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Abstract: HKUST−1 is an MOF adsorbent industrially produced in powder form and thus requires a
post-shaping process for use as an adsorbent in fixed-bed separation processes. HKUST−1 is also
sensitive to moisture, which degrades its crystalline structure. In this work, HKUST−1, in the form
of crystalline powder, was extruded into pellets using a hydrophobic polymeric binder to improve its
moisture stability. Thermoplastic polyurethane (TPU) was used for that purpose. The subsequent
HKUST−1/TPU extrudate was then compared to HKUST−1/PLA extrudates synthesized with more
hydrophilic polymer: polylactic acid (PLA), as the binder. The characterization of the composites was
determined via XRD, TGA, SEM-EDS, and an N2 adsorption isotherm analysis. Meanwhile, the gas-
separation performances of HKUST−1/TPU were investigated and compared with HKUST−1/PLA
from measurements of CO2 and CH4 isotherms at three different temperatures, up to 10 bars. Lastly,
the moisture stability of the composite materials was investigated via an aging analysis during
storage under humid conditions. It is shown that HKUST−1’s crystalline structure was preserved in
the HKUST−1/TPU extrudates. The composites also exhibited good thermal stability under 523 K,
whilst their textural properties were not significantly modified compared with the pristine HKUST−1.
Furthermore, both extrudates exhibited larger CO2 and CH4 adsorption capacities in comparison to
the pristine HKUST−1. After three months of storage under atmospheric humid conditions, CO2

adsorption capacities were reduced to only 10% for HKUST−1/TPU, whereas reductions of about
25% and 54% were observed for HKUST−1/PLA and the pristine HKUST−1, respectively. This study
demonstrates the interest in shaping MOF powders by extrusion using a hydrophobic thermoplastic
binder to operate adsorbents with enhanced moisture stability in gas-separation columns.

Keywords: shaping; HKUST−1; MOF-polymer composite; extrusion; hydrophobic

1. Introduction

Biogas production has been increasing in recent years thanks to the implementation of
multiple renewable energy policies motivated by economic and environmental benefits.
From 2010 to 2019, it was estimated that global biogas production increased from 65 GW to
120 GW, of which 70% originated from Europe [1]. According to the International Energy
Agency (IEA), global biogas demand is expected to reach up to 872 TWh in 2040 [2], leading
to a huge potential market for this type of renewable energy. Biogas is produced from
the anaerobic digestion of various organic wastes, such as sewage sludge, agricultural
and crop residues, and animal dung, as well as industrial organic wastes and wastewater.
Biogas consists of three main components: methane (45–70%), carbon dioxide (24–40%),
and nitrogen (1–17%) [3]. Other gases that are present in biogas composition are water
vapor, oxygen, hydrogen sulfide, ammonia, carbon monoxide, and traces of halogenated
hydrocarbons, siloxanes, and toluene [4]. Biogas can be burned directly on-site to produce
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heat and electricity. However, biogas energy density is low compared to natural gas
(NG) since it contains a large fraction of carbon dioxide in addition to other secondary
contaminants. Therefore, biogas needs to be purified to produce biomethane, having a
composition matching the specifications for injections into gas grids.

Biogas upgrading can be achieved via numerous technologies, such as water/physical/
chemical scrubbing, cryogenic separation, membrane separation, pressure swing adsorp-
tion (PSA), and vacuum pressure swing adsorption (VPSA) [5,6]. In the context of this
study, we are interested in the removal of CO2 from biogas via PSA, avoiding the use of a
vacuum in the desorption step that would then be replaced with desorption in atmospheric
pressure. Because vacuum desorption is mainly responsible for the high energy costs of
VPSA processes, better energy performances by PSA separation are foreseen. The choice of
adsorbent is one of the key factors in designing such a process.

Thermodynamic and kinetic properties of the adsorbent determine the bed working
capacities and the separation performances of the whole unit in terms of methane produc-
tivity, purity, and rate of recovery. Good resistance to attrition, thermal stability over long
lifetimes, and hydrophobicity are also essential to make a suitable adsorbent for such a
separation. Amongst the conventional adsorbents applied for biogas upgrading in VPSA
processes are zeolites and carbon molecular sieves (CMS) [7].

Recently, metal–organic frameworks (MOFs) have been gaining attention for their
potential application in gas separation owing to their inherent properties, such as high
specific surface area, large porosity, and tunable pore size [8,9]. In the literature, MOFs have
been extensively studied for their capability to separate CO2 from CH4 [10–12]. Amongst
the materials investigated, HKUST−1 has been identified as a good candidate for CO2/CH4
separation because of its good CO2/CH4 selectivity [13,14]. The CO2 capture performance
of HKUST−1 at low pressure is influenced by the affinity of open-metal sites with CO2,
whereas at high pressure, it is governed by the surface area of HKUST−1 [15]. Figure 1
shows the literature comparison of CO2 and CH4 adsorption capacities of HKUST−1 with
other MOFs, as well as conventional adsorbents, at 298 K for the pressure conditions of
one bar and five bars, respectively [16–29]. It can be seen that CO2 is preferably adsorbed
than CH4 for HKUST−1 at both pressure conditions. On the one hand, the CO2 adsorption
capacity of HKUST−1 at both pressure conditions is better than other MOFs, such as
PCN-68 and MIL-101 (Cr), as well as the conventional adsorbent CMS. On the other hand,
the MOF-74 adsorbent family exhibits larger CO2 adsorption capacities than HKUST−1
under both pressure conditions. Similarly, at one bar, the CO2 adsorption capacity of
zeolite 13X surpasses that of HKUST−1, though this trend is reversed at a higher pressure
of five bars. Nevertheless, HKUST−1 is one of the few MOFs that are commercially
available [30], making the procurement of large-scale amounts of material with consistent
quality easier. However, one of the main drawbacks of using HKUST−1 as an adsorbent
for CO2 capture from biogas is its sensitivity towards moisture, which may still be present
at low concentrations in the biogas feed, even after the drying step. It is difficult to
provide the exact value of leftover moisture in the biogas prior to the upgrading process,
as this value may vary depending on dehumidification methods (e.g., condensation and
absorption), though interested readers may refer to a notable study by Golmakani et al. [31],
which summarizes the range of water dew point reduction in biogas according to different
dehumidification processes. Nevertheless, the crystalline structure of HKUST is degraded
when exposed to humidity, and this consequently leads to a drastic reduction in its CO2
adsorption capacities [32,33].

