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Abstract: Aminopyrazoles represent interesting structures in medicinal chemistry, and several deriva-
tives showed biological activity in different therapeutic areas. Previously reported 5-aminopyrazolyl
acylhydrazones and amides showed relevant antioxidant and anti-inflammatory activities. To further
extend the structure–activity relationships in this class of derivatives, a novel series of pyrazolyl
acylhydrazones and amides was designed and prepared through a divergent approach. The novel
compounds shared the phenylamino pyrazole nucleus that was differently decorated at positions 1,
3, and 4. The antiproliferative, antiaggregating, and antioxidant properties of the obtained deriva-
tives 10–22 were evaluated in in vitro assays. Derivative 11a showed relevant antitumor properties
against selected tumor cell lines (namely, HeLa, MCF7, SKOV3, and SKMEL28) with micromolar
IC50 values. In the platelet assay, selected pyrazoles showed higher antioxidant and ROS formation
inhibition activity than the reference drugs acetylsalicylic acid and N-acetylcysteine. Furthermore,
in vitro radical scavenging screening confirmed the good antioxidant properties of acylhydrazone
molecules. Overall, the collected data allowed us to extend the structure–activity relationships of
the previously reported compounds and confirmed the pharmaceutical attractiveness of this class of
aminopyrazole derivatives.

Keywords: pyrazole synthesis; antiproliferative agents; antioxidant activity; ROS production inhibition;
platelet aggregation

1. Introduction

Pyrazole scaffold is a pharmaceutically relevant moiety [1–6], and pyrazole-containing
compounds show antiviral [7], antibacterial [8,9], antimalarial [10], anti-inflammatory [11],
antidiabetic [12], antiglaucoma [13,14], and anticancer [15–21] properties. Furthermore,
pyrazole scaffolds are shared by several protein kinase inhibitors, including FDA-approved
drugs Avapritinib, Asciminib, Crizotinib, Encorafenib, Erdafitinib, Pralsetinib, Pirtobru-
tinib, and Ruxolitinib (Figure 1) [22,23]. Among pyrazole series, aminopyrazoles (APs)
represent an attractive framework in medicinal chemistry [24–26]; indeed, the decoration of
the pyrazole ring with amino substituents at different positions led to the isolation of phar-
macologically active derivatives including analgesic (e.g., Aminophenazone and Metami-
zole; Figure 1) and antitumor (e.g., AT7519, AT9283, Prexasertib, Pirtobrutinib/Jaypirca™;
Figure 1) agents [23,27–33]. Additionally, the AP scaffold has been widely studied for its
relevant activity in oxidative stress and inflammation. In detail, 3-AP I (Figure 1) showed
weak antiproliferative activity against four tumor cell lines (i.e., HepG2, WI38, VERO, and
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MCF-7), but exhibited high antioxidant activity, due to the free amino group on the pyrazole
ring [34]. 4-APs IIa,b (Figure 1) and their hydrochloride salts displayed excellent antiradical
activity in the ABTS scavenging assay, with Trolox equivalent antioxidant capacity (TEAC)
values of 1.35 and 1.10 and IC50 of 14.1 µM and 17.6 µM, respectively. Additionally, the
two compounds confirmed their promising antioxidant properties in the oxygen radical
absorbance capacity assay (ORAC) and in the oxidative erythrocyte hemolysis assay [35].
Structure–activity relationships (SARs) extension on IIa,b led to the isolation of pyrazole
hydrochloride III (Figure 1) endowed with improved pharmacokinetic and antioxidant
properties. Further statistical analysis and cytotoxicity studies confirmed the promising
profile of the compound, which was taken as the lead structure for the development of
effective agents against oxidative stress-related diseases [36].
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Figure 1. Selected examples of pyrazole compounds with relevant pharamacological activity. The
pyrazole and aminopyrazole substructures are colored blue and red, respectively.

More recently, 5-AP acylhydrazones Iva–d (Figure 2) proved to inhibit platelet aggrega-
tion and reactive oxygen species (ROS) production with IC50 values in the low micromolar
range [37]. In particular, derivative IVd showed antioxidant and anti-inflammatory dual
activity, inhibiting ROS production in fMLP-activated neutrophils and blocking PDE4B and
PDE4D phosphodiesterase enzymes (IC50 = 1.05 µM and 0.55 µM, respectively), two PDE4
isoforms involved in inflammatory processes [37]. Furthermore, pyrazoles IVa–c strongly
reduced superoxide anion production, lipid peroxidation, and NAPDH oxidase activity in
H2O2-stimulated EA.hy926 cells, thus highlighting the potential of compounds on oxida-
tive status and aerobic metabolism [38]. In previous work, the SARs of hydrazones IV were
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further extended through the preparation of amide derivatives V (Figure 2), able to inhibit
both aggregation and ROS formation in platelets and p38MAPK phosphorylation [39].
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Figure 2. Developed SARs around pyrazolyl hydrazones IV.

