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Abstract: This review postulates that age-related neurodegeneration entails inappropriate activation
of intrinsic pathways to enable brain plasticity through deregulated calcium (Ca2+) signalling. Ca2+ in
the cytosol comprises a versatile signal controlling neuronal cell physiology to accommodate adaptive
structural and functional changes of neuronal networks (neuronal plasticity) and, as such, is essential
for brain function. Although disease risk factors selectively affect different neuronal cell types
across age-related neurodegenerative diseases (NDDs), these appear to have in common the ability
to impair the specificity of the Ca2+ signal. As a result, non-specific Ca2+ signalling facilitates the
development of intraneuronal pathophysiology shared by age-related NDDs, including mitochondrial
dysfunction, elevated reactive oxygen species (ROS) levels, impaired proteostasis, and decreased
axonal transport, leading to even more Ca2+ dyshomeostasis. These core pathophysiological processes
and elevated cytosolic Ca2+ levels comprise a self-enforcing feedforward cycle inevitably spiralling
toward high levels of cytosolic Ca2+. The resultant elevated cytosolic Ca2+ levels ultimately gear
otherwise physiological effector pathways underlying plasticity toward neuronal demise. Ageing
impacts mitochondrial function indiscriminately of the neuronal cell type and, therefore, contributes
to the feedforward cycle of pathophysiology development seen in all age-related NDDs. From
this perspective, therapeutic interventions to safely restore Ca2+ homeostasis would mitigate the
excessive activation of neuronal destruction pathways and, therefore, are expected to have promising
neuroprotective potential.

Keywords: age-related neurodegeneration; calcium dyshomeostasis; Alzheimer’s disease

1. Introduction

Age-related neurodegenerative diseases (NDDs) have in common the dysfunction
and demise of neurons in the brain, particularly in the elderly population. Depending on
the type and, therefore, function of the neurons subjected to degeneration, corresponding
symptoms develop. For instance, in amyotrophic lateral sclerosis (ALS), motor neurons
degenerate, leading to movement abnormalities, whereas in Alzheimer’s disease (AD),
neurons operating in networks for memory formation and cognition deteriorate. In some
cases, the underlying cause (or at least the most prominent cause) of age-related NDDs is
known, such as in familial forms of neurodegeneration. A classic example entails familial
Alzheimer’s disease (fAD), in which mutations in certain risk genes result in elevated
production of neurotoxic amyloid beta (Aβ). However, far more often, the cause or causes
leading to neurodegeneration in individual patients are not known. Nevertheless, many risk
factors have been identified that increase the likelihood of developing neurodegeneration.
These risk factors entail a plethora of conditions, characteristics, or lifestyles and can be
either positive or negative (protective). Typically, these risk factors have a low penetrance
and, therefore, in isolation, are not sufficient to cause neurodegeneration. Rather, it appears
that the accumulation of several positive risk factors and/or the absence of negative risk
factors at some point overwhelm neurons’ ability to maintain cellular homeostasis for
optimal function [1]. For example, whereas ageing is a prominent and universal risk factor
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of age-related NDDs, ageing alone is not sufficient to cause neurodegeneration, as many
people age without developing neurodegeneration. However, in combination with other
low-penetrant risk factors such as, hypothetically, a sedentary lifestyle, smoking, and
traumatic brain injury, it may further increase the risk to a level that neurodegeneration
ensues, leading to AD symptoms during the lifetime of the individual involved.

A salient and poorly understood topic in the field is that, although typically all neurons
of the CNS are exposed to, experience, or have experienced the same risk factors, typically,
a selective population of neurons is the most vulnerable; hence, the different symptoms
across NDDs. For instance, in the case of the fAD gene mutations mentioned above,
hippocampal and cortical neurons are among the most vulnerable neurons, even though,
obviously, all neurons carry these mutations. This is similar to ALS, in which specific
risk gene mutations selectively affect motor neurons. Another notable observation is that
although NDD risk factors are very diverse in nature and can impact different neuronal
cell types, the intraneuronal pathophysiology in the affected neurons is remarkably similar,
and neurodegeneration is the common outcome.

