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Abstract: Different levels of EspP2 expression are seen in strains of Glaesserella parasuis with high
and low pathogenicity. As a potential virulence factor for G. parasuis, the pathogenic mechanism of
EspP2 in infection of host cells is not clear. To begin to elucidate the effect of EspP2 on virulence,
we used G. parasuis SC1401 in its wild-type form and SC1401, which was made EspP2-deficient.
We demonstrated that EspP2 causes up-regulation of claudin-1 and occludin expression, thereby
promoting the adhesion of G. parasuis to host cells; EspP2-deficiency resulted in significantly reduced
adhesion of G. parasuis to cells. Transcriptome sequencing analysis of EspP2-treated PK15 cells
revealed that the Rap1 signaling pathway is stimulated by EspP2. Blocking this pathway diminished
occludin expression and adhesion. These results indicated that EspP2 regulates the adhesion of
Glaesserella parasuis via Rap1 signaling pathway.
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1. Introduction

Gram-negative Glaesserella parasuis (G. parasuis) is a member of the Pasteurella family
of bacteria that is dependent on nicotinamide adenine dinucleotide (NAD) [1]. It is an
opportunistic parasitic pathogen that can cause a condition known as Glässer’s disease;
symptoms include polyserositis, arthritis, and sepsis [2]. There are now 15 serovars of
G. parasuis known, ranging in virulence from highly virulent to nonvirulent [3]. To prevent
G. parasuis infection of pigs, vaccination and antibiotic therapy are the most widely utilized
methods. However, because of their low protective efficacy or poor cross-protection vaccine,
failures are frequently reported [4]. Additionally, clinical isolates of G. parasuis exhibit
resistance to several antibiotics [3]. Accordingly, exploring additional therapeutic and
prophylactic methodologies is required.

Pathogen adhesion to host cells is crucial to the infection and pathogenesis processes.
G. parasuis binds to a variety of host cells, including porcine brain capillary endothelial
cells [5], porcine kidney epithelial cells (PK15 cells) [6], and porcine umbilical vein en-
dothelial cells [7], among others. However, the precise mechanisms of adhesion are still
unknown.

With more than 700 members, the autotransporter protein (AT) family is the largest
family of extracellular proteins found in Gram-negative bacteria [8,9]. These proteins are
synthesized as precursor proteins with three common functional domains: a passenger
domain, an N-terminal signal peptide, and a C-terminal translocator domain that forms a
pore in the outer membrane to help transport the internal passenger domain to the bacterial
surface [10,11]. Glycosylated adhesin AIDA-1 of E. coli is a classical Va-type autotransporter;
it adheres to the epithelial cells of various animals by interacting with receptors, and it
plays a significant role in virulence [12]. YadA of Yersinia pseudotuberculosis is a trimeric
autotransporter. In the intestine, YadA-mediated adhesion is essential for invasion and
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spread. YadA not only acts as an adhesin, it can also promote bacterial entry into host
cells [13]. In this investigation, we looked into the function of a putative extracellular serine
protease, EspP2, and investigated the role of this AT protein in G. parasuis adhesion. EspPα
is a subtype of EspP in enterohemorrhagic Escherichia coli (EHEC) strains. The discovery
that the pO157 plasmid, which contains EspPα, is required for E. coli O157:H7 to completely
adhere to HEp-2 epithelial cells [14] and affects the colonization of the bovine terminal
rectum [15], provided the initial impetus to examine the possibility of EspPα contributing
to cellular adherence.

Hosts need an intact epithelial barrier to protect against pathogen infection. Tight
junctions (TJ) close the intercellular space, which is key to the formation of the epithelial
barrier [16]. Of the proteins specifically localized to tight junctions, claudin and occludin
proteins are major types [17]. Numerous pathogens that affect epithelial cells have devel-
oped complex tactics to get past this defense and spread their infections. It is, however,
unknown which precise mechanism G. parasuis uses to adhere to epithelial cells. Growing
evidence has demonstrated that different pathogens influence different tight junction com-
ponents to induce infection. Luo et al. [18] reports that the knockout of occludin leads to
a decrease in Porcine Epidemic Diarrhea Virus infection, and the tight junction proteins
claudin-1 [19] and occludin [20] are necessary for the entry of the Hepatitis C virus.