To further exploit the pharmacological potentials of derivatives IV and V (Figure 2), a
novel series of pyrazoles 10–22 have been studied for their antiproliferative and antioxidant
activities. In particular, acylhydrazones 10–13 bear an anilino substituent on the pyrazole
scaffold (not present in the structures of the lead derivatives IV and V) with or without
concomitant variation of the pyrazole 2-hydroxy-2-phenylethyl chain (derivative 13: no
modification; derivatives 10: removal of the chain; derivatives 11 and 12: replacement of
the chain with a methyl substituent). The substituents of ring A were selected according to
the SARs developed for compounds IV (X = H, OMe, OBn, OPh). Additionally, to evaluate
the effects on activity of the acylhydrazone moiety, pyrazolyl amides 14–22 were prepared.
These compounds share with their acylhydrazone congeners the anilino substituent and
bear, as G groups, cyclopropyl, or differently substituted phenyl rings (namely, 4-Cl, 4-OMe,
2,6-(OMe)2; 3,4-(OMe)2; 3,4,5-(OMe)3), characterizing the most effective derivatives IV
or V.

2. Results
2.1. Chemistry

The desired compounds 10–22 were obtained through a divergent, stepwise approach,
starting from the common AP intermediates 1–5 (Scheme 1). These key building blocks
were prepared through the condensation of cyanoacetic ester, phenyl isothiocyanate, and
(un)substituted hydrazine, as previously reported [40–42]. Thus, synthons 2–5 were con-
densed with hydrazine monohydrate, leading to the corresponding carbohydrazide inter-
mediates 6–9 in good yields (Scheme 1); these derivatives were then reacted with 4-methoxy
benzaldehydes a–d (commercially available or prepared by alkylation or arylation of iso-
vanillin according to the published procedures) [43,44] in absolute ethanol to afford the
desired compounds 10–13 in moderate to good yields (13–80%, Scheme 1). Interestingly,
this reaction proved to be stereoselective, allowing the unique isolation of the E-isomer, as
assessed by proton NMR analysis. In fact, acylhydrazones 10–13 showed the signal of the
acylhydrazone proton at chemical shift values lower than 12 ppm (chemical shift range:
9.59–10.65 ppm), typical of the E-isomer as recently reported for similar hydrazones [37].
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Scheme 1. Synthesis of pyrazole acylhydrazones 10–13 and pyrazolyl amides 14–22. Reaction
conditions: (a) hydrazine monohydrate, EtOHabs, reflux, 4–6 h; (b) aldehyde a–d, EtOHabs, reflux, 16
h; (c) acyl chloride, TEA or TMEDA, DMF or ACN or DCM, various temperatures and times.

Amides 14–22 were prepared through the condensation of APs 1–3 with the proper
acyl chloride (namely, cyclopropyl carbonyl chloride, 4-chlorobenzoyl chloride, and dif-
ferently methoxy-substituted benzoyl chlorides; Scheme 1), selected according to the
SAR developed for the acylhydrazone series. The different reactivity of the acyl chlo-
rides towards the pyrazole amino group required the definition of different experimental
protocols. Thus, for derivatives 14–16 and 20–22, the reaction was carried out at rt in
dichloromethane (DCM) with the addition of triethylamine (TEA), while pyrazoles 17 and
18 were prepared in anhydrous N,N-dimethylformamide (DMF) at 120 ◦C in the presence
of N,N,N’,N’-tetramethylethylenediamine (TMEDA). Interestingly, TMEDA plays a dual
role in the acylation reaction, acting as a HCl scavenger and further activating the acyl
chloride through the formation of a pseudo-cyclic complex, as previously described in the
literature [45,46]. Finally, compound 19 was prepared at rt in acetonitrile (ACN) using TEA
as a base. The acylation of pyrazole 4 (regioisomer of 3) was tried in different experimental
conditions. However, the amino group proved to be unreactive, possibly due to the steric
hindrance of the proximal methyl group.
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2.2. Antiproliferative Properties

