle which depends on the memory time 7, characterizing
the damping kernel K(¢). The approximate Equation (7) describes a two-dimensional
Markovian system {x(t), v(t) }. However, memory effects are not completely neglected, as
they are represented in the mass correction AM.

We show that for the exponentially decaying memory kernel K(t) given by Equa-
tion (4), the same result can be obtained by use of the Markovian embedding technique
[27,29] which allows us to convert the GLE (1) into a set of ordinary stochastic differential
equations. Let us define the auxiliary stochastic process w(t) via the relation

w(t) = Tl/ot e_(t_s)/rﬂv(s) ds. 9)
Then, Equation (1) is transformed into the equivalent form
£(t) = o(t), (102)
Mo(t) = —Tw(t) + G(x,t) +n(t), (10b)
Tw(t) = —w(t) +o(t), (10¢)
wij(t) = —n(t) + &), (10d)

where the zero-mean Gaussian white noise ¢(t) obeys (¢(t)¢(s)) = 2T'kgT 6(t —s) and
the last equation of this set describes the Ornstein—-Uhlenbeck noise with the exponential
correlation function.

We differentiate Equation (10c) to obtain

() = —w(t) +o(t). (11)
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For w(t), we insert Equation (10c), yielding
T20(t) = w(t) — o(t) + 1.0(t). (12)
Finally, we insert w(t) into (10b) and obtain the equation
(M —T7.)0(t) = —To(t) + G(x, t) + 5(t) + T2w(t). (13)

It is equivalent to the Generalized Langevin Equation (1). Now, we approximate it for
the case of short memory time 7.. First, we neglect the last term of order TCZ. Moreover,
in Equation (10d), we take the limit 7. — 0 in order to preserve the correct form of the
fluctuation—dissipation relation in Equation (13) and, consequently, #(t) = ¢(t). Then, the
result assumes the form (7), namely,

M*o(t) = —To(t) + G(x, t) + () (14)
where
M*:MAM:M(lTC> (15)
L

is the effective mass of the particle and 7, = M/I. In the next section, we show that this
method can be generalized to calculate the first- and second-order memory corrections to
the Brownian particle mass for the case of the memory kernel K(t) given in the form of the
Prony series.

4. Memory Kernel in the Form of the Prony Series

We extend the previous analysis to the case when the memory function K(t) is repre-
sented by the Prony series; see Equation (5). In this case, the GLE (1) can be recast into an
equivalent set of N + 2 equations via the Markovian embedding scheme [26]

x(t) = o(t), (16a)
Mo(t) = =T} wi(t) + G(x,t) + Zm(t), (16b)
T (t) = —w;(t) + cjo(t), (16c)
Tii(t) = —1ni(t) + Gi(t), (16d)

where w;(t) are auxiliary variables defined as

ot
w;(t) = &/ e (t=5)/Tiy(s)ds, (17)
0

T

and 7;(t) are exponentially correlated Ornstein—-Uhlenbeck noises
Ci _(t—s)/T
(i) =0, (ni(t)(s)) = 65TkpT Ze™ -9/, (18)
1

Thus, each pair {w;(t), 7;(t)} corresponds to one of the elements in the sum defining the
memory kernel, c.f. Equation (5). The terms {;(t) represent independent white noise
processes obeying the relation (¢;(#)Z;(s)) = 26;;TkpTc;6(t —s). It is worth noting that
the Markovian embedding is exact for a memory kernel in the form (5), but it can also be
applied whenever the original kernel can be approximated by a sum of exponentials.

4.1. First-Order Memory Correction

We follow a similar approach to the one described in the previous section. The time
derivative of Equation (16¢) gives

Tiw;(t) = —w;(t) + c;v;(t). (19)
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w;(t)

The term w;(t) can then be eliminated by taking Equation (16¢) into account again, and
therefore w;(t) can be represented as

w;(t) = cio(t) — c;o(t) + lez'l')i(t). (20)

If we now assume that all the memory times 7; are short, we can neglect the term propor-
tional to 72 and write
w;(t) = cju(t) — ¢;T;0(t). (21)

Inserting it into Equation (16b) results in

(M—I"Zcm)z}(t) = —To(t) + G(x,t) +Zm(t), (22)

where we used the relation (6). If we want to retain the fluctuation-dissipation relation,
we have to approximate the Gaussian correlated noise using white noise, i.e., ;(t) ~ &;(t),
and the sum of the noise terms yields

Yomi(t) = Y Gilt) = E(b). (23)
i i
The approximate Langevin equation will then be the same as Equation (7)

M*o(t) + To(t) = G(x, t) + (1), (24)

where now the effective mass is

M* = M — AM,; :M<1—Zci:£> (25)
i

and
AM; =TY ¢ (26)
i

is the first-order memory correction. This means that the memory effects can be reflected
solely as a shift in the particle mass, which is in agreement with the original result from
Ref. [25].