A small GTPase from the Ras family, Rap1 is engaged in several signal transduction
pathways within cells. For instance, Rap1 is required for intracellular bacterial pathogens to
form their replication-permissive vacuole [21]. The Rap1 signaling pathway is significantly
activated in G. parasuis-infected porcine aortic vascular endothelial cells [22]. The activation
of NF-κB in intestinal epithelial cells induced by heat-labile enterotoxins is dependent on
the activation of the Ras-like GTPase Rap1 in a cAMP-dependent manner, which in turn
promotes the adherence of enterotoxigenic E. coli [23]. Caseinolytic protease L regulates the
adhesion of Streptococcus pneumococcal to A549 human lung cells by inducing and activating
Rap1 [24].

Here, we investigated the function of EspP2 in G. parasuis adherence to epithelial
cells. To this end we constructed an EspP2 deficient strain of G. parasuis and compared its
adherence on PK15 cells with wild-type G. parasuis. Additionally, PK15 cells were treated
with pure EspP2, and RT-PCR, WB, and indirect immunofluorescence were used to assess
the expression levels of occludin and claudin-1. To further evaluate the effect of EspP2 on
G. parasuis adhesion, we examined the adhesion of ∆EspP2::Kan and wild-type G. parasuis
on four cells lines (claudin-1 knockout, occludin knockdown, claudin-1 overexpressing, and
occludin overexpressing). By transcriptomic analysis of PK15 cells incubated with purified
EspP2, we found that EspP2 activates the Rap1 signaling pathway. This study advances our
knowledge of the mechanisms of G. parasuis adhesion and provides a theoretical framework
for the creation of novel medications to treat G. parasuis infection.

2. Results
2.1. Deletion of EspP2 Decreases G. parasuis Adherence

An EspP2 deletion strain of G. parasuis was constructed by transforming SC1401 with
the suicide plasmid pK18-EspP2 containing fragments homologous to EspP2 (Figure 1A).
DNA from the putative EspP2 deletion and wild-type SC1401 strain was amplified using
HPS, EspP2, and Kan primers. Electrophoresis of the PCR products demonstrated the
proper construction of ∆EspP2::Kan (Figure 1B).
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now has both the target and resistance genes. Second round: Kan is used to replace the EspP2 gene. 

(B) PCR identification of successful construction of ΔEspP2::Kan. Lane 1–3: primers P1 and P2 were 
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a�enuation or enhancement of toxicity may be due to suppressed or increased metabolic 
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Figure 1. Construction and identification of the ∆EspP2 G. parasuis. (A) Schematic of the two
rounds of homologous recombination used to construct ∆EspP2 G. parasuis. First round: homologous
recombination occurs in G. parasuis SC1401 transformed with pK18-EspP2. The recipient bacterium
now has both the target and resistance genes. Second round: Kan is used to replace the EspP2 gene.
(B) PCR identification of successful construction of ∆EspP2::Kan. Lane 1–3: primers P1 and P2 were
utilized to amplify the species-specific marker fragment [25] of G. parasuis (SC1401, ∆EspP2::Kan,
negative control). Lane 4–6: using primers P3 and P4, the kanamycin resistance cassette was amplified
(SC1401, ∆EspP2::Kan, negative control). Lane 7–9: primers P5 and P6 were utilized to amplify the
partial sequence of EspP2 of G. parasuis SC1401 (SC1401, ∆EspP2::Kan, negative control).

As shown in Figure 2A, no discernible variations in growth were observed between
∆EspP2::Kan and wild-type SC1401 in vitro. This result eliminates the possibility that the
attenuation or enhancement of toxicity may be due to suppressed or increased metabolic
levels in ∆EspP2::Kan. To begin investigating the effect of ∆EspP2 on G. parasuis interactions
with PK-15 cells, a comparison was made between the adhesion ability of wild-type and
mutant strains. As illustrated in Figure 2B, the adherence of ∆EspP2::Kan (tested at MOI
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100 and 10) was significantly lower than that of wild-type SC1401. Thus, the loss of
EspP2 results in reduced bacterial adhesion PK-15 epithelial cells. We also ran the same
experiment with new-born piglet tracheal (NPTr) cells. The results showed that deletion of
EspP2 resulted in reduced bacterial adhesion to NPTr epithelial cells, consistent with that in
PK-15 (Supplementary Figure S1).
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Figure 2. Deletion of EspP2 decreases G. parasuis adherence to PK15 cells. (A) Growth curves of
∆EspP2::Kan and wild-type G. parasuis. OD600 and colony formation on TSA++ agar were measured
over an 18 h period to track the growth of the bacteria. Three technical replicates were used to collect
the data. Standard deviations are indicated by error bars. (B) Wild type G. parasuis and ∆EspP2::Kan
adhesion to PK15 cells. The standard deviation of three separate experiments is shown by error bars.
Significant differences between groups are indicated by ** p < 0.01 and *** p < 0.001.