Hence, important conceptual questions about the mechanisms of neurodegeneration
are unanswered or poorly understood. What molecular mechanisms enable or execute
neurodegeneration? What are the common elements of such mechanisms across different
neurodegenerative diseases? What is the role of ageing? What underlies selective neuronal
vulnerability? Addressing these questions will increase our understanding of mechanisms
underlying age-related neurodegeneration and possibly facilitate drug discovery and
development approaches to counter neurodegeneration in patients. This brief review aims
to provide new perspectives in a rather conceptual manner to progress our thinking about
these important questions.

2. Making and Breaking Neuronal Connections: An Intrinsic Property of the Brain

Neurodegeneration is not a passive phenomenon that occurs spontaneously under
certain pathological or adverse conditions; it entails active processes and pathways geared
towards the elimination of neurons and/or neuronal structures (see Table 1 with references).
This concept highlights a fundamental intrinsic characteristic of the brain: remodelling and
reshaping brain networks to establish new connections while eliminating dysfunctional or
underused connections. This process, known as brain plasticity [2,3], allows the nervous
system to change and adapt in response to intrinsic or extrinsic stimuli and, as such, is key
for brain function. For instance, the formation of new memories entails a structural change
in which new synaptic connections are made or strengthened. On the other hand, during
sleep, pruning of unused or dysfunctional synapses makes free space for new synaptic
connections. An extreme example of brain plasticity is the developing brain in which many
new connections are established but at the same time features massive destruction of about
50% of the postmitotic neurons [4].

Table 1. The anticipated impact of Ca2+ dyshomeostasis on neuronal structures, function, and
survival. Effectors are listed alphabetically.

Ca2+ Sensitive Effectors
(Not Exhaustive)

Anticipated Intraneuronal Pathophysiology/Neuronal
Destruction Pathways under Conditions of Ca2+

Dyshomeostasis
References

Calcineurin Synaptic depression, dendritic spine loss, apoptosis, altered
mitochondrial dynamics, inhibition of axonal outgrowth [5–20]

Calpains Dendritic pruning, axonal degeneration [21–25]
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Table 1. Cont.

Ca2+ Sensitive Effectors
(Not Exhaustive)

Anticipated Intraneuronal Pathophysiology/Neuronal
Destruction Pathways under Conditions of Ca2+

Dyshomeostasis
References

Calpain-p25-CDK5
Calpain-GSK3
Calpain-tau

Apoptosis, phosphorylation tau, neurotoxic Aβ generation,
synaptic dysfunction, mitochondrial dysfunction, excessive
ROS production, neurotoxic tau fragments

[26–29]

CamKII Phosphorylation tau, apoptosis, necrosis, synaptic degeneration [30,31]

ER function Impaired proteostasis, ER-stress-induced apoptosis (because of
depleted Ca2+ levels in the ER) [32,33]

IP3 and ryanodine receptors Ca2+ dyshomeostasis (by elevated CICR) [34–37]

MAPK (ERK) Apoptosis [38–41]

Miro Stalled axonal trafficking mitochondria [42]

Mitochondrial function Ca2+ dyshomeostasis, apoptosis, necroptosis, excessive ROS
production, ATP production [43,44,44–47]

Proteasome Axonal degeneration [48,49]

RIPK Necroptosis [22,50]

vATPase function Impaired lysosomal-autophagosome function [51]

Vesicular trafficking APP processing, tau-exocytosis [52–57]

Considering the brain operates through intrinsic physiological processes which both
“make or break” neuronal structures implies a careful balance of these processes to secure
optimal brain plasticity and, hence, brain function. From this perspective, when assuming
pathological or adverse conditions triggering an imbalance of these intrinsic processes
toward excessive destruction of neurons and/or neuronal structures, neurodegeneration
would be the expected outcome. In other words, the context in which these processes
operate specifies whether the outcome is beneficial or detrimental. For instance, the devel-
oping brain has features reminiscent of an AD brain, such as tau hyperphosphorylation
and even tau aggregation [58], thus appearing to reflect common mechanisms underly-
ing physiological brain plasticity during development and neurodegeneration in disease.
Similarly, during hibernation, a physiological context of extensive brain remodelling, tau
phosphorylation, a hallmark of AD, is increased [59,60]. Assuming neurodegeneration
entails inappropriate regulation of intrinsic, physiological mechanisms of neurodestruction
is in line with the observation that across different NDDs, the pathophysiology appears
similar. A compelling example is the common pathophysiology in different NDDs, such
as stroke and dementia [61,62]. Below, I will discuss in more depth the commonality of
intraneuronal pathophysiology across different age-related NDDs.