Pyrazole acylhydrazones 10–13 and amides 14–22 were tested by MTT assay to evalu-
ate their antiproliferative and cytotoxicity properties against a panel of eight tumor cell
lines and normal fibroblasts. The compounds were screened at a fixed concentration of
10 µM, and cisplatin (10 µM) was used as a reference drug. As reported in Table 1, the
majority of acylhydrazones did not show any cytotoxic activity against tumor and fibroblast
cells, displaying mean growth percentage values higher than 50%. However, AP 11a signif-
icantly inhibits the proliferation of HeLa (25.00%, Table 1), MCF7 (33.56%, Table 1), SKOV3
(43.60%, Table 1), and SKMEL28 (49.44%, Table 1) cancer cells, resulting in more efficacy
than cisplatin against HeLa and MCF7 cells. The antiproliferative activity of the compound
marginally affected the growth of normal fibroblasts, resulting in less cytotoxicity than the
reference cisplatin (69.81% vs. 39.52% mean growth percentages, respectively).

Table 1. Antiproliferative activity of pyrazole acylhydrazones 10–22.

Mean Growth Percentage a

Cpd MCF7 MDA-MB231 SK-BR3 SKMEL28 SKOV3 Hep-G2 A549 HeLa GM-6114

10a 95.06 99.11 95.51 86.73 103.95 115.01 103.47 98.41 110.40
10b 95.34 100.35 91.61 94.45 114.49 115.09 91.07 105.04 107.36
11a 33.56 71.95 56.96 49.44 43.60 75.04 60.77 25.00 69.81
11b 94.77 85.73 86.00 93.00 100.15 116.18 94.84 99.47 104.95
11c 84.53 93.38 83.07 87.64 109.68 113.17 91.74 101.22 105.27
11d 82.90 98.59 90.21 89.00 102.55 111.19 100.95 95.15 99.22
12a 88.54 97.88 94.98 76.17 101.78 110.74 97.14 94.80 100.38
12b 100.63 91.72 94.24 73.31 98.59 92.72 95.30 92.81 99.78
12c 88.28 100.47 82.13 94.56 104.19 111.34 98.46 85.20 104.08
12d 85.17 94.14 90.59 80.78 106.17 105.32 102.33 85.68 102.79
13a 80.99 96.39 91.82 81.84 93.80 85.94 94.48 83.66 99.43
13b 101.49 92.11 92.24 95.69 113.65 106.33 104.07 98.84 106.86
13c 99.75 103.87 87.45 103.71 128.71 124.76 94.38 97.88 99.14
13d 107.57 93.75 97.87 93.89 111.82 119.55 90.40 96.65 95.39
14 66.12 56.98 53.75 41.49 38.51 67.24 35.10 9.45 39.31
15 65.94 129.84 99.76 71.65 88.37 85.48 67.91 104.70 68.40
16 62.39 95.97 82.54 54.02 66.87 49.15 52.58 57.65 53.68
17 92.75 127.34 106.09 85.89 86.92 102.74 75.80 108.52 65.92
18 63.52 140.96 80.87 68.43 96.88 78.47 69.64 91.46 72.99
19 95.25 136.09 103.30 85.18 97.34 105.12 92.92 123.77 66.69
20 92.09 123.59 106.45 83.62 84.42 108.07 70.83 110.92 64.71
21 90.28 149.42 107.39 84.59 90.24 97.90 112.33 108.07 85.88
22 114.93 140.34 103.43 84.12 94.16 102.14 105.54 108.73 57.94

CisPt 72.74 86.07 70.59 44.40 36.83 38.07 59.09 29.33 39.52
a Data mean values for three separate experiments; variation among triplicate samples was less than 10%.

The pyrazolyl amides 14–22 showed poor antiproliferative activity against all tested
tumor cell lines, with exceptions made for derivatives 14 (active against SKMEL28, SKOV3,
A549, and HeLa cells) and 16 (active against Hep-G2). In particular, 14 was found to be
more effective than cisplatin against HeLa, A549, and SKMEL28 cells. Differently from its
amide analogues, N-unsubstituted 3,4,5-trimethoxybenzoyl pyrazole 14 was as cytotoxic as
cisplatin against normal GM6114 fibroblasts (mean growth percentage = 39.31%).

The remarkable antiproliferative, non-cytotoxic activity of 11a was further investi-
gated, and the IC50 values against HeLa, MCF7, SKOV3, and SKMEL28 cell lines were
determined. The compound showed cell proliferation inhibition values in the micromo-
lar concentration range (IC50(HeLa) = 4.63 ± 0.41 µM; IC50(MCF7) = 6.90 ± 0.34 µM;
IC50(SKOV3) = 6.88 ± 0.23 µM; IC50(SKMEL28) = 9.45 ± 0.66 µM), confirming its promis-
ing antiproliferative profile.