2.2. EspP2 Enhances Expression of Claudin-1 and Occludin

To investigate the role of EspP2 on adhesion of G. parasuis to PK15 cells, EspP2 with
6×His tags on its N-terminal was expressed G. parasuis (Supplementary Figure S2). To
exclude the influence of the His-tag on the results, the His-tag protein was expressed
and purified as a control protein (Supplementary Figure S3). Claudin-1 and occludin
expression levels were not significantly impacted by the His-tag protein, as confirmed
by qRT-PCR and WB (Supplementary Figures S4 and S5). The mRNA (Figure 3A) and
protein levels (Figure 3B) of occludin and claudin-1 were significantly elevated in PK15 cells
treated with pure EspP2-His at every time point measured from 6 to 48 h. Immunostaining
showed similar results (Figure 3C,D). To further understand the relationship of EspP2 to the
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expression of claudin-1 and occludin, PK-15 cells were infected with wild-type SC1401 and
∆EspP2::Kan. In cells infected with wild-type SC1401, the levels of claudin-1 and occludin
increased through 12 h and 36 h of infection, respectively, before decreasing to time 0 levels
or lower (Figure 3E). In cells infected with ∆EspP2::Kan, levels of occludin and claudin-1
decreased significantly throughout the 48 h infection (Figure 3F). These findings showed
that occludin and claudin-1 expression are impacted by EspP2.
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Figure 3. EspP2 enhances claudin-1 and occludin expression. (A) RT-PCR results of claudin-1 and
occludin levels in PK15 cells. Significant differences between groups are indicated by **** p < 0.0001.
(B) Representative Western blot of claudin-1 and occludin in EspP2-treated PK15 cells. (C,D) Indirect
immunofluorescence of PK15 cells treated with EspP2 showing claudin-1 (green), occludin (red), and
nuclei (blue) are stained with DAPI. PK15 cells infected with (E) wild-type SC1401 and (F) ∆EspP2::Kan at
a MOI 10; cells were collected at 0, 6, 12, 24, 36, and 48 hpi, whole-cell extracts were prepared, and levels of
occludin and claudin-1 were detected using Western blot.

2.3. EspP2 Regulates Adhesion by Affecting Claudin1 and Occludin

Five cell lines (PK15, claudin-1 knockout, occludin knockdown, claudin-1 overex-
pressing, and occludin overexpressing) were incubated with either wild-type SC1401 or
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∆EspP2::Kan at MOI 10 and 100 for 2 h. The extent of bacterial adhesion, tested in PK15,
claudin-1 knockout, and occludin knockdown cells, was accessed by colony counting.
Figure 4A,B show that, on PK15 cells, there were significantly fewer ∆EspP2::Kan CFUs
produced than wild-type CFUs; (6.5 × 104 CFU/well vs. 3.73 × 105 CFU/well respec-
tively at MOI 100). On claudin-1 knockout and occludin knockdown cells, there were
also significantly fewer CFUs of both bacteria, compared to PK15 cells. Figure 4C shows
Giemsa staining of PK15, claudin-1 knockout, and occludin knockdown cells incubated
with wild-type and ∆EspP2::Kan G. parasuis.
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Figure 4. EspP2 regulates adhesion by affecting claudin1 and occludin. (A) Adherence of wild-type
SC1401 to PK15, claudin-1 knockout, and occludin knockdown cells. The standard errors from three
separate experiments, each with three copies of each sample, are represented by error bars. Significant
differences between groups are indicated by * p < 0.05, ** p < 0.01. (B) Adherence of ∆EspP2::Kan to
PK15, claudin-1 knockout, and occludin knockdown cells. Significant differences between groups
are indicated by * p < 0.05, **** p < 0.0001. (C) Bacterial adhesion as detected by Giemsa stain. After
incubating the cells for two hours with SC1401 and ∆EspP2::Kan, the cells were washed and stained
with Giemsa.

The adhesion of both wild-type and ∆EspP2::Kan was, as expected, significantly greater
on claudin-1 and occludin overexpressing cells than on PK15 cells (Figure 5A–C). These
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results show that EspP2 affects levels of claudin-1 and occludin, which in turn influences G.
parasuis’s capacity to adhere to PK-15 cells.
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Figure 5. G. parasuis adhesion is increased in claudin-1 and occludin overexpressing cells. (A) Adher-
ence of wild-type SC1401 to PK15, claudin-1 and occludin overexpressing cells lines. The standard
errors from three separate experiments, each with three copies of each sample, are represented
by error bars. Significant differences between groups are indicated by * p < 0.05 and ** p < 0.01.
(B) Adherence of ∆EspP2::Kan to PK15, claudin-1, and occludin overexpressing cells lines. Significant
differences between groups are indicated by * p < 0.05 and *** p < 0.001. (C) Bacterial adhesion to
three cell lines as detected by Giemsa stain. After incubating the cells for two hours with SC1401 and
∆EspP2::Kan, the cells were washed and stained with Giemsa.
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2.4. EspP2 Treatment Activates the Rap1 Signaling Pathway