HKUST−1 could be synthesized via different synthesis routes, such as solvothermal,
microwave, sonochemical, and mechanochemical synthesis [34–42]. HKUST−1 synthesized
through these methods is usually obtained in a powder form of millimetric size, which is
not convenient for use in adsorption columns because the packing of fine powder causes
restrictions in the flow of gas, thus resulting in large pressure losses across the column [43].
To overcome this issue, fine crystalline adsorbent powder needs to be shaped into larger
size particle forms, such as granules, tablets, or monoliths.
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MOF shaping can be performed either with or without the use of a binding agent [43].
The usage of a binding agent in the shaping process may significantly modify the MOF’s
intrinsic properties. In particular, it can help promote the macrostructure’s mechanical
strength of the adsorbent particle and improve its chemical and thermal stability while still
maintaining its intrinsic porosity and adsorption properties. For example, in a study by
Cousin-Saint Remi et al. [44], ZIF-8 was shaped by a simple extrusion–crushing–sieving
(ECS) approach using different binder recipes, i.e., cellulose–acetate (CA), polyvinylchloride
(PVC), polyvinylformal (PVF), polyetherimide (PEI), and polystyrene (PS). The ZIF-8
composites were synthesized using 15 wt% of each binder, and it was revealed that their
ethanol adsorption capacities were similar to those of the pristine ZIF-8. Furthermore,
this study demonstrated that by increasing the binding agent mass fraction from 7 wt% to
30 wt%, the mechanical stability of the ZIF-8 composites was improved, and the composite
made up of a PVDF binder displayed the most robust structure. In addition, it was pointed
out that the composite moisture stability was dependent on the binding agent employed
and that the use of PVDF as a binder yielded the most stable composite when exposed to
humid conditions.

In another notable study by Hastürk et al. [45], MIL-160 (Al) and MIL-101 (Cr) were
shaped via the freeze–casting method (extrusion-based method) using different hydrophilic
polymeric binders, i.e., polyacrylic acid (PAA), sodium polyacrylate (PAANa), polyethy-
lene glycol (PEG), polyvinyl alcohol (PVA) and polyvinyl pyrrolidone (PVP). This study
demonstrated that the usage of a hydrophilic binder enhances the water uptake capacity of
the MOFs. Both MIL-160 (Al)/MIL-101 (Cr)@polymer composites displayed an increase
in water uptake capacities in the low-pressure region in comparison to the respective
pristine materials.

Similarly, in our previous work [46], a pristine HKUST−1 was shaped by simple
extrusion using thermoplastic polylactic acid (PLA) as the binding agent. It was shown
that the HKUST−1’s crystalline structure, morphology, and textural properties, as well
as CO2/CH4 adsorption capacities, were preserved in the synthesized HKUST−1/PLA
composite when compared to the pristine HKUST−1. However, the moisture stability was
not significantly improved in comparison to the pristine HKUST−1 [47,48]. It is, therefore,
interesting to discover whether the replacement of PLA with another less-hydrophilic
thermoplastic polymer as a binding agent could improve the adsorbent moisture stability.

The main objective of this research is to assess the effect of using a low-hydrophilic
polymeric binder in the shaping extrusion process on the properties of an HKUST−1
adsorbent composite. For that purpose, thermoplastic polyurethane (TPU) was selected
as a polymeric binding agent in order to compare the properties of HKUST−1/TPU and
HKUST−1/PLA composites. Thermoplastic polyurethane (TPU) is an elastomeric polymer
with a molecular configuration consisting of hard-segment and soft-segment blocks that
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provide properties such as high ductility, toughness, durability, flexibility, biocompatibility,
and biostability [49]. The rigidity and hardness of TPU originate from the hard segment,
whereas the flexibility and elastomeric properties originate from the soft segment. TPU is
more hydrophobic than PLA, as demonstrated in several other studies [50,51].

To verify the successful shaping of HKUST−1 with TPU, structural and textural
properties, as well as CO2 and CH4 adsorption equilibrium data for HKUST−1/TPU,
were measured and subsequently compared with pristine HKUST−1 and HKUST−1/PLA
composites synthesized from the same extrusion process as reported in [46]; however, we
used thermoplastic polylactic acid (PLA) as the binding agent. The hydrophilicity of the two
polymers was quantified in this study by conducting surface wettability tests (Figure S1).
The effect of methanol washing on the textural properties and adsorption capacities of
HKUST−1 powder was assessed to interpret differences observed between the composites
and pristine HKUST−1. Finally, the stability of the samples under humid conditions was
analyzed to assess the impact of the polymer’s hydrophobicity on the moisture stability of
the composites.

2. Results and Discussion
2.1. Sample Characterization

The structural analysis of the samples was investigated through an XRD analysis.
Figure 2 illustrates XRD peaks observed for HKUST−1/TPU, HKUST−1/PLA, pristine
HKUST−1, TPU, and PLA. Pure TPU exhibited a characteristic broad peak around 20◦

due to the diffraction from the (110) planes of the TPU soft segments [52,53], whereas pure
PLA exhibited a strong peak at 16.8◦ due to diffraction from (110) and/or (200) planes [54].
Additionally, pristine HKUST−1 exhibited characteristic peaks at 6.7◦, 9.5◦, 11.6◦, and 13.4◦,
which can be attributed to the (200), (220), (222), and (400) crystal planes of HKUST−1 [46].
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Figure 2. XRD of TPU, PLA, pristine HKUST−1 and its composites.