4.2. Second-Order Memory Correction

One can attempt to derive the second-order memory correction using the memoryless
Langevin equation. The first step involves taking a derivative with respect to time of
Equation (21). Combining the result with Equation (16b) gives

k

w;(t) = c;0( ”l[ I‘Zwk )+ Gl t) + Y k()| 27)

To eliminate the time derivatives of w;, w; and #; we utilize Equations (16c) and (16d).
Then, after grouping the terms, we obtain a set of N equations with N auxiliary variables
w;

% %

—Ci EZ Ty = (1— -y kT1>U(t) —¢To(t )+%ZE(—WU) + 8k (1)), (28)
Tj k Tk

where 7, = M/T is the Langevin time and the term involving the time derivative of the
external force G(x,t) was omitted, since it is proportional to 7> (we assume that all the
correlation times T; are much shorter than the Langevin time 77, and are of the same order
of magnitude). This set can also be written in the matrix form as
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(I-A)w=D, (29)
where I is the identity matrix and
T T
Aij = ai—l, a; = Cifz. (30)
Z T

M_FZCiTi 1+
i

Moreover, w is a vector of the auxiliary variables w; and b consists of the right-hand side
terms of the set (28). The inverse of the matrix I — A reads

1- Y a ifi=j,
[(HfA)‘l}u - 71_1211 i ! (31)
i k| A ifi#

Equation (29) can then be solved by calculating (I — A)~!b, and the auxiliary variables
w;(t) read

|

k

-y T=va M (= () + 8 (t)- (32)
K K

p]

k

After inserting it into Equation (16b) and rearranging the terms, one gets

T/TL

Ty t) + To(t zclext Za Zalz ;(qk(t)—ék(t))+zi:17i(t). (33)
k

Here, the friction term again reads I'v(t) (see Equation (6)), so to maintain the fluctuation—
dissipation relation we must again use the approximation 7, (t) ~ &x(t) (see Equation (23)).
This results in the memoryless Langevin equation

M*o(t) +To(t) = G(x, t) + ¢(t), (34)

where
M'=M-—AM, (35)

is the effective mass of the particle and the second-order correction reads

Cj T2
T — ZCka

T

—_— | =AM +T
TL‘%Cka ! Z

AM; =T ¢ 1+ (36)
i

Since we assume that all the correlation times 7 < 77, the mass correction can be simplified

to the expression
T2
AM; =

- 37)

for which the effective mass reads

T T
M* 1-— c’<1+’>
gt (e

(99

(38)

It is worth noting that for 7, < 77, the mass correction AMj is always greater than AM;.

5. Verification of the Memory Corrections

Now, we would like to discuss the validation of the above-presented approach to
non-Markovian dynamics. For this purpose, we consider a Brownian particle moving in
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the spatially periodic potential U(x) = Upsin(27rx/L) and driven by the periodic force
A cos(Qt) as well as the static bias F. The external force G(x, t) thus reads [37-39]

G(x,t) = —U'(x) + Acos(Qt) + F, (39)
where the prime represents the derivative with respect to the position x. Moreover, we

choose the simplest case of the kernel K(t) consisting of a single exponential decay, i.e.,

K(t) = e !/, (40)
Tc

which corresponds to N = 1, c; = 1 and 1y = 7 in Equation (5). The quantity of prime
interest is the asymptotic long time average velocity of the particle

(0) = lim ~ [ (%(s))ds, 41)

where the brackets denote averaging over the initial conditions and realizations of the
thermal noise [40].
Following the method described in [25], we introduce new dimensionless variables

" N N A L
t=7 b= o) =To), )= Pul), Ab=ga@), @)

where 1) = T'L?/Up. The set of Equations (16) with the kernel given by Equation (40) can
then be recast to

2(f) =9(t), (43a)
mo(f) = —w(F) — U'(£) +acos(wf) + f +7(F), (43b)
t(F) = —w(f) — o(F), (43¢)
w0 (F) = -7 (F) +&(F), (43d)

where the dimensionless parameters are
m=1/7, U(%) =sin(27%), a = AL/Vy, w=Q1y, f = FL/Vyand T = ©./19. (44)

The white noise term &(f) obeys the relation (&£(£)&(3)) = 2D5(f — §), where D = kgT/Uj.
The approximate equation in turn reads

m*o(f) + o(f) = —U'(2) + acos(wf) + f + E(F), (45)

where m* = m — Am; (i = 1,2) is the effective mass of the system and the dimensionless
memory correction reads
Amy =7 (46)

in the first order, and

72 T

Amy = Amq + = T(l + ) (47)
m—T m—T

in the second order. For clarity, we omit the hat over the rescaled variables and write ¢

instead of f, x in place of %, and so on.