To investigate the interaction mechanisms between claudin-1, occludin, and EspP2, we
conducted a comparative transcriptomic study on PK15 cells incubated with purified EspP2
for 0, 12, and 36 h. There were three technical duplicates run. Each sample had Total Mapped
Reads of greater than 70% and Multiple Mapped Reads of less than 5%, demonstrating that the
reference genome chosen for this experiment was suitable and that the associated experiments
were uncontaminated (Supplementary Table S2). For every biological replicate, the squared
Pearson correlation coefficient (R2) was higher than 0.92, indicating that the replication between
samples was good (Supplementary Figure S6). Six genes with up-regulated transcription
levels and six with down-regulated transcription levels were arbitrarily chosen for relative
fluorescence quantification in order to validate the transcriptome sequencing results. The results
of the fluorescence quantitation are consistent with the trend in gene expression in transcriptome
sequencing results (Supplementary Figure S7), demonstrating the validity of the RNA-Seq data
and their suitability for further investigation.

Transcriptome analysis showed that, compared with the 0 h control, there were
1734 differentially expressed genes after 12 h incubation. Of these, 1002 were down-
regulated and 732 were up-regulated (Figure 6A). After 36 h incubation, there were 1367 dif-
ferentially expressed genes. Of these, 684 were down-regulated and 683 were up-regulated
(Figure 6B), indicating that EspP2 affects multiple biological functions in G. parasuis. KEGG
pathway analysis and GO categorization were applied to the DEGs. According to GO
findings, the apical part of cell, apical plasma membrane, cell communication, and signal
transduction were the most prevalent categories (Figure 6C). KEGG analysis revealed that
the significantly enriched pathways were cytokines and cytokine receptors, TNF signaling
pathway, MAPK signaling pathway, PI3K-Akt signaling pathway, IL-17 signaling pathway,
and Rap1 signaling pathway (Figure 7A). Of these, the Rap1 signaling pathway was one
of the 20 most represented pathways at both 12 and 36 h incubation. The Rap1 signaling
pathway is activated in PK15 cells treated with EspP2, as seen by the markedly elevated
transcriptional expression of RAP1B in Figure 7B.

2.5. Inhibition of the Rap1 Signaling Pathway Reduces Occludin Expression and Inhibits Adhesion

To ascertain if the expression of occludin and claudin-1 is impacted by EspP2’s stimu-
lation of the Rap1 signaling pathway, we treated PK15 cells with 1 µM ESI-05, an inhibitor
of the Rap1 signaling pathway, and then incubated them with purified EspP2. Occludin
levels, as assessed by Western blotting, were significantly lower in Rap1-inhibited cells
treated with EspP2 than in uninhibited cells treated with the same substance (Figure 8A).
Adherence of wild-type and ∆EspP2::Kan G. parasuis to treated PK15 cells was significantly
decreased over their adherence to untreated PK15 cells, demonstrating that inhibition of
Rap1 signaling results in reduced G. parasuis adhesion (Figure 8B). Figure 8C shows Giemsa
staining of treated and untreated PK15 cells incubated with wild-type and ∆EspP2::Kan
G. parasuis.
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Figure 6. Volcano map and GO enrichment analysis. Volcano plot of differentially expressed genes
between 0 and (A) 12 h, and (B) 36 h. Red dots indicate genes that are significantly up-regulated,
green dots indicate genes that are significantly down-regulated, and blue dots indicate genes that are
not differently expressed. (C) The abscissa is the ratio of the number of differentially expressed genes
annotated to the GO term to the total number of differentially expressed genes; the ordinate is the
enriched GO term. The degree of enrichment is indicated by the color depth.
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Figure 7. Analysis of KEGG pathway enrichment. (A) The abscissa is the ratio of the number of
differentially expressed genes annotated to the KEGG pathway to the total number of differentially
expressed genes. Pathway names are on the ordinate. The number of genes identified in the KEGG
pathway is represented by the size of the point. The significance of enrichment is represented by
the color spectrum from red to purple. (B) The transcription level of RAP1B. Significant differences
between groups are indicated by * p < 0.05, ** p < 0.01.