The XRD pattern for HKUST−1/TPU closely resembled the one for HKUST−1/PLA,
where peaks associated with pristine HKUST−1 were clearly present in both compos-
ites, whereas peaks associated with pure TPU or PLA were indistinguishable in the
HKUST−1/TPU and HKUST−1/PLA samples due to their low loading in the compos-
ites. Nevertheless, the XRD analysis confirms the presence of HKUST−1 particles in both
composites after the shaping process.

Scanning electron microscopy (SEM) imaging was used to characterize the surface
morphology of the adsorbent materials. Figure 3 compares the morphology observed
between HKUST−1/TPU, HKUST−1/PLA, and the pristine HKUST−1. Most of the
pristine HKUST−1 particles exhibited an octahedron shape, though there were also large
particles of an irregular shape. Morphologies of the surface of HKUST−1/TPU and
HKUST−1/PLA show that the particles of HKUST−1 were not totally encapsulated by
the polymeric binder after shaping. Furthermore, it can be observed that particles in
the HKUST−1/TPU composite were held together by fibrous TPU polymers, whereas
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particles in the HKUST−1/PLA composite were surrounded by amorphous PLA. It is
likely that the formation of the fiber grid observed in HKUST−1/TPU occurred during
the synthesis process of the composite, as typical commercial filaments of TPU and PLA
exhibited a smooth and dense surface (Figure 4). The obtained SEM imaging of both
composites demonstrates that the shaping process, using a 10% mass of either one of the
polymeric binders, yielded a composite in which HKUST−1 particles remained accessible
for gas adsorption.
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Figure 4. (a) SEM image of neat PLA filament. Image reproduced from [55]. (b1,b2) SEM image of
neat TPU filament at different magnification. Images reproduced with permission from [56].

The EDS spectra of HKUST−1/TPU and HKUST−1/PLA are presented in
Figures 5a and 5b, respectively. Qualitatively, the peaks corresponding to the expected
main elements in the composites are evident, namely, C, O, and Cu. C and O elements were
present in both HKUST−1 and the polymeric binder, whereas the Cu element was only
present in the pristine HKUST−1. It should be noted that the difference in an element’s
relative content in HKUST−1/TPU and HKUST−1/PLA was not exploited as the samples
that were used for the analysis were not flat, which rendered the quantitative analysis of
EDS unreliable. Nevertheless, the presence of element peaks in the composite was similar
to the EDS spectra of the pristine HKUST−1 powder reported in other studies [57,58],
which is indicative of the preservation of the HKUST−1 crystals in both composites.

Figure 6 displays elemental mapping for HKUST−1/TPU and HKUST−1/PLA. The
mapping reveals a uniform distribution of C (represented by blue color) and O (represented
by green color) elements over the surface of the composites because these elements were
present in both the MOF and binder. However, the Cu element (represented by red color)
had a more heterogeneous distribution as this element was only present in HKUST−1. By
combining the mapping of the Cu and C elements together, we could observe that there
was a clear separation between the Cu element in HKUST−1 and the C element in the
polymeric binder of both composites. This separation, clearly observed from the elemental
mapping, is a good indication that no degradation reaction occurred between HKUST−1
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and the polymeric binders (TPU or PLA) during shaping. It should be noted here that there
is a grayish section in the elemental mapping that corresponds to the area where the EDS
analysis was unable to detect the elements due to shadowing.
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Nitrogen physisorption isotherms are shown in Figure 7 on both linear and logarithmic
scales. All isotherms featured a type I shape relevant to highly microporous solids [59].
The N2 adsorption capacities of HKUST−1/TPU and HKUST−1/PLA were slightly larger
than the pristine HKUST−1’s, which signifies that the pristine HKUST−1 particles in both
composites remained accessible to gas adsorption, as shown by SEM imaging. In addition
to that, it can be seen that nitrogen filling in the lowest pressure range (P/P0 < 10−4) was
different for both composites when compared to the pristine HKUST−1 powder. This
indicates some changes related to the accessibility of the primary adsorption sites located
in the microporous domain after shaping. Furthermore, the N2 adsorption isotherm of
pure TPU and pure PLA (Figure S2, Supporting Information) reveals that both polymeric
binders absorbed a very negligible amount of N2 in comparison to pristine HKUST−1 and
its composites, which signifies that both TPU and PLA did not contribute to the slightly
larger N2 adsorption capacity denoted for the two composites. Meanwhile, when pristine
HKUST−1 was washed with methanol, an increase in the N2 adsorption capacity could be
observed. Therefore, the increase in the N2 adsorption capacity for both composites could
be explained by the effect of “washing” with methanol during the shaping process.
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Figure 7. N2 adsorption isotherm plot for HKUST−1/TPU, HKUST−1/PLA, pristine HKUST−1
and methanol-washed HKUST−1 in (a) linear scale and in (b) log scale. Data for HKUST−1/PLA
and HKUST−1 was taken from previous work [46].

Table 1 lists the BET surface area and the pore volume data derived from 77K-
N2 isotherms for HKUST−1/TPU, HKUST−1/PLA, pristine HKUST−1, and methanol-
washed HKUST−1. As expected, the micropore volumes of both HKUST−1/TPU and
HKUST−1/PLA were slightly higher than pristine HKUST−1’s, matching the changes
observed in the low-pressure region of the N2 isotherms. The computed BET surface
areas of HKUST−1/TPU and HKUST−1/PLA appeared a bit larger than that of pristine
HKUST−1. Once again, these trends could be explained by the “washing” of the compos-
ites with methanol, as methanol-washed HKUST−1 recorded an increase in the BET surface
area and pore volume in comparison to the pristine HKUST−1. Additionally, when pristine
HKUST−1 was washed with either DMF or chloroform, an increase in the BET surface
area and/or pore volume could also be observed (Figure S3 and Table S2, Supporting
Information), which may have resulted from residual reagents present in the pores washed
away by the solvents.