Collectively, from a conceptual viewpoint, neurodegeneration may entail deregulation
or imbalance of intrinsic, physiological mechanisms to enable brain plasticity. Decades of
research have indicated that intracellular Ca2+ constitutes an important regulator of brain
plasticity; therefore, it will be explored in relation to NDDs in the next section.

3. Intracellular Calcium: The Concentration Gradient Specifies Its Function for Better
and for Worse

In neurons (like in many other cell types), cytosolic Ca2+ functions as an extremely
versatile messenger controlling a wide variety of cellular functions and processes to ensure
optimal function, including brain plasticity, as mentioned above [63]. A key feature of
intracellular Ca2+ signalling entails the concentration gradient: relatively low Ca2+ levels
in the cytosol and much higher concentrations in organelles such as the ER or the extracel-
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lular environment. To maintain this large and, therefore, vulnerable gradient, extensive
mechanisms have evolved to transport cytosolic calcium against the concentration gradient.
Physiological stimuli that alter the permeability of Ca2+ across membranes separating
the gradient enables a transient flow of Ca2+ into the cytosol. In turn, this signal modu-
lates Ca2+-sensitive processes or signalling pathways (effectors) to impact the physiology
and function of the cell. Classic examples are receptor-mediated influx of Ca2+ through
the inositol trisphosphate receptor from the endoplasmic reticulum (ER) or through the
N-methyl-D-aspartate (NMDA) receptor at the plasma membrane upon stimulation by glu-
tamate. Further, the kinetics of Ca2+ rise in the cytosol is another critical aspect of calcium
control. Transient high increases in the cytosol may have different, and sometimes opposite,
outcomes compared to prolonged modest elevations. For instance, whereas high transient
increase potentiates synaptic strength, the opposite effect is caused by lower, more chronic
elevations of cytosolic Ca2+ [64]. In other words, in addition to the concentration in the
cytosol, the spatiotemporal properties of the calcium signal also specify the outcome [65].

The first column of Table 1 provides a selection of calcium-sensitive effectors in neu-
rons. These effectors regulate key physiological processes to enable brain plasticity. The
broad and diverse role of calcium underscores the importance of maintaining precise con-
trol of its concentration gradient. Adverse conditions that compromise this gradient result
in an inappropriately specified Ca2+ signal, consequently leading to abnormal activity
of otherwise physiological Ca2+ effectors, as outlined in Table 1. Many of these effectors
mediate the pruning of synapses, axons, and dendrites or enable neuronal demise. In other
words, in the absence of an optimal Ca2+ concentration gradient (i.e., Ca2+ dyshomeosta-
sis), the Ca2+ signal in the cytosol is not properly specified, leading to non-selective and
excessive activation of neuronal destruction pathways (Table 1). A key example entails
the chronic activation of calcineurin, a calcium-sensitive phosphatase, which regulates the
mechanism underlying synaptic depression, spine loss, and apoptosis [5–7].

In summary, intracellular calcium constitutes the central messenger controlling the
fate and function of neurons to enable brain plasticity. However, under conditions of
Ca2+ dyshomeostasis, the Ca2+ signal is not appropriately specified and geared towards
neurodegeneration through excessive or incorrect activation of effector pathways.