In addition, 11a and 17 (representative compounds of the acylhydrazone and amide
series) were selected by the National Cancer Institute (NCI, Germantown, MD, USA) and
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tested at a fixed concentration of 10 µM against a panel of fifty-nine different cancer cell
lines, including highly metastatic tumors (Table 2). Pyrazolyl amide 17 did not show
any antiproliferative activity (growth percentage range = 81.47–118.49%), whereas 11a
confirmed its promising antitumor properties, showing growth percentage values lower
than 20% against leukemia (HL-60(TB), K-562, SR cells), NSCLC (NCI-H460 and NCI-
H522 cells), colon (HCT-116, HCT-15, HT29, and SW-620 cells), breast (MCF7, HS 578T,
MDA-MB-468 cells), and melanoma (LOX IMVI, M14, and MDA-MB-435 cells).

Table 2. NCI screening of compounds 11a and 17. Negative values indicate lethality.

Growth Percentage (%) Growth Percentage (%)

Panel/Cell Line 11a 17 Panel/Cell Line 11a 17

Leukemia Ovarian Cancer
CCRF-CEM 38.45 97.75 IGROV1 39.64 100.75
HL-60(TB) 15.46 96.44 OVCAR-4 87.03 99.35
K-562 19.25 96.41 OVCAR-5 76.88 99.49
MOLT-4 49.41 101.92 OVCAR-8 70.80 101.92
RPMI-8226 61.65 99.62 NCI/ADR-RES 32.98 103.29
SR 18.90 94.23 SK-OV-3 49.64 99.73
Non-Small Cell Lung Cancer Renal Cancer
A549/ATCC 57.09 101.59 786-0 57.97 101.26
EKVX 69.71 96.82 A498 33.08 92.87
HOP-62 38.79 110.36 ACHN 49.99 104.77
HOP-92 46.79 81.47 CAKI-1 39.84 86.39
NCI-H226 51.61 98.86 RXF 393 37.26 101.07
NCI-H23 66.86 98.44 SN12C 57.59 104.27
NCI-H322M 89.96 94.41 TK-10 89.16 107.78
NCI-H460 14.63 101.02 UO-31 51.18 87.45
NCI-H522 19.34 97.23 Prostate Cancer
Colon Cancer PC-3 55.90 95.84
COLO 205 35.82 106.91 DU-145 76.34 104.67
HCC-2998 59.18 114.15 Breast Cancer
HCT-116 14.99 104.12 MCF7 17.56 92.37

HCT-15 19.10 96.95 MDA-MB-
231/ATCC 65.06 100.37

HT29 18.58 99.47 HS 578T 3.81 96.86
KM12 27.82 105.43 BT-549 14.04 118.46
SW-620 16.01 94.82 T-47D 42.38 93.07
CNS Cancer MDA-MB-468 −12.56 102.11
SF-268 58.65 101.17 Melanoma
SF-295 98.52 102.51 LOX IMVI 18.93 102.01
SF-539 40.20 97.42 MALME-3M 44.75 98.67
SNB-19 36.78 98.39 M14 13.00 102.31
SNB-75 35.14 94.70 MDA-MB-435 -31.00 101.76
U251 33.33 100.80 SK-MEL-2 70.70 100.69

SK-MEL-28 57.48 107.16
SK-MEL-5 57.21 99.45
UACC-257 56.35 99.58
UACC-62 23.72 93.55

2.3. Antioxidant Evaluation

The antioxidant properties of acylhydrazones 10–13 and pyrazolyl amides 14–22 were
tested by evaluating their inhibition of platelet aggregation and ROS production (Figure 3,
Table S1). In fact, human platelets could represent a fast and low-cost biological model to
screen compounds as anticancer, anti-inflammatory, and antiaggregating agents [47–49].
Moreover, ROS production inhibition, related to human platelet aggregation, could pro-
vide a good indication of the anti-inflammatory and antioxidant properties of the newly
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synthesized compounds [47,50–52]. N-acetylcysteine (NAC) and acetyl salicylic acid (ASA)
were used as reference drugs for antioxidant and antiaggregant activities, respectively.

Int. J. Mol. Sci. 2024, 25, x FOR PEER REVIEW 7 of 19 
 

 

U251 33.33 100.80  SK-MEL-2 70.70 100.69 

    SK-MEL-28 57.48 107.16 

    SK-MEL-5 57.21 99.45 

    UACC-257 56.35 99.58 

    UACC-62 23.72 93.55 

2.3. Antioxidant Evaluation 

The antioxidant properties of acylhydrazones 10–13 and pyrazolyl amides 14–22 were 

tested by evaluating their inhibition of platelet aggregation and ROS production (Figure 3, 

Table S1). In fact, human platelets could represent a fast and low-cost biological model to 

screen compounds as anticancer, anti-inflammatory, and antiaggregating agents [47–49]. 