Table 1. BET Surface area, pore volume of HKUST−1, methanol-washed HKUST−1, HKUST−1/TPU
and HKUST−1/PLA. Data for HKUST−1 and HKUST−1/PLA was taken from previous work [46].

Sample SBET (m2/g)
Micropore Volume

(cm3/g)
Total Pore Volume

(cm3/g)

HKUST−1 1500 0.46 0.65
HKUST−1/TPU 1557 0.50 0.65
HKUST−1/PLA 1528 0.54 0.65

Methanol-washed HKUST−1 1956 0.60 0.79

2.2. Thermal and Mechanical Stability

The TGA profiles for pristine HKUST−1 and its composites, as well as for the neat PLA
and TPU, are shown in Figure 8. The pristine HKUST−1 was thermally stable up to 593 K,
whereas PLA started to degrade at 613 K. Meanwhile, the thermal degradation behavior
of TPU can be divided into two stages; the first stage of decomposition occurred between
553 K and 613 K, while the second stage occurred between 663 K and 733 K. The reason for
the two-stage degradation was related to the decomposition behavior of urethane bonds in
the hard segments and polyol groups in the soft segments of the TPU polymer [60,61].

The thermal degradation of HKUST−1/TPU and HKUST−1/PLA proceeded in two
steps; a first mass loss occurred between 350 K–410 K, which consisted of a 3% and
5% weight loss for HKUST−1/TPU and HKUST−1/PLA, respectively, which was asso-
ciated with the loss of leftover solvent molecules (chloroform, DMF or methanol) that
remained trapped inside the pores; the second mass loss started around 560 K and 590 K
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for HKUST−1/TPU and HKUST−1/PLA, respectively, which can be attributed to the
start of the framework and polymeric binder degradation. Interestingly, the mass loss due
to trapped solvent molecules is significantly less for HKUST−1/TPU in comparison to
HKUST−1/PLA, which could be due to the fibrous nature of TPU in the composite, as
seen in the SEM imaging, limiting the entrapment of the solvent after the shaping process.
Furthermore, the decomposition behavior of both the hard and soft segments of TPU was
no longer distinguishable in the HKUST−1/TPU composite. It could be observed that
both the HKUST−1/TPU and HKUST−1/PLA composites displayed a lower degradation
temperature than pristine HKUST−1 and their respective pure polymeric binders. This
could be attributed to the presence of metal from MOFs in the composite that may have
acted as a catalyst for polymer degradation, as concluded in several other studies [54,62,63].
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The attrition values of the samples were investigated to determine their mechanical
stabilities. An adsorbent with a high attrition value could lead to problems when operating
the gas-separation unit, such as bed clogging or an increase in pressure drops inside the
adsorption column. Table 2 compares the attrition values measured for HKUST−1/TPU
and HKUST−1/PLA with commercial adsorbents and MOF extrudates from other studies.
These values were determined using the same attrition test standard according to the
D4058-96 ASTM norm [64]. The attrition value of HKUST−1/TPU was only slightly lower
in comparison to the one of HKUST−1/PLA, but both samples possessed comparable
mechanical stability compared with other commercial adsorbents, as reported in [65]. This
shows that TPU and PLA, used at a low loading rate as binding agents, are suitable for
making HKUST−1 adsorbent composites with good mechanical resistance to attrition. To
improve the mechanical stability of HKUST−1 composites, it could be possible to increase
the concentration of the binder, but there is a risk of decreasing the gas-separation perfor-
mance of the composites because of pore blockages, as observed for the HKUST−1/PLA
produced at a 20 wt% binder loading (Figure S4).

Table 2. Attrition percentage of HKUST−1/TPU, HKUST−1/PLA, conventional adsorbent and
MOF extrudates.

Sample Attrition Loss (% wt) Reference

HKUST−1/TPU 0.4 This study
HKUST−1/PLA 0.5 [46]

Zeolite 3A ≤0.2

[65]
Zeolite 4A ≤0.2
Zeolite 5A ≤0.2
Zeolite 13X ≤0.2

AC-Norit RZN1 0.2
[66]UiO-66 extrudate 1.4
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2.3. CO2 and CH4 Adsorption Measurements

Methane and carbon dioxide adsorption isotherms (expressed as mmol/g of the
adsorbent), which were measured at 298 K for HKUST−1/TPU, HKUST−1/PLA, and
pristine HKUST−1, are presented in Figure 9. In a pressure range of less than one bar,
both CO2 and CH4 adsorption capacities were similar for all the samples and appeared to
be linear with the equilibrium pressure. In a pressure range between 1 and 10 bars, the
shape of the CO2 isotherms for all the samples was no longer linear with the equilibrium
pressure. The CO2 adsorption capacities tended to reach a plateau, which was, however, not
observable in the tested equilibrium pressure conditions. The CH4 adsorption isotherms of
all the materials in that same pressure range remained, however, almost linear with the
equilibrium pressure.
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Figure 9. Gravimetric adsorption isotherms of (a) CH4 and (b) CO2 on HKUST−1 and its composites
at 298 K. The inset displays the adsorption isotherm at equilibrium pressure up to 1 bar. Data for
HKUST−1 and HKUST−1/PLA was taken from previous work [46].

The CO2 and CH4 adsorption capacities of the HKUST−1/TPU composite were similar
to HKUST−1/PLA and pristine HKUST−1 at equilibrium pressures of less than one bar.
However, as the equilibrium pressure increased, both composites exhibited larger CO2
and CH4 adsorption capacities than the pristine HKUST−1, which may be attributed to
their larger BET surface areas and micropore volumes. The CO2 adsorption isotherm of
HKUST−1/TPU closely resembled that of HKUST−1/PLA, which suggests that TPU as
a binding agent does not have a different effect from PLA on CO2 adsorption capacities.
Similarly, the CH4 adsorption capacities of HKUST−1/TPU were comparable to those of
HKUST−1/PLA in the upper range of the equilibrium pressure.