Int. J. Mol. Sci. 2024, 25, 4570 11 of 17

Int. J. Mol. Sci. 2024, 25, x FOR PEER REVIEW 11 of 18 
 

 

inhibition of Rap1 signaling results in reduced G. parasuis adhesion (Figure 8B). Figure 8C 

shows Giemsa staining of treated and untreated PK15 cells incubated with wild-type and 

ΔEspP2::Kan G. parasuis. 

 

Figure 8. Inhibition of Rap1 signaling reduces occludin expression and inhibits G. parasuis adhesion. 

(A) Representative Western blot of occludin in PK15 cells treated with inhibitor ESI-05 for 36 h. (B) 

Adhesion of wild-type and ΔEspP2::Kan to PK15 cells treated with inhibitor. The standard deviation 

of three separate experiments is shown by error bars. Significant differences between groups are 

indicated by *** p < 0.001 and **** p < 0.0001. (C) Giemsa stain of PK15 cells treated with inhibitor 

and incubated with wild-type and ΔEspP2::Kan for 2 h. 

3. Discussion 

The genome of G. parasuis SC1401 contains two EspP proteins, EspP1 and EspP2; their 

amino acid sequences are 72.4% homologous and their gene sequences are 76.9% homol-

ogous. Wang et al. have reported that EspP2 in G. parasuis exhibits more protease activity 

than EspP1 [26], indicating that EspP2 may play a stronger role in virulence. Here, we 

studied G. parasuis EspP2 using a complete recombinant protein expressed in E. coli. 

Autotransporter proteins can secrete their domains through the outer membrane of 

Gram-negative bacteria, and are associated with infection and virulence. Similar to the 

known cleavage sequence of EspP in E. coli, EVNNLN, the EspP protein of G. parasuis 

Figure 8. Inhibition of Rap1 signaling reduces occludin expression and inhibits G. parasuis adhesion.
(A) Representative Western blot of occludin in PK15 cells treated with inhibitor ESI-05 for 36 h.
(B) Adhesion of wild-type and ∆EspP2::Kan to PK15 cells treated with inhibitor. The standard
deviation of three separate experiments is shown by error bars. Significant differences between
groups are indicated by *** p < 0.001 and **** p < 0.0001. (C) Giemsa stain of PK15 cells treated with
inhibitor and incubated with wild-type and ∆EspP2::Kan for 2 h.

3. Discussion

The genome of G. parasuis SC1401 contains two EspP proteins, EspP1 and EspP2;
their amino acid sequences are 72.4% homologous and their gene sequences are 76.9%
homologous. Wang et al. have reported that EspP2 in G. parasuis exhibits more protease
activity than EspP1 [26], indicating that EspP2 may play a stronger role in virulence. Here,
we studied G. parasuis EspP2 using a complete recombinant protein expressed in E. coli.

Autotransporter proteins can secrete their domains through the outer membrane of
Gram-negative bacteria, and are associated with infection and virulence. Similar to the
known cleavage sequence of EspP in E. coli, EVNNLN, the EspP protein of G. parasuis
contains a sequence called EMNNLN [11]. After lysis, the passenger domain of EspP from
E. coli is released into the extracellular environment, which is why it is found in culture
supernatants rather than precipitates post-lysis. In contrast, EspP from G. parasuis is found
in the bacterial precipitate post-lysis [27]. Therefore, more research is needed to determine
whether the suggested cleavage sequence of G. parasuis EspP is an active site.

To date, gene knockout strains of G. parasuis can be made by natural transformation,
conjugal transfer, and electro-transformation. Conjugal transfer depends on the presence
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of sexual fimbriae and conjugal plasmid of E.coli, and electro-transformation is an artifi-
cial transformation method; compared with these methods, natural transformation does
not depend on other mobile elements [10]. Although natural transformation is depen-
dent on whether the host bacteria are naturally competent and the frequency of natural
transformation, it is a convenient and efficient method for transforming G. parasuis SC1401.

We concluded that EspP2 deletion reduces the adhesion capacity of G. parasuis to
epithelial cells in both PK-15 and NPTr cell lines. However, in subsequent experiments, we
used only PK-15 cells. The initial adhesion results of NPTr and PK-15 cells were comparable
and both are epithelial cell lines, but PK-15 cells are the more commonly used as they are
more mature and stable.

In this study we observed that occludin and claudin-1 expression levels are up-
regulated by EspP2. In many cases, the expression of tight junction proteins is reduced in
cells infected with pathogens [28–31]. The mechanism by which EspP2 promotes claudin-1
and occludin up-regulation is unknown. Two possibilities are proposed here. First, tight
junction structure maintenance and increased production of tight junction proteins are
necessary to preserve the integrity of the epithelial barrier [32,33]. Second, tight junction
protein expression is significantly influenced by the inflammatory mediators that cells
release following EspP2 activity. [34–36].