Moreover, ROS production inhibition, related to human platelet aggregation, could provide 

a good indication of the anti-inflammatory and antioxidant properties of the newly synthe-

sized compounds [47,50–52]. N-acetylcysteine (NAC) and acetyl salicylic acid (ASA) were 

used as reference drugs for antioxidant and antiaggregant activities, respectively.  

 

Figure 3. Bidimensional plot of ROS formation inhibition and antiaggregant activity of derivatives 

10–22. Pyrazolyl amides are colored red, and acylhydrazones are reported as green dots. The dashed 

red line indicates the antiaggregant IC50 value of the reference drug ASA (IC50 = 438 µM). All com-

pounds were found to be more effective ROS formation inhibitors than NAC (IC50 = 872 µM). 

All derivatives blocked ROS production more effectively than NAC, and most of the 

tested compounds (18 out of 23) showed improved antiaggregant properties in compari-

son with ASA.  

2.4. DPPH Radical-Scavenging Activity 

The antioxidant activity of the representative compounds of the two series (namely, 

acylhydrazones 10b, 11a, 11d, 12d, 13d, and amides 14, 22) was measured in vitro using the 

2,2-diphenyl-1-picrylhydrazyl (DPPH) assay [53]. The results were calculated as Trolox 

equivalent and expressed as a percentage of antioxidant activity (AA) (Table 3). Amides 14 

and 22 showed poor antioxidant properties, whereas hydrazone compounds displayed sig-

nificant AA values (range 15.53–76.45%). Derivatives 10b and 12d were endowed with the 

Figure 3. Bidimensional plot of ROS formation inhibition and antiaggregant activity of derivatives
10–22. Pyrazolyl amides are colored red, and acylhydrazones are reported as green dots. The dashed
red line indicates the antiaggregant IC50 value of the reference drug ASA (IC50 = 438 µM). All
compounds were found to be more effective ROS formation inhibitors than NAC (IC50 = 872 µM).

All derivatives blocked ROS production more effectively than NAC, and most of the
tested compounds (18 out of 23) showed improved antiaggregant properties in comparison
with ASA.

2.4. DPPH Radical-Scavenging Activity

The antioxidant activity of the representative compounds of the two series (namely,
acylhydrazones 10b, 11a, 11d, 12d, 13d, and amides 14, 22) was measured in vitro using
the 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay [53]. The results were calculated as Trolox
equivalent and expressed as a percentage of antioxidant activity (AA) (Table 3). Amides
14 and 22 showed poor antioxidant properties, whereas hydrazone compounds displayed
significant AA values (range 15.53–76.45%). Derivatives 10b and 12d were endowed with
the highest antioxidant activity, thus highlighting the relevance of both pyrazole N1 and
acylhydrazone substituents on compounds’ radical scavenging properties.

Table 3. DPPH antioxidant activity of selected acylhydrazone and amide derivatives.

Cpd A (λ = 517 nm) a DPPH (%) b AA (%) b

10b 0.2115 23.55 ± 0.39 76.45 ± 0.39
11a 0.6685 74.44 ± 2.44 25.56 ± 2.44
11d 0.7585 84.47 ± 0.24 15.53 ± 0.24
12d 0.2775 30.90 ± 0.39 69.10 ± 0.39
13d 0.3925 43.71 ± 1.18 56.29 ± 1.18
14 0.8655 96.38 ± 0.08 3.62 ± 0.08
22 0.8765 97.61 ± 0.24 2.39 ± 0.24

a Absorbance. b Mean value ± standard deviation (SD) of two independent experiments (n = 2).
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3. Discussion

To further extend the SARs of lead derivatives IV and V, acylhydrazones 10–13
and amides 14–22 were prepared through a divergent, regioselective synthetic protocol.
The novel acylhydrazone derivatives showed limited antiproliferative activity in cell-
based assays, with an exception made for derivative 11a that significantly inhibits the
duplication of leukemia, non-small cell lung cancer (NSCLC), colon cancer, CNS can-
cer, melanoma, and breast cancer cells, showing the highest inhibitory activity against
the cell line (Tables 1 and 2). Noteworthy, derivative 11a showed a lethal effect against
melanoma MDA-MB-435 and breast cancer MDA-MB-468 cell lines, thus confirming the
attractiveness of this molecule as a lead structure for the development of novel anticancer
agents. Among amides, the N-unsubstituted compound 14 was more effective than cis-
platin against cervical HeLa and lung A549 cancer cells, also affecting the proliferation of
ovarian SKOV3. Unfortunately, the observed antiproliferative effects were coupled with
significant cytotoxicity against normal fibroblasts.