Previous N2 adsorption isotherm measurements reveal that both composites exhibited
higher BET surface areas and pore volumes than the pristine HKUST−1, which may be
explained by the washing effect with methanol. Therefore, it is interesting to compare the
adsorption performances of the active HKUST−1 particles present in both composites with
both pristine and methanol-washed HKUST−1 powders, as displayed in Figure 10. From
the normalized CO2 adsorption capacities, it is shown that at 298 K, HKUST−1 particles
in both composites had nearly equal adsorption capacities. In addition, the embedded
particles exhibited higher CO2 adsorption capacities than the pristine HKUST−1 but
slightly lower capacities (by around 10%) than the methanol-washed HKUST−1 powder.
This could be attributed to partial pore blockage by the thermoplastic binder.
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2.4. Effect of Temperature on Adsorption Isotherms

Figure 11 shows the CO2 and CH4 adsorption isotherms of all the materials measured
at 273 K, 298 K, and 303 K. Unsurprisingly, it can be observed that an increase in temperature
resulted in a decrease in both CO2 and CH4 adsorption capacities. Furthermore, both
composites had comparable CO2 and CH4 adsorption capacities at any given temperature.
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Figure 11. Gravimetric adsorption isotherms of CH4 and CO2 at different temperatures for (a) pristine
HKUST−1, (b) HKUST−1/PLA, and (c) HKUST−1/TPU. Continuous line represents dual-site Lang-
muir modeling, whereas filled and unfilled symbols represent CO2 and CH4 adsorption, respectively.
Isotherm data for pristine HKUST−1 and HKUST−1/PLA were taken from previous work [46].

2.5. Temperature Dependent Isotherm Modeling and Isosteric Heat of Adsorption

The determination of the isosteric heat of adsorption QST requires a linear regression
of the equilibrium data. Thus, to ensure the accuracy of the calculation, an appropriate
thermodynamic model was chosen, ensuring good fitting with the experimental isotherm
data in the whole temperature range. The dual-site Langmuir model was applied in this
study to describe the pure component isotherm data of all the materials, taking into account
the influence of temperature, according to the following equations:

qeq,i = qs1,i·
K1,i·Pi

1+(K1,i·Pi)
+ qs2,i·

K2,i·Pi
1+(K2,i·Pi)

K1,i = ka1,ie
ka2,i·( 1

T−
1

Tref
)

K2,i = kb1,ie
kb2,i·( 1

T−
1

Tref
)

(1)

qs1,i and qs2,i were the saturation capacities of component i in the gas mixture on site 1
and site 2, respectively; K1,I and K2,i were the equilibrium constants of component i in the
gas mixture on site 1 and site 2; ka1,i and kb1,i were the pre-exponential constants for the
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temperature dependence of K1,i and K2,i, respectively; ka2,i and kb2,i were the exponential
terms for the temperature dependence of K1,i and K2,i, respectively; Pi was the pressure of
gas component i in equilibrium with the adsorbed phase; qeq,i was the amount adsorbed of
component i at equilibrium; Tref was the reference temperature. The goodness of fitting
was quantified considering the determination coefficient values R2, as presented in Table S1
(Supporting Information).

The application of the dual-site Langmuir model to describe the experimental CO2
adsorption isotherms up to 10 bars reveals that the monolayer saturation capacity of ad-
sorption site 1, qs1, was higher than the monolayer saturation capacity of adsorption site 2,
qs2, for all the samples. It is likely that qs1 corresponds to the saturation of the polarized
adsorption sites located near the open-metal sites of HKUST−1, whereas qs2 describes the
monolayer saturation capacity over sites near the ligand, as proposed in [13,67]. In the case
of CH4, the values of qs1 derived from the dual-site Langmuir model were found superior
to qs2 for all the samples. However, according to the literature [13,68], the preferential
adsorption sites of CH4 on HKUST−1 were located in the octahedral cages of the ligand,
whereas adsorption close to the metal sites was less favored due to their lesser accessibility.
Therefore, qs1 most likely represents the monolayer CH4 saturation capacity near the ligand,
whereas qs2 describes the adsorption capacity of CH4 for the sites near the open-metal sites
of the HKUST−1 crystalline structure.

Once the fitting of the isotherm data with the dual-site Langmuir model was estab-
lished, the value of QST could be determined from the linear regression of the equilib-
rium data. Figure 12 presents the CO2/CH4 isosteric heats of adsorption calculated from
the Clausius–Clapeyron equation at different loadings of the adsorbed gas for pristine
HKUST−1, HKUST−1/TPU, and HKUST−1/PLA. It could be observed that the CO2 and
CH4 heats of adsorption were constant for all the samples as the loading of the adsorbed
gas increased. Both HKUST/TPU and HKUST−1/PLA possessed lower CO2 adsorption
heat than pristine HKUST−1. It could be proposed that the presence of TPU in the compos-
ite lessened the interaction intensity between the CO2 molecules and adsorption sites on
HKUST−1. Interestingly, the HKUST−1/PLA composite exhibited a slightly lower CH4
adsorption heat compared to pristine HKUST−1, whereas HKUST−1/TPU and pristine
HKUST−1 showed similar CH4 adsorption heats. This would mean that the presence
of TPU in the adsorbent composite did not influence the interactions between CH4 and
adsorption sites of HKUST−1, contrary to CO2.
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2.6. Prediction of CO2/CH4 Co-Adsorption Isotherm and IAST Selectivites

By using the dual-site Langmuir isotherm model for the fitting of CO2 and CH4
equilibrium data, the co-adsorption isotherms of an equimolar mixture of CO2/CH4,
representative as an average to the composition of an inlet biogas stream [4], were predicted
using IAST for all the materials. Figure 13 describes the predicted co-adsorption isotherms
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of HKUST−1/TPU, HKUST−1/PLA, and pristine HKUST−1 at 298 K, up to 10 bars. Both
HKUST−1/TPU and HKUST−1/PLA composites were predicted to have larger CO2 and
CH4 co-adsorption capacities compared with pristine HKUST−1. Furthermore, for all the
materials, CO2 was more preferably adsorbed than CH4 in these conditions.
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The adsorbent working capacity is one of the key characteristics in designing a PSA
process. The working capacity is defined as the difference between the adsorbed quantities
determined under equilibrium at the operating adsorption and purging pressures, respec-
tively. Assuming a PSA process of biogas upgrading, where the adsorption pressure and
purging pressure are 10 bars and 1 bar, respectively, the predicted CO2 and CH4 working
capacities between HKUST−1/TPU and HKUST−1/TPU are very similar to each other.
This suggests that the usage of either one or the other composite will result in similar
gas-separation performances.