In order to explore the effect of claudin-1 and occludin on bacterial adhesion, claudin-
1 knockout or occludin knockdown PK15 cells were used to compare the differences in
adhesion between wild-type and ∆EspP2::Kan G. parasuis SC1401. Bacterial adhesion
was greatly enhanced in overexpressed cells and decreased in deletion cells. Studies
have indicated that integrins play a crucial role in numerous host–pathogen interactions,
including pathogenic bacteria, viruses, and fungi [37]. Adhesins found in most bacteria
have the ability to attach to integrins either directly or indirectly [37], and TJs are structurally
related to integrins [38]. The up-regulation of claudin-1 and occludin by EspP2 contributes
to the adhesion of G. parasuis. It is possible that EspP2 itself is an adhesin that interacts
with tight junction proteins to mediate bacterial adhesion. It may also directly affect the
expression of integrins on the surface of host cells. Whether TJs directly or indirectly
mediate the adhesion of G. parasuis needs to be further studied.

The small GTPase Rap1 is either in a GDP-bound inactive state, or a GTP-bound active
state. It can function as a molecular switch to regulate a variety of cellular processes, such
as the formation of intercellular junctions, thanks to the cycle between the two states [34].
Previous studies have demonstrated that Rap1 regulates the formation of E-cadherin-
mediated adhesion junctions in Drosophila and mammalian epithelial cells [39,40]. Rap1
activation also plays a role in endothelial cells’ ability to establish tight junctions [41]. Thus,
we investigated whether tight junction protein expression is impacted by EspP2 activation
of the Rap1 signaling pathway. We found that inhibiting Rap1 by ESI-05, an inhibitor of
EAPC2 which mediates Rap1 activation, reduced occludin expression in PK15 cells. This
demonstrated a favorable correlation between the activation of the Rap1 pathway and
occludin expression. As an important component of tight junctions, occludin can bind to
actin cytoskeleton [42]. Among the signaling proteins involved in junctional regulation,
small GTPases are of particular interest due to their ability to cycle between active and
inactive states. Small GTPases of the Rho family modulate actin cytoskeleton remodeling
to affect cell junctions [43,44]. To determine how the small GTPase Rap1 affects occludin
expression, more information is required. Of note, the expression of claudin-1 was not
significantly reduced by the inhibitor treatment. It may be that the effect of the inhibitor is
limited or the regulation of claudin-1 is completed by the effector molecules downstream
of the Rap1 signaling pathway, or there are other regulatory mechanisms for claudin-1.

In conclusion, we found that EspP2 promotes the adhesion of G. parasuis to host cells
by up-regulating the expression of claudin-1 and occludin. Moreover, EspP2 can regulate
the expression of occludin through the Rap1 signaling pathway. These findings contribute
to the understanding of the pathogenic mechanism of G. parasuis and EspP2, and they offer
improved approaches for managing G. parasuis infection.
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4. Materials and Methods
4.1. Strains, Primers, Bacterial and Cell Culture Conditions

G. parasuis SH0165 was kindly supplied by Xuwang Cai from Huazhong Agricultural
University and strain SC1401 was provided by the Laboratory of Research Center of Swine
Disease in Sichuan Agricultural University. The culture method of each strain was as
previously described [45]. Both strains were cultivated in Tryptic Soy Broth (TSB, Difco,
NJ, USA) or Tryptic Soy Agar (TSA, Difco, NJ, USA) supplemented with 0.1% (w/v)
nicotinamide adenine dinucleotide (NAD, Sigma-Aldrich, Rockville, MD, USA) and 5%
inactivated bovine serum (Solarbio, Beijing, China) (TSB++ and TSA++, respectively).
Escherichia coli DH5α (Biomed, Beijing, China) and BL21(DE3) (Biomed, Beijing, China)
were cultured in LB broth or LB agar for protein expression. When necessary, 50 µg mL−1

of kanamycin or 100 µg mL−1 of ampicillin was added to these media. All cultures were at
37 ◦C with shaking at 220 rpm. Supplementary Table S1 contains a list of primers used in
this investigation. The new-born piglet tracheal, NPTr, was kindly supplied by Hongbo
Zhou from Huazhong Agricultural University. The Laboratory of Research Center of Swine
Disease at Sichuan Agricultural University preserved the porcine kidney cell line, PK15.
The cells were cultured in Dulbecco’s modified Eagle medium (DMEM; Gibco, Carlsbad,
CA, USA) supplemented with 10% heat-inactivated fetal bovine serum (PAN-Biotech,
Aidenbach, Germany) at 37 ◦C in a humidified 5% CO2 atmosphere.