To compare the effective mass approach with the first- and second-order memory
corrections, we chose the following same parameter set: m = 1, 2 = 10, w = 4, and
D = 1073. Then, we implemented a weak second-order predictor—corrector algorithm
[41] and numerically solved the set of Equations (43) and (45) for t € [0, 5% 10%1,,] with a
time step & = 2.5 x 10731, where 1, = 277/ w is the period of the dimensionless driving
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force a cos(wt). The particle’s velocity was then averaged over the last 10007, time units as
well as 218 realizations of the thermal noise and initial conditions x(0) and v(0) distributed
uniformly over the intervals [0, 1] and [—2, 2], respectively. To parallelize the calculations,
the simulations were performed on modern Graphics Processing Units, which shortened the
computational time by several orders of magnitude compared to the traditional approach
involving Central Processing Units [42].

Figure 1 shows the average velocity (v) as a function of the correlation time 7. The
solid blue curve represents the numerical solution of the original GLE (set (43)). The
dependence of (v) on T is non-monotonic, but in general, the value of the average velocity
is greater in the presence of memory 7 € (0,0.04) than in the memoryless limit T — 0
(light-blue dotted curve). This means that the naive Markovian approximation obtained for
T — 0 does not correctly reproduce the dynamics of the particle.

I
0.025 - — GLE
--=-= 1st order i
—-—- 2nd order 1
0.02 =0 —

0 0.01 0.02 0.03 0.04
T

Figure 1. Average velocity (v) of the Brownian particle as a function of the memory time 7 for the
original GLE and the approximate equation with first- and second-order correction. The memoryless
limit T — 0 is also depicted for reference.

The effects of short memory can, however, be reproduced in the memoryless Langevin
dynamics (45) with a properly modified particle mass. The red dashed curve shows the
solution of Equation (45) for the same set of parameters and the mass correction given by
Equation (46). For small values of 7, the approximate curve is barely distinguishable from
the original one. When the correlation time increases, the qualitative behavior remains the
same, but the accuracy worsens. For T > 0.025 the mass correction appears to be too small,
and for this reason, the approximate curve “lags” behind the original one.

The quantitative precision of the approximation can be improved by taking into
account the second-order correction to the particle mass. The green dashed-dotted curve
shows the (v) (T) function for Equation (45) with the mass correction given by Equation (47).
Since Amy > Amy, the “lag” is reduced, and the approximate characteristic stays close
to the original curve even for T > 0.025. This means that the second-order correction to
the particle mass extends the range of the values of the correlation time 7 for which the
effective mass approach correctly predicts the dynamics of the system with memory.

6. Conclusions

In summary, in this work, we presented a new derivation of the effective mass ap-
proach to memory in non-Markovian systems that is based on the Markovian embedding
technique. In doing so, we considered a Brownian particle subjected to an external force
and exposed to thermal fluctuations, whose autocorrelation function is given as a sum of N
exponential decays. Such a non-Markovian system described by the Generalized Langevin
equation can be represented as a multidimensional Markovian one upon introducing N
auxiliary variables via the Markovian embedding method. Using this representation, we
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derived the memoryless Langevin equation, in which the memory effects are reflected
solely in the change of the system mass.

First, we showed that the first-order memory correction to the particle mass coincides
with the result of the effective mass approach derived with a different method [25]. Next,
we derived a second-order memory correction that lowers the effective mass of the system.
We verified that both approximations correctly reproduce the dynamics of the original
system as long as the correlation time of the fluctuations is short. Moreover, we showed
that taking into account the second-order memory correction improved the accuracy of the
effective mass approximation.

The approach presented in this article provides an efficient method of studying non-
Markovian dynamics that is often demanding both in terms of analytical and numerical
treatment. The simplified representation of the Generalized Langevin Equation reduces the
computational cost of the numerical analysis of the system with memory and allows for a
more comprehensive exploration of its parameters space. The new method of determining
the effective mass opens the door for the derivation of higher-order memory corrections to
Markovian dynamics.
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