All the samples exhibited a better affinity towards CO2 than CH4. For all the materials,
the ratio of equilibrium capacities of pure components was around 2. The prediction of co-
adsorption isotherms via IAST allowed for the determination of the equilibrium selectivities
of an equimolar binary mixture. Figure 14 presents the CO2/CH4 co-adsorption selectivities
as a function of the equilibrium pressure at 298 K for HKUST−1/TPU, HKUST−1/PLA,
and the pristine HKUST−1, respectively. It could be observed that CO2 was more pref-
erentially adsorbed than CH4 for all the materials. Additionally, pristine HKUST−1
had the highest selectivity value in the whole equilibrium pressure range, followed by
HKUST−1/TPU and HKUST−1/PLA. Furthermore, as the equilibrium pressure was
greater than 3 bars, the selectivities of HKUST−1/TPU and HKUST−1/PLA were no-
ticeably diminished, even if the variations remained small, whereas the selectivity of the
pristine HKUST−1 did not vary significantly. This could be explained by the larger CH4 ad-
sorption capacities of the composites, which lowered the separation selectivity despite their
larger CO2 adsorption capacities. When comparing both the composites, HKUST−1/TPU
was shown to be slightly more selective towards CO2 than HKUST−1/PLA, as the former
had a slightly lower CH4 adsorption capacity than the latter.
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of total bulk pressure. Data for pristine HKUST−1 and HKUST−1/PLA were taken from previous
study [46].

2.7. Aging along Exposure in Humid Conditions

A water contact angle analysis was conducted on both polymers (Figure S1) to deter-
mine their surface wettability and, thus, the hydrophobicity of the material. The average
water contact angles for TPU and PLA are presented in Table 3. Based on the water contact
angle value of each polymer, it can be concluded that TPU was more hydrophobic than
PLA. Therefore, the presence of TPU as a binding agent instead of PLA could contribute
to the improvement of the moisture stability of the HKUST−1 composite, which would
corroborate the findings of other studies [69–71].

Table 3. Average value of water contact angle onto the surface of TPU and PLA.

Polymer Average Contact Angle (◦)

PLA 66.9
TPU 90.3

HKUST−1 is known as a MOF that is sensitive to water as the open-metal sites of
HKUST−1 have a high affinity with water molecules, which results in the formation of
Cu-O bonds and thus leads to the disintegration of the HKUST−1 framework [72,73].
Figure 15 displays the H2O adsorption isotherm for HKUST−1/TPU, HKUST−1/PLA,
and pristine HKUST−1 at 298 K. As expected, the pristine HKUST−1 was able to adsorb a
larger quantity of water than the extruded composites when the relative humidity (RH)
increased. Furthermore, the accessible pores of the pristine HKUST−1 sample started to be
completely filled with water at P/P0 ≈ 0.17. Meanwhile, the presence of either TPU or PLA
in the composite had an effect on lowering the quantity of the adsorbed water molecules as
the relative pressure increased. It is possible that the polymeric binder partially hindered
the access of the water molecules to certain open-metal sites in HKUST−1. Interestingly, it
can be noticed that the accessible pores in HKUST−1/PLA started to be filled with water at
a similar relative pressure as pristine HKUST−1, while this was not true in HKUST−1/TPU
as the accessible pores only started to be filled at P/P0 ≈ 0.27, which could be a result of
the hydrophobic nature of TPU reducing the interaction intensity of the MOF open-metal
sites with the water.
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Figure 15. H2O adsorption isotherm plot for HKUST−1/TPU, HKUST−1/PLA and pristine
HKUST−1 at 298 K.

The composite and pristine samples were stored inside a humid environment
(RH = 40 ± 5%) for a duration of 3 months, and the samples were re-characterized during
this period to investigate the aging of the materials. The value of air RH was sufficiently
high to ensure that the pores of all the samples could be filled with humid air based on
the previous H2O isotherm plot for HKUST−1 and its composites. Figure 16 presents the
variation in the BET surface areas as well as those of the CO2 adsorption capacities at one
bar and 298 K for HKUST−1/TPU, HKUST−1/PLA, and the pristine HKUST−1 after
3 months of storage in a humid environment. As expected, pristine HKUST−1 showed
degradation of both the BET surface and CO2 adsorption capacities after 3 months of
storage in a humid environment. Meanwhile, HKUST−1/PLA had a similar degradation
pattern as the pristine HKUST−1 during the first month of storage, but the degradation
seemed to stabilize after 1 month. Interestingly, HKUST−1/TPU exhibited less sensitivity
to degradation under humid exposure than HKUST−1/PLA during the first month, which,
moreover, seemed to be halted after 1 month of storage. We hypothesized that since TPU is
more hydrophobic than PLA, it would contribute to a slower degradation of HKUST−1 in
the composite. Additionally, both polymeric binders may have hindered some access to
the MOF open-metal sites, which are the preferential adsorption sites for water molecules,
which could also explain the stabilization of the degradation for both composites after
1 month of storage.
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3. Materials and Methods
3.1. Materials

HKUST−1 (also known as Cu-BTC) is a MOF also commercially known as Baso-
lite@C300, a trademark of BASF (Beaumont, TX USA) SE. This material, denoted as the
pristine HKUST−1, was supplied in powder form by Sigma Aldrich (Saint Louis, MO, USA).
Its specific surface area, as specified by the supplier, is in the range of 1500–2100 m2/g,
and its bulk density is 0.35 g/cm3. In addition, the particles of Basolite@C300 have an
average size of 15.96 µm. Apart from that, another sample denoted as methanol-washed
HHKUST−1 was also prepared by treating/washing the pristine HKUST−1 with methanol.
TPU filament (Python Flex) was purchased from FormFutura (Amsterdam, The Nether-
lands). The melting temperature of the TPU is in the range of 493 K–523 K, according to
the supplier.