4. Risk Factors of Neurodegeneration Compromise the Ca2+ Concentration Gradient

Maintaining the large Ca2+ concentration gradient is a challenging feat requiring
energy (ATP), extensive calcium transport, and organellar Ca2+ storage systems. It is, there-
fore, also a fragile system sensitive to adverse conditions. CALMH1 P86L polymorphism is
an example of a genetic risk factor of sAD, which, through its Ca2+ activity, may directly
impact Ca2+ homeostasis in AD. Other examples include mutations in presenilin 1 and
-2 [66] and the ApoE4 allele [67]. Ageing is a prominent example of non-genetic risk factors
that impact Ca2+ homeostasis. One important consequence of ageing is the progressive
decline of mitochondrial function caused by reactive oxygen species (ROS), a byproduct
of electron transfer chain activity. In turn, decreased mitochondrial function limits the
production of ATP required for maintaining the Ca2+ gradient [68,69]. Further, mitochon-
dria take up cytosolic Ca2+ and act as important buffers to maintain Ca2+ homeostasis.
Under conditions of excessive levels of calcium in the cytosol, the consequential excessive
accumulation of intra-mitochondrial Ca2+ levels facilitates elevated ROS production, hence
further contributing to ROS levels in the cell [70,71]. Further, elevated ROS oxidises and
thereby lowers Ca2+ transporter activities necessary to maintain the Ca2+ gradient [43].
At some point, the Ca2+ buffering capacity of mitochondria may become overwhelmed,
triggering increased opening frequency of the mPTP pore followed by a release of pro-death
signals such as cytochrome C [71]. Under these conditions, mitochondria effectively turn
into neurotoxic entities driving neuronal demise. Even more, the absence of efficient mito-
chondrial buffering sets the stage for even further elevations of cytosolic calcium in the cell,
thus further contributing to neurodegeneration by excessive activation of Ca2+-sensitive
destruction pathways, as listed in Table 1.
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The above-outlined scenario illustrates a feedforward loop in that mitochondrial
dysfunction, ROS production, and Ca2+ dyshomeostasis are intertwined, reinforcing pro-
cesses [44,71], which, once out of control, spiral to abnormally high, potentially even
catastrophic levels of cytosolic calcium. Such a sequence of events is well illustrated after
acute brain trauma. The primary physical insult causes a dramatic release of glutamate
from damaged neurons, a neurotransmitter that activates glutamatergic receptors, lead-
ing to an accordingly massive influx of calcium in the cytosol of neighbouring neurons,
ultimately leading to neuronal demise (known as excitotoxicity) mechanistically similar
to that explained above [72]. This, in turn, may lead to even further release of glutamate
(sometimes referred to as “glutamate storm”), propagating the destruction of neurons
beyond the primary lesion [73].

In the case of AD, the most prominent age-related NDD, a central role of Ca2+ dyshome-
ostasis has been proposed [1,34,64,74–76]. Risk factors of AD, which, unlike in the case of
acute brain trauma, are wildly divergent, appear to have in common the impact, in one way
or the other, of the Ca2+ concentration gradient [1,77]. Likewise, the risk gene mutations
in fAD leading to elevated formation of neurotoxic Aβ assemblies disrupt the calcium
concentration gradient to enable neurodegeneration [78–80]. Also, the neurotoxicity of
pathological tau, another key hallmark of AD, involves calcium dyshomeostasis, at least in
part through Ca2+ influx by potentiating NMDA receptor activity [81,82]. In AD, an even
more central role of abnormally elevated cytosolic Ca2+ in neurodegeneration is illustrated
by the observations that impaired calcium homeostasis in itself facilitates the formation
of tau and Aβ pathology [75,78,83]. In other words, calcium dyshomeostasis is the cause
and consequence of Aβ/tau pathology and further contributes to the development of
intraneuronal pathophysiologies, such as mitochondrial dysfunction and elevated ROS
production, in a reciprocal fashion, as outlined above [1].

In a scenario in which pathophysiology and elevated calcium dyshomeostasis bidi-
rectionally reinforce each other, it follows that disease and/or patient-specific risk factors
ultimately converge to Ca2+ dyshomeostasis and, consequently, neurodegeneration (Fig-
ure 1) through excessive activation of neuronal regression pathways (Table 1). This has led
to the proposition that, at least in the case of AD, risk factors are risk factors because they
impair or challenge the mechanisms underlying Ca2+ homeostasis [1]. This notion predicts
that the penetrance of risk factors is determined by the extent to which risk factors impact
Ca2+ homeostasis. For instance, highly penetrant and early-onset-causing risk factors, such
as elevated formation of neurotoxic Aβ, are expected to have a more aggressive impact
on Ca2+ homeostasis than risk factors with low penetrance, such as ageing. Given the
central role of Ca2+ in controlling function and survival, it comes as no surprise that in
NDDs other than AD, Ca2+ dysregulation drives the formation of the pathophysiology
and neurodegeneration [44,45,84–86] (further discussed below). Examples of this include
spinocerebellar ataxia [87], frontotemporal dementia [88], or Creutzfeldt–Jakob disease [89].