Derivatives 10–22 showed a reduced antioxidant activity in comparison with lead com-
pounds IV and V [37,39], still resulting in more effective than reference NAC (IC50 = 872 µM)
in inhibiting ROS production. Moreover, the majority of the compounds showed increased
anti-platelet aggregation properties in comparison to ASA (IC50 = 438 µM). The ability
of acyl hydrazone compounds 10–13 to inhibit ROS formation and platelet aggregation
appears to be affected by the substitution of both the pyrazole nucleus and the phenyl
carbohydrazide ring. Thus, unsubstituted pyrazoles 10 and N-methyl pyrazoles 11 and 12
proved to be more active than their sterically hindered congeners 13. Moreover, compounds
bearing a 4-methoxyphenyl or a 3,4-dimethoxyphenyl substituent (i.e., derivatives 10a,b,
11a,b, and 12a,b) were endowed with the lower IC50 values for both platelet aggregation
(94–265 µM, Table S1) and ROS production (104–123 µM, Table S1) inhibition. Within the
pyrazolyl amide series, the aromatic nature of the amide substituent emerged to be critical
for activity. Thus, benzamido analogues 14–16, 18–22 showed anti-ROS and antiaggregant
effects in a narrow IC50 range (ROS production IC50 range = 262–387 µM; antiaggregant
IC50 range = 249–365 µM), resulting in greater effectiveness than the reference drugs. Con-
versely, the cyclopropyl amino analogue 17 was found to be less effective than its congeners
(IC50 (ROS) = 573 µM; IC50 (aggregation) = 460 µM), with reduced antiaggregant properties
in comparison with ASA.

In the DPPH radical-scavenging assay, amides 14 and 22 were less effective than
their hydrazone analogues (Table 3), thus highlighting the relevance of this moiety for
activity (Table 3). Among tested derivatives, pyrazole hydrazones 10b, 12d, and 13d
proved to be more effective than their analogues 11a,d, indicating that the insertion of
a methyl substituent on the pyrazole N-atom adjacent to the phenylamino group was
detrimental for activity. Noteworthy, these data suggest that the antiproliferative activity
of the prepared series (and, in particular, that of derivatives 11a and 14) does not correlate
with the compounds’ in vitro anti-scavenging properties.

Conversely, the high radical scavenging properties of 10b (AA% = 76.45%) well corre-
late with the compound’s antiaggregant and ROS inhibitory activities observed in platelets.

The developed SARs for the two series of compounds are summarized in Figure 4.
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4. Materials and Methods
4.1. Chemistry

Reagents were purchased by Alfa-Aesar and Sigma-Aldrich. 3,4-dimethoxybenzaldehyde,
3-methoxy-4-phenoxybenzaldehyde, and 4-(benzyloxy)-3-methoxybenzaldehyde were pre-
pared according to published procedures [43,44,54]. All the solvents were reagent grade
and were dried on molecular sieves (5 Å 1/16” inch pellets). Unless otherwise stated, all
commercial reagents were used without further purification. Organic solutions were dried
over anhydrous sodium sulphate. Aluminium-backed silica gel thin layer chromatography
(TLC) plates (Merck DC-Alufolien Kieselgel 60 F254) were used for reaction monitoring and
purity analyses. A DCM/MeOH 9:1 mixture was used as a developing solvent, and spots
were detected by UV light and/or by iodine vapors. Melting points were measured on a
Fisher-Johns apparatus and are uncorrected. 1H NMR and 13C NMR spectra were collected
on a JEOL JNM-ECZR (Tokyo, Japan) instrument (Figures S1–S44); chemical shifts were
reported in δ (ppm) units, and the splitting patterns were described as follows: s (singlet),
bs (broad singlet), d (doublet), t (triplet), q (quartet), and m (multiplet). The first-order
values reported for coupling constants J were given in Hz.The elemental composition of
synthesized compounds was collected by an EA1110. Pyrazoles 1–5 were synthesized as
previously reported [40–42].

4.1.1. General Synthesis of Intermediates 6–9

A mixture of the proper pyrazole 2–5 (2 mmol) and hydrazine monohydrate (2 mL)
was refluxed for 4–6 h. After cooling at rt, water (15 mL) was added, and the solution
was acidified with HCl 2 M. The precipitate was collected by filtration and used without
further purification. For compound 6, the excess of hydrazine was removed under reduced
pressure, and the crude mixture was purified by column chromatography (silica gel, eluent:
Et2O-Et2O/20% EtOH).