3.2. Synthesis of HKUST−1/TPU Composite

Prior to synthesis, pristine HKUST−1 powder and TPU, as received, were degassed
under a vacuum at 473 K and 383 K, respectively.

The shaping extrusion process applied to produce HKUST−1/TPU was the same as
the one employed to produce the HKUST−1/PLA composite and is described in detail
in [46]. Briefly, 0.1 g of TPU was dissolved inside 1 mL of solvent (DMF) using an ultrasonic
bath at 328 K for the duration of 1 h. Once TPU was dissolved, 0.9 g of pristine HKUST−1
powder was gradually added to the solution, and further sonification was performed
for 30 min to obtain a homogenous mixture that contained 10 wt% binder content. The
HKUST−1/TPU suspension was then inserted into a 5 mL DB syringe, followed by its
extrusion. Next, the extruded HKUST−1/TPU was briefly washed with methanol to
promote an exchange with DMF. Methanol, in having a lower boiling point than DMF,
promoted a thorough drying of the HKUST−1/TPU composite. The drying step was
performed overnight at 383 K and under vacuum to remove the leftover solvent molecules
(DMF or methanol). The dried HKUST−1/TPU composite was then cut using scissors into
small cylinders of about 1–2 mm in length. Figure 17 illustrates the synthesis process of
HKUST−1/TPU.
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3.3. Scanning Electron Microscopy

A JEOL (Peabody, MA, USA) JSM 7600F high-resolution scanning electron microscope
was used to collect images of the samples using a 15 kV electron beam, and it was equipped
with both backscattered electron (BSE) and secondary electron (SE) detectors. The material
samples were deposited on double-sided carbon tape and metalized with Pt. BSE imaging
was used to carry out an energy-dispersive X-ray spectroscopy (EDS) element mapping of
the samples.

3.4. Powder X-ray Diffraction (XRD)

A Bruker D8 Advance (Billerica, MA, USA) diffractometer equipped with a copper
anode (λ = 1.5406 Å) was used to collect XRD patterns. Data were collected in the 2θ range
from 5 to 50◦, with a step of 0.02◦ and a scan speed of 1◦/min.

3.5. Thermogravimetric Analysis

Thermogravimetric analysis (TGA) measurements were performed using a Setaram
(Caluire, France) SETSYS Evolution thermogravimetric analyzer. A total of 5 mg of samples
was heated in platinum crucibles from an ambient temperature of up to 1000 K under
20 mL/L of dry N2 flow at a heating rate of 10 ◦C/min. The blank was subtracted to correct
the TG signal. Prior to analysis, both HKUST−1 composite sample were kept in a desiccator
for a prolonged time, more than 1 month, and heated at 383 K overnight under vacuum.

3.6. Characterization of Textural Properties

The material-specific surface area was determined using 77 K-N2 adsorption isotherm
data, assuming the BET theory. The total porous volume was determined from experimental
N2 sorption data at P/P0 = 0.98. The micropore volume was derived by applying the t-plot
model to the N2 adsorption isotherms.

The N2 adsorption equilibrium data were obtained using a 3 Flex manometric adsorp-
tion analyzer from Micromeritics (Norcross, GA, USA). The instrument was equipped with
pressure transducers, allowing measurements in the domain of relative pressure (P/P0)
ranging between 10−7 and 1, with a 0.15% precision of the absolute pressure reading. The
selected pressure range for the BET surface area calculation was chosen in the domain of
10−7 ≤ P/P0 ≤ 10−2 to respect the four consistency criteria of the BET equation, as sug-
gested by Rouquerol et al. [74]. Prior to isotherm measurement, the sample was degassed
at 383 K under vacuum for at least 72 h. The void volume of the cell containing the sample
was evaluated from helium expansion measured at an ambient temperature and at 77 K.

3.7. Attrition Test

The mechanical stability of the samples was characterized through the attrition test
according to the standard D4058-96 ASTM norm. Briefly, 0.2 g mass of material was
introduced into a glass vial and was rolled at a frequency of 60 revolutions per minute
(rpm) for 30 min. Afterward, the sample was passed through a 500 µm sieve to recover fine
particles. The attrition percentage was calculated as follows.

Attrition (%) =
initial mass − recovered mass above 500 µm

initial mass
× 100 (2)

3.8. CO2 and CH4 Adsorption Isotherms

CO2 and CH4 adsorption isotherms were measured using two manometric pieces
of equipment. The isotherm data in the pressure range from 1 to 10 bars were collected
using the Pressure-Composition Thermodynamics (PCT)-Pro (manometric equipment from
SETARAM, Caluire, France). In the low-pressure range, less than 1 bar, the isotherm
data were obtained with the 3 Flex apparatus from Micromeritics. In both the low- and
high-pressure ranges, adsorption isotherms data were collected at three temperatures:
273 K, 298 K, and 323 K. Prior to each measurement, the samples were degassed under a
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dynamic vacuum at 383 K for 12 h, and the sample holder dead volume was measured
from helium expansion.