In summary, the risk factors of NDDs appear to have in common the ability to set off a
vicious cycle in which calcium dyshomeostasis drives the pathophysiology and vice versa,
ultimately spiralling to suboptimal or even catastrophic levels of cytosolic Ca2+ geared
toward excessive activation of neuronal destruction pathways and processes (Figure 1).
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Figure 1. Schematic of the mechanisms underlying neuronal cell-type specific age-related neurode-
generation NDD risk factors impact directly or indirectly one or more core physiological processes
in vulnerable neuronal populations predisposed to these risk factors: mitochondrial dysfunction,
elevated ROS production, impaired proteostasis, decreased axonal trafficking, and calcium dyshome-
ostasis. Ageing is a risk factor that affects the pathophysiology indiscriminately of neuronal identity.
These pathophysiological processes are engaged with cytosolic calcium in a vicious feedforward
cycle, ultimately leading to excessive activation of Ca2+ effector pathways (Table 1). This cascade of
events enables destruction and dysfunction of the vulnerable neuronal cell type, and consequently,
associated neuronal cell type-specific neuropathology develops, leading to disease-specific symptoms.
Green text indicates the most effective point of a therapeutic intervention entailing mitigation or
prevention of an abnormal rise in Ca2+ in the cytosol. See text for more details.

5. Selective Neuronal Vulnerability to Risk Factors (Except Ageing)

One of the least understood questions in the field relates to the selective vulnerability
of certain neuronal cell types to disease-causing risk factors, whereas typically, these risk
factors are not neuronal cell type-specific. For instance, clinical mutations in early-onset
genes will be present in every neuron, yet their effects often impact certain neuronal
subpopulations. Alternatively, persistently elevated glucocorticoids, a risk factor of AD
caused by chronic stress [90], are likely exposing all neurons, yet hippocampal neurons are
among the most vulnerable neurons. Although the answers to these questions are largely
elusive, one can envisage, conceptually at least, two general conditions or prerequisites
underlying the selective vulnerability. The first one may entail an inherent specific attribute
of neurons that causes them to be impacted more strongly than other neuronal cell types
by the respective risk factor (“intrinsic predisposition”). For instance, in the example
above regarding stress hormones, neurons with a relatively high density of functional
stress hormone receptors at the plasma membrane [90] are expected to be more strongly
impacted by glucocorticoids than neurons that have low or no glucocorticoid signalling; PD
risk factor MPTP targets selectively dopaminergic neurons because dopamine transporter
(DAT), which transports MPTP across the plasma membrane [91], is exclusively present in
this type of neuron.

A second condition one can envisage is to what extent risk factors impact the most
limited process for a specific neuron type for optimal function (“physiological predispo-
sition”). In other words, what is the weakest link affected by adverse conditions? For
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instance, specific cellular or physiological determinants attributed to the neuronal identity
confer selective vulnerability to alpha-synuclein or tau toxicity [92]. In the MPTP example
above, the weakest link in dopaminergic neurons might be the antioxidant defence. This
function is relatively stretched, given that dopaminergic neurons have a high oxidative
stress load because of high ROS production associated with dopamine metabolism [93], and
further because the levels of Fe2+/3+, a redox-active metal ion is accumulated in this type of
neuron [94,95]. If, then, MPTP, a mitochondrial toxin, triggers excessive mitochondrial ROS
production, this might be the “last straw that breaks the camel’s back”, overwhelming the
antioxidant defence and triggering neuronal demise through the mechanisms explained
above. Likewise, in ALS, the risk factors affecting axonal transport or processes requiring
axonal transport are possibly the most sensitive to motor neurons because of their very
long axons, which imposes huge challenges for axonal transporting systems to maintain
functional axonal terminals [96,97]. Alternatively, in the case of AD, vulnerable neurons
in the hippocampus are relatively sensitive to hypoxia [8], possibly because this neuronal
type appears to consume oxygen at a relatively high rate, given that the hippocampus is
amongst the most vascularised brain regions [98].

Irrespective of the above, ageing is a universal risk factor for age-related neurodegen-
erative disorders. In other words, it seems likely that ageing impacts pathophysiological
elements shared by age-related NDDs. As outlined above, mitochondrial dysfunction
is a prominent mechanism of biological ageing, suggesting the pathophysiology directly
or indirectly associated with it (such as oxidative stress, Ca2+ dyshomeostasis, ER stress)
underlies the common intraneuronal pathophysiology across NDDs.