4.2. Construction of EspP2 Deficient Mutants

The EspP2 deletion strain was constructed and screened as previously described [46].
Briefly, primers P1/P2 and P3/P4 were used to amplify, respectively, the 620-bp upstream
and the 611-bp downstream homologous regions of EspP2 from G. parasuis SC1401 ge-
nomic DNA. Next, primers P5/P6 were used to amplify a 935-bp kanamycin resistance
cassette from pKD4. Subsequently, the three fragments were purified using a Qiaquick
spin column kit (Qiagen, Hilden, Germany) and ligated into restriction sites BamH I and
Xho I of linearized pK18mobSacB, resulting in the vector pK18-EspP2. A natural transfor-
mation method was used to convert pK18-EspP2 into G. parasuis SC1401, as previously
described [46]. After 36 h incubation, the resultant kanamycin-resistant transformants were
grown to large-scale culture in TSB++ supplemented with Kan, in order to be further iden-
tified by PCR. Of note, we previously tested the natural transformation efficiency of several
standard and local strains of G. parasuis and found that SC1401 had the highest efficiency.
We therefore chose it as the wild-type strain for this study and from there constructed the
EspP2 deletion strain.

4.3. Expression of Recombinant EspP2

Recombinant EspP2 was expressed in E. coli BL21 [26]. Primers P13/P14 were used
to amplify G. parasuis EspP2 from the genomic DNA of SH0165. The PCR product was
ligated to pET-32A (+) (HANBIO, Shanghai, China), resulting in the recombinant plasmid
pET-EspP2. pET-EspP2 was transformed into E. coli BL21 (DE3), protein expression was
induced with 1.2 mM IPTG for 16 h at 18 ◦C. The induction conditions for the His-tag
protein were the same as EspP2 protein. Ni-NTA His-Bind Resin (Bio-Rad, Boulder, CO,
USA) was used to purify EspP2, and 2 L of PBS was used to dialyze EspP2 for 2 days at
4 ◦C. The purified protein was then subjected to SDS-PAGE electrophoresis and WB.

4.4. Adherence Assay

Adherence assays were performed as previously described with modifications for
MOI [47]. The wild-type SC1401 and the EspP2 deletion strain, ∆EspP2::Kan, were grown
to logarithmic phase and then collected by centrifugation at 5000 rpm for 2 min. Cells were
washed three times with PBS and then suspended in DMEM with 5% fetal bovine serum.
Aliquoting 1 × 106 PK15 cells into 6-well plate wells, bacteria were added at a multiplicity
of infection (MOI) of 10 and 100. Plates were incubated at 37 ◦C in 5% CO2 for 2 h to allow
for bacterial adhesion. The cells were washed 5 times with PBS to remove nonspecifically
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attached bacteria, then incubated in 100 µL PBS containing 0.25% trypsin for 5 min at 37 ◦C.
Then 0.9 mL of cold TSB++ was added to each well and cells were collected by trituration.
The cell suspension was 10-fold serially diluted; 100 µL from each dilution was plated
onto TSA++ plates then incubated for 24 h at 37 ◦C. To determine the colony-forming units
(CFU), the number of colonies on each plate was counted.

4.5. Quantitative Real-Time PCR

Refer to the previous procedure for qRT-PCR [48]. RNA from PK15 cells incubated
with EspP2 was isolated using a UNIQ-10 Column Total RNA Purification Kit (Sangon,
China). Two-step RT-PCR was performed using PrimeScriptTM RT Reagent Kit with gDNA
Eraser (Takara, Japan). Utilizing SYBR Premix EX TaqTM II (Tli RNaseH Plus; Takara,
Japan), transcripts were subjected to qRT-PCR analysis. Gene expression was quantified
using the 2[-∆∆C(T)] method, and results are presented relative to expression of β-actin.
The Lightcycler96 (Roche, Basel, Switzerland) system was used for the qPCR. For each
sample, there were three biological replicates and the qRT-PCR assay was repeated three
times.