3.9. Isosteric Heat of Adsorption

The heat of the adsorption of the components of a gas mixture is a key thermodynamic
variable for the design of practical gas-separation processes such as pressure swing and
thermal swing adsorption [75,76]. Knowledge of the heat of adsorption helps to determine
the extent of adsorbent temperature changes within the adsorbent bed during the adsorp-
tion and regeneration processes, which ultimately govern the gas-separation performance.
Apart from that, it also allows for the quantification of the adsorbent–adsorbate interaction
intensity. The isosteric heats of the adsorption were derived from the application of the
Clausius–Clapeyron equation:

ln
P2

P1
=

QST
R

× (
1

T1
− 1

T2
) (3)

where QST was the isosteric heat of adsorption, T was the temperature, and R was the
universal gas constant with a value of 8.314 J/mol K. The values of QST were determined for
different gas loadings, regressing the isotherm data measured at three different temperatures.

3.10. Ideal Adsorption Solution Theory (IAST)

The Ideal Adsorption Solution Theory, developed by Myers and Prausnitz [77], is a
thermodynamic model enabling the prediction of co-adsorption isotherms of gas mixtures.
The theory assumes that the gas-adsorbed phase system is analogous to a vapor-liquid
equilibrium state following Raoult’s law [78]. It relies on three major assumptions: (i) the
change in the thermodynamic properties of the adsorbent when gas molecules adsorb is
negligible compared to the change in those for the adsorbate; (ii) each adsorbed species
has access to the same area of the adsorbent surface; (iii) the Gibbs definition applies to
the adsorbed phase [77]. IAST provides a solid theoretical foundation for predicting multi-
component adsorption isotherms from single-component adsorption isotherms. IAST has
been found to reliably predict the co-adsorption isotherms and selectivities of CO2/CH4
mixtures in MOF adsorbents [20,79].

The computational process of the IAST model is described in detail elsewhere [77,80,81].
In this work, IAST isotherm calculation was performed with the aid of the IAST++ program
to assess the separation performance of binary equimolar CO2/CH4 mixtures at 298 K [81].
Based on the prediction of the IAST co-adsorption isotherms, the equilibrium selectivity
of the adsorbent samples αi/j could be determined in the whole range of tested pressure
and temperature:

αi/j =
xi,/yi
xj,/yj

(4)

where xi and xj were the molar fraction of components i and j in the adsorbed phase; and yi
and yj were the molar fractions of components i and j in the gas phase.

3.11. Water Contact Angle

The water contact angle over the polymer binding agents was measured using the
sessile droplet method. Prior to analysis, a flat film of the TPU or PLA sample was prepared
using the solvent casting technique. Briefly, 1 g of TPU or PLA was dissolved in DMF or
chloroform, respectively. The dissolved polymer was then cast into a glass Petri dish and
heated at 383 K overnight to remove the solvent and obtain thermoplastic film samples.
Once a flat film sample of thermoplastic was obtained, a distilled water droplet was
deposited from a syringe on the surface of the sample. An image of the water droplet was
immediately taken by a high-speed digital microscope camera (Amscope (Irvine, CA, USA)
MU1000), and the contact angle, θ, between the droplet and the surface of the samples
was determined using the ImageJ software (version 1.53t) [82]. The water contact angle
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can be used as an indicator of surface wettability: when θ < 90◦, the sample is considered
hydrophilic; when 90◦ < θ < 120◦, the sample is hydrophobic; and when θ > 120◦, the
sample is super-hydrophobic. Each test was repeated five times, and the reported results
were the average of these five measurements.

3.12. Water Adsorption Isotherms and Material Aging under Humid Atmosphere

The measurement of H2O adsorption isotherms was performed using the manometric
equipment, a 3 Flex apparatus from Micromeritics. Water adsorption isotherm data were
collected at 298 K from 0 to 2.1 kPa. Prior to each measurement, the material samples were
degassed under a dynamic vacuum at 393 K for 12 h, and the sample holder dead volume
was measured from helium expansion.

Material aging and stability to moisture were assessed during storage under atmo-
spheric humid conditions by leaving the adsorbent samples inside a room at a controlled
temperature of 25 ± 5 ◦C and at a relative humidity (RH) of 40 ± 5% for a duration of
3 months. The properties of the stored samples were then re-characterized via measure-
ments of the N2 adsorption isotherms at 77 K and CO2 adsorption isotherms up to 1 bar at
298 K.

4. Conclusions

In this work, hydrophobic TPU was used as a binding agent for the shaping of
HKUST−1 powder using an extrusion process. The resulting composite was characterized,
and its properties were compared with those of synthesized HKUST−1/PLA, obtained
after the same shaping process using PLA as a more hydrophilic polymeric binder. The
characterization confirms the successful shaping of HKUST−1 powder using TPU as a
binder. The HKUST−1/TPU composite exhibited comparable textural properties, thermal
stability, and mechanical stability to the HKUST−1/PLA composite. HKUST−1/TPU
demonstrated comparable equilibrium adsorption capacities and IAST selectivities as
HKUST−1/PLA for CO2/CH4 separation. The adsorption capacities of both composites
were shown to be larger than the HKUST−1 pristine powder. Such an improvement
was attributed to the methanol washing effect applied during the composite preparation
before their drying. Methanol-washed HKUST−1 powder was characterized by the largest
adsorption capacities when compared with pristine powder and both the PLA and TPU
composites. Additionally, HKUST−1/TPU had a higher heat of adsorption for CO2 than
for CH4, and these data are not dependent on the amount of gas adsorbed. Finally, as TPU
was more hydrophobic than PLA, the use of that polymer as a binding agent contributed to
a decrease in the degradation rate of the adsorbent after storage in a humid environment
for several months. On the whole, this study demonstrates the feasibility of using TPU
as a polymeric binder for the shaping of commercial HKUST−1 powder. The extrusion
process results in the production of an adsorbent well-suited to be used in an industrial
gas-separation process thanks to its good adsorption performance, mechanical and thermal
properties, and stability after a long period of storage in a humid atmosphere.
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tion isotherm plot for pristine HKUST−1, methanol-washed HKUST−1 and HKUST−1/PLA com-
posites with different binder fraction; Table S1: Fitting Parameters of the dual-site Langmuir Isotherm
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