Thus, intrinsic and physiological predispositions to NDD risk factors may comprise
at least two characteristics underlying neuronal selectivity. Although such anticipated
predispositions are, at this point, rather hypothetical, they may provide a conceptual context
to understand the selective vulnerability of neurons. For instance, what intrinsic and/or
functional dispositions may medium spiny neurons have to account for the selectivity
towards mutant huntingtin in HD? Or motor neurons carrying SOD1 clinical mutations for
ALS? Ageing is a universal risk factor (for age-related NDDs), indicating that mitochondrial
dysfunction and associated pathophysiology comprise common mechanisms underlying
age-related neurodegeneration.

6. Different Risk Factors Impacting Different Neuronal Cell Types but Yet a
Common Outcome

Although disease risk factors and the correspondingly affected neuronal cell types differ
across neurodegenerative diseases, surprisingly, the intraneuronal pathophysiology in the
diseased neurons is remarkably similar. Prominent common “core” elements of intraneu-
ronal pathophysiologies entail mitochondrial dysfunction, increased oxidative stress, calcium
dyshomeostasis, reduced axonal trafficking, and impaired proteostasis [44,99–101].

As discussed above, at least a subset of these core pathophysiological processes
are engaged with Ca2+ dyshomeostasis in a vicious feedforward cycle. Mitochondrial
dysfunction with associated ROS production, impaired proteostasis, or calcium-induced
calcium release (CICR) are prominent examples in which the cause and consequence of Ca2+

is dyshomeostasis. This is not surprising given the central role of Ca2+ in virtually all aspects
of cell physiology, including those that control Ca2+ homeostasis. However, although the
pathophysiology has common core elements, it appears that the neuropathology is (at least
to some extent) disease-specific. For instance, the formation of Aβ pathology in cortical
neurons in AD does not seem to occur in motor neurons in the case of ALS. Alternatively,
aggregation of huntingtin is only observed in HD. Apparently, the specific outcome of
shared pathophysiological processes, such as impaired or limited proteostasis, can result in
a neuronal cell type and, thus, disease-specific protein deposition pathology (Figure 1).

Collectively, risk factors of neurodegeneration may promote one or more elements of
the shared pathophysiology (Figure 1). Given the interdependent and reinforcing nature of
these core intraneuronal pathophysiological processes (mitochondrial dysfunction, ROS
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production, impaired proteostasis, reduced axonal transport, and Ca2+ dyshomeostasis), it
ultimately leads to similar or overlapping pathophysiology across neurodegenerative dis-
eases. An inevitable and common outcome constitutes a suboptimal or even a catastrophic
rise of cytosolic calcium, executing neurodegeneration through the excessive activation of
intrinsic mechanisms of neuronal demise (Table 1). Ageing, through an impact on mito-
chondrial health, constitutes a risk factor impacting a core pathophysiological process in a
neuronal cell-type indiscriminate manner and, as such, constitutes a risk factor shared by
all age-related neurodegenerative diseases.

7. Therapeutic Approaches: Restoring the Distorted Calcium Gradient

The mechanism outlined in Figure 1 illustrates that risk factors of neurodegenerative
diseases trigger pathophysiology in a feedforward fashion in conjunction with cytosolic
Ca2+, leading to neurodegeneration. From this follows that therapeutic interventions that
mitigate or prevent the pathological rise of cytosolic Ca2+ are expected to have a large
therapeutic potential across different NDDs. After all, such an approach would break
most effectively the anticipated vicious cycles of core pathophysiology processes leading
to neuronal death. In other words, such interventions would enable neurons to be more
resilient to adverse disease risk factors.

From a more practical perspective, however, approaches to normalising Ca2+ home-
ostasis safely are challenging precisely because Ca2+ has such a central role in regulating
physiology, not only in neurons but in virtually all cells of the body. Targeting specific mod-
ulators of Ca2+ homeostasis (Table 2), such as, for example, specific calcium transporters or
ionotropic receptors, typically has two major shortcomings. Firstly, their inhibition may
also impact their physiological function and, thus, could lead to undesirable side effects
unless it is done in a controlled, partial manner. Secondly, targeting only one specific player
controlling Ca2+ homeostasis may be too limited to achieve a clinically meaningful lowering
effect on cytosolic calcium because calcium dyshomeostasis is controlled by a multitude of
different processes. An excellent example illustrating these points is memantine, one of the
therapeutic options in AD (Table 2). This drug partially antagonises the NMDA receptor, as
full inhibition most likely would lead to unwanted side effects, and the NMDAR is just one
of the many players leading to Ca2+ dyshomeostasis in AD. Hence, although conceptually
it illustrates that restoring Ca2+ homeostasis is a valid approach to treating AD, at the same
time, these limitations seem to limit the effect size in patients.