3-Amino-5-(phenylamino)-1H-pyrazole-4-carbohydrazide 6

Colourless oil. Yield 55%. Calcd for C10H12N6O: C = 51.72; H = 5.21; N = 36.19. Found:
C = 36.07; H = 5.28. N = 5.18.

3-Amino-1-methyl-5-(phenylamino)-1H-pyrazole-4-carbohydrazide 7

Mp 226–228 ◦C (H2O); yield 83%. Calcd for C11H14N6O: C = 53.65; H = 5.73; N = 34.13.
Found: C = 53.34; H = 5.74; N = 34.07.

5-Amino-1-methyl-3-(phenylamino)-1H-pyrazole-4-carbohydrazide 8

Mp 200–204 ◦C (H2O); yield: 71%. Calcd for C11H14N6O: C = 53.65; H = 5.73; N = 34.13.
Found: C = 53.88; H = 5.69; N = 34.21.
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5-Amino-1-(2-hydroxy-2-phenylethyl)-3-(phenylamino)-1H-pyrazole-4-carbohydrazide 9

Mp 177–180 ◦C (H2O); yield 53%. Calcd for C18H20N6O2: C = 61.35; H = 5.72; N = 23.85.
Found: C = 61.40; H = 5.67; N = 24.03.

4.1.2. General Synthetic Procedure for the Preparation of Pyrazole Acylhydrazones 10–13

To a solution of the proper intermediate 6–9 (1 mmol) in absolute EtOH (5 mL), the
suitable benzaldehyde a–d (1 mmol) was added. The reaction mixture was stirred at reflux
for 16 h and then cooled at rt. The precipitate was collected by filtration and crystallized
with ethanol.

(E)-3-amino-N′-(4-methoxybenzylidene)-5-(phenylamino)-1H-pyrazole-4-carbohydrazide 10a.

Mp 227–232 ◦C (EtOH); Yield 24%. 1H NMR (400 MHz, DMSO-d6): δ 3.79 (s, 3H,
OCH3); 6.15 (bs, 2H, NH2, exchangeable); 6.73–6.79 (m, 1H, arom. H); 6.97–7.02 (m, 2H,
arom. H); 7.16–7.22 (m, 2H, arom. H); 7.35–7.41 (m, 2H, arom. H); 7.58–7.61 (m, 2H, arom.
H); 8.13 (s, 1H, CH=C); 8.91 (bs, 1H, NH phenyl, exchangeable); 10.48 (bs, 1H, NH hydraz.,
exchangeable); 11.18 (bs, 1H, NH pyraz., exchangeable). 13C NMR (101 MHz, DMSO-d6):
δ 55.32; 85.33; 114.45; 116.01; 118.96; 126.89; 128.37; 128.79; 142.53; 144.64; 148.48; 151.09;
160.62. Calcd for C18H18N6O2: C = 61.70; H = 5.18; N = 23.99. Found: C = 61.65; H = 5.11;
N = 23.92.

(E)-3-amino-N′-(3,4-dimethoxybenzylidene)-5-(phenylamino)-1H-pyrazole-4-carbohydrazide 10b.

Mp 263–266 ◦C (EtOH); Yield 13%. 1H NMR (400 MHz, DMSO-d6): δ 3.75 (s, 3H,
OCH3); 3.79 (s, 3H, OCH3); 6.06 (bs, 2H, NH2, exchangeable); 6.73–6.80 (m, 1H, arom. H);
7.01–7.28 (m, 5H, arom. H); 7.44–7.49 (m, 2H, arom. H); 8.22 (s, 1H, CH=C); 9.24 (bs, 1H,
NH phenyl, exchangeable); 10.65 (bs, 1H, NH hydraz., exchangeable); 11.37 (bs, 1H, NH
pyraz., exchangeable). 13C NMR (101 MHz, DMSO-d6): δ 55.29; 55.58; 83.60; 115.44; 115.90;
116.02; 118.79; 118.98; 121.45; 128.79; 128.91; 141.91; 146.17; 151.26; 152.14; 171.47. Calcd for
C19H20N6O3: C = 59.99; H = 5.30; N = 22.90. Found: C = 59.82; H = 5.33; N = 22.75.

(E)-3-amino-N′-(4-methoxybenzylidene)-1-methyl-5-(phenylamino)-1H-pyrazole-4-carbohydrazide
11a.