4.6. Western Blotting

The Western blotting assay was performed as described previously to detect the claudin-1
and occludin expression levels [49]. PK15 cells were plated into 6-well plates at a density of a
1 × 106 cells/well and stimulated with EspP2 (50 µg mL−1) for different lengths of time. Cells
were scraped off at the conclusion of each time point and placed in Eppendorf tubes. Cells were
pelleted and then suspended in 100 µL of cold cell lysis solution with PMSF and incubated on
ice for 30 min. Centrifugation at 12,000× g min−1 for 10 min was followed by the collection of
supernatant and the addition of 25 µL of 5 × Loading Buffer. Samples were incubated for 20 min
at 37 ◦C. Aliquots corresponding to 50 µg of each sample were subjected to 12.5% SDS-PAGE;
proteins were then electroblotted onto PVDF membrane. After blocking the membrane with
5% skim milk in TBST for 2 h at room temperature (RT), the membrane was treated with rabbit
anti-claudin1 mAb (1:1000), rabbit anti-occludin mAb (1:1000), or rabbit anti-ATPase Na+/K+
beta2 (1:100,000) overnight at 4 ◦C. After 5 TBST washes, the membrane was incubated with
HRP-conjugated goat anti-rabbit IgG (1:5000) at RT for 1 h. Following incubation, TBST was used
to wash the membrane 5 times. Enhanced chemiluminescence reagents (ECL; Bio-Rad, USA)
were used to visualize proteins.

4.7. Indirect Immunofluorescence

Immunofluorescence staining of claudin-1 and occludin was used to further examine
the impact of EspP2 on the subcellular distribution of these two proteins [50]. PK15 cells
were grown to about 90% confluence on coverslips in a 6-well plate, 50 µg mL−1 of purified
EspP2 was aliquoted to each well, and cells were incubated at 37 ◦C for 24 and 48 h. After
that, the cells were washed 3 times with PBS, fixed with 4% paraformaldehyde for 15 min,
and then washed once more with PBS. Cells were then blocked in PBS/BSA (1%) for 1 h
at 37 ◦C. Cells were incubated with primary antibodies against occludin (1:1000; Abcam,
MA, USA) and claudin-1 (1:1000; Abcam, MA, USA) at 4 ◦C overnight. Subsequently, the
samples were treated for 1 h at 37 ◦C in the dark with fluorescein isothiocyanate (FITC)
goat anti-mouse IgG (Proteintech, Beijing, China). DAPI (Beyotime, Shanghai, China) was
used to label the nuclei. Results were documented using a Nikon Eclipse fluorescence
microscopy (ci Series, DS-U3). Immunofluorescence analysis was performed using Case
Viewer software.

4.8. Giemsa Staining

In addition to the manual counting of bacteria, Giemsa staining (Giemsa stain, Solar-
bio, Beijing, China) was also used to determine the number of bacterial adhesions. Fresh
working stain was prepared by adding one-part 10× storage solution to nine-parts phos-
phate buffer and mixing thoroughly. Cells were air dried and then fixed with methanol for
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1–3 min. Methanol was removed, enough Giemsa solution was used to cover the cells, and
incubation was 15–30 min at room temperature. After a mild washing, the cells were dried
in preparation for microscopic inspection [51,52].

4.9. Transcriptome Sequencing and Data Analysis

PK15 cells were stimulated with EspP2 protein at a final concentration of 50 µg mL−1

for 12 and 36 h at 37 ◦C. Following the manufacturer’s instructions, TRIzol reagent (Invitro-
gen, CA, USA) was used to extract total RNA from each sample. Novogene Bioinformatics
Technology Co., Ltd. (Beijing, China) handled the RNA quantification, library preparation,
clustering, and sequencing. Differential expression analysis was performed using the
DEGSeq R package (version 1.20.0) [53]. The false discovery rate was managed by adjusting
the p-values by the application of the Benjamini and Hochberg technique. Genes that
showed a significant difference in expression were those with an adjusted p-value < 0.05.
To correct for the bias associated with gene length, the GOseq R package performed a Gene
Ontology (GO) enrichment analysis of differentially expressed genes [54]. GO terms were
deemed significantly enriched if their corrected p-value was less than 0.05. Utilizing the
KOBAS software (Center for Bioinformatics, Peking University and Institute of Computing
Technology, Chinese Academy of Sciences), we assessed the statistical enrichment of genes
that were differentially expressed in KEGG (Kyoto Encyclopedia of Genes and Genomes)
pathways [55].

4.10. Statistical Analysis

Statistical analyses were performed using the GraphPad Prism version 6.0. Statistical
significance was evaluated using Student’s t-test, one-way ANOVA, or two-way ANOVA.
Significant differences between groups are indicated by * p < 0.05, ** p < 0.01, *** p < 0.001,
and **** p < 0.0001. Error bars in all figures represent the standard deviations of three
independent experiments.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ijms25084570/s1.
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