Table 2. Small molecule modulators of calcium homeostasis and their effects. Compounds are
listed alphabetically.

Compound Target Effects in Non-Clinical Models and
(Where Indicated) in Patients References

Dantrolene RyR
Reduces amyloid pathology, normalises
synaptic plasticity, and improves
behavioural performance.

[102–104]

Isradipine, nimodipine,
nitrendipine Cav1.2 channel

Reduces amyloid and tau pathology,
improves autophagy, and mitigates
cognitive impairment.
Possibly some benefit in patients.

[105–109]

Levetiracetam SV2a Mitigates network hyperactivity and
improves learning and memory. [110]
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Table 2. Cont.

Compound Target Effects in Non-Clinical Models and
(Where Indicated) in Patients References

Memantine NMDA receptor

Dendritic spine regeneration, rescue of
synaptic plasticity, reduced
hippocampal CA1 neuron loss
reduction Aβ/tau pathology, and
improved learning and memory
performance.
Benefits cognitive, functional, global,
and behavioural endpoints in patients.

[111–114]

NDC-1173, CDN1163 SERCA pump activator Improves memory and other
behavioural read-outs. [115,116]

REM0046127 SOCE modulator
Full rescue of synaptic plasticity, EEG,
and cognition. Reduces inflammation
and Aβ/tau pathology.

Personal communication GG

S107 (Rycal) RyR2 macromolecular
complex

Reduces APP cleavage and Aβ

production and restores synaptic
plasticity and cognitive deficits.

[117,118]

TG-2112x Lowers mitochondrial
Ca2+ uptake Mitigates glutamate excitotoxicity. [119]

Abbreviations: RyR: ryanodine receptors; SV2a: synaptic vesicle glycoprotein 2A; NMDA: N-methyl-D-aspartate;
SERCA: Sarcoendoplasmic reticulum calcium ATPase.

At present, no clinically validated therapeutic concepts are known that effectively
normalise calcium homeostasis in diseased neurons of patients in a safe way. Some con-
cepts or candidate drugs under study are listed in Table 2. However, one approach that
comes close entails chronic treatment with calcineurin inhibitors cyclosporine and FK506.
Calcineurin (CN) is a prominent Ca2+-sensitive phosphatase that extensively regulates
neuronal functionality and survival. In animal models of AD, CN inhibition restores
synaptic plasticity with a large effect size [9,120]. In a retrospective analysis, chronic ad-
ministration of calcineurin inhibitors cyclosporine and tacrolimus to patients who had
undergone organ transplantation were virtually fully spared from developing dementia
compared to the general population [10]. These data suggest that normalising calcium
homeostasis is a promising approach for treating neurodegenerative diseases, especially
because this would not only normalise CN activity but all deranged calcium-sensitive
effector pathways mediating neurodegeneration (Table 1). Unfortunately, the systemic side
effects of direct inhibition of CN are quite severe and may preclude using CN inhibitors as
drugs for treating NNDs unless perhaps patient-compliant CNS delivery methods, such as
nasal or intrathecal administration, become available.

8. Conclusions

Collectively, this review outlines a mechanism of neurodegeneration in which risk fac-
tors of neurodegeneration impact directly or indirectly one or more core physiological pro-
cesses in vulnerable neuronal populations predisposed to these risk factors: mitochondrial
dysfunction, elevated ROS production, impaired proteostasis, decreased axonal trafficking,
and calcium dyshomeostasis. Ageing is a risk factor that contributes to thepathophysiology
indiscriminately of neuronal cell type. These pathophysiological processes are engaged
with cytosolic calcium in a vicious feedforward cycle, which ultimately leads to excessive
activation of Ca2+ effector pathways geared toward neuronal destruction of vulnerable neu-
rons. Consequently, normalising Ca2+ homeostasis would be the most effective therapeutic
intervention, provided it does not overly impact physiological calcium signalling.
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