Mp 208–210 ◦C (EtOH); Yield 51%. 1H NMR (400 MHz, DMSO-d6): δ 3.38 (s, 3H,
NCH3); 3.78 (s, 3H, OCH3); 5.47 (bs, 2H, NH2, exchangeable); 6.58–6.63 (m, 2H, arom.
H); 6.75–6.82 (m, 1H, arom. H); 6.93–7.00 (m, 2H, arom. H); 7.15–7.24 (m, 2H, arom. H);
7.53–7.59 (m, 2H arom. H); 7.91 (s, 1H, CH=C); 8.09 (bs, 1H, NH phenyl, exchangeable);
10.14 (bs, 1H, NH hydraz., exchangeable). 13C NMR (101 MHz, DMSO-d6): δ 34.60; 55.30;
93.60; 114.35; 119.80; 126.74; 128.45; 129.54; 138.04; 144.49; 145.17; 155.32; 160.66. Calcd for
C19H20N6O2: C = 62.62; H = 5.53; N = 23.06. Found: C = 62.59; H = 5.51; N = 22.94.

(E)-3-amino-N′-(3,4-dimethoxybenzylidene)-1-methyl-5-(phenylamino)-1H-pyrazole-4-carbohydrazide
11b.

Mp 218–220 ◦C (EtOH); Yield 60%. 1H NMR (400 MHz, DMSO-d6): δ 3.38 (s, 3H,
NCH3); 3.77 (s, 3H, OCH3); 3.78 (s, 3H, OCH3); 5.47 (bs, 2H, NH2, exchangeable); 6.60–6.64
(m, 2H, arom. H); 6.77–6.82 (m, 1H, arom. H); 6.96–7.00 (m, 1H, arom. H); 7.10–7.14
(m, 1H, arom. H); 7.18–7.25 (m, 3H arom. H); 7.91 (s, 1H, CH=C); 8.09 (bs, 1H, NH
phenyl, exchangeable); 10.16 (bs, 1H, NH hydraz., exchangeable). 13C NMR (101 MHz,
DMSO-d6): δ 34.58; 55.38; 55.55; 93.61; 108.18; 109.03; 111.49; 114.32; 119.81; 121.37; 123.56;
126.89; 129.54; 144.49; 145.47; 149.01; 150.51; 151.62; 155.30; 160.85. Calcd for C20H22N6O3:
C = 60.90; H = 5.62; N = 21.31. Found: C = 61.40; H = 5.54; N = 21.05.

(E)-3-amino-N′-(4-methoxy-3-phenoxybenzylidene)-1-methyl-5-(phenylamino)-1H-pyrazole-4-
carbohydrazide 11c.

Mp 226–228 ◦C (EtOH); Yield 49%. 1H NMR (400 MHz, DMSO-d6): δ 3.36 (s, 3H,
NCH3); 3.79 (s, 3H, OCH3); 5.44 (bs, 2H, NH2, exchangeable); 6.57–6.62 (m, 2H, arom.
H); 6.76–6.81 (m, 1H, arom. H); 6.87–6.90 (m, 2H, arom. H); 7.04–7.08 (m, 1H, arom. H);
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7.16–7.22 (m, 3H arom. H); 7.26–7.35 (m, 3H, arom. H); 7.40–7.44 (m, 1H, arom. H);
7.90 (s, 1H, CH=C); 8.05 (bs, 1H, NH phenyl, exchangeable); 10.19 (bs, 1H, NH hydraz.,
exchangeable). 13C NMR (101 MHz, DMSO-d6): δ 34.59; 55.87; 93.55; 113.35; 114.33; 116.80;
118.03; 119.80; 122.75; 124.88; 127.44; 129.53; 129.93; 138.16; 144.41; 152.56; 155.31; 157.29;
159.90. Calcd for C25H24N6O3: C = 65.78; H = 5.30; N = 18.41. Found: C = 65.55; H = 5.28;
N = 18.21.

(E)-3-amino-N′-(3-(benzyloxy)-4-methoxybenzylidene)-1-methyl-5-(phenylamino)-1H-pyrazole-4-
carbohydrazide 11d.

Mp 183–186 ◦C (EtOH); Yield 80%. 1H NMR (400 MHz, DMSO-d6): δ 3.34 (s, 3H,
NCH3); 3.76 (s, 3H, OCH3); 5.05 (s, 2H, CH2Ph); 5.44 (bs, 2H, NH2, exchangeable); 6.55–6.61
(m, 2H, arom. H); 6.73–6.78 (m, 1H, arom. H); 6.96–7.00 (m, 1H, arom. H); 7.12–7.19
(m, 2H, arom. H); 7.28–7.44 (m, 7H arom. H); 7.86 (s, 1H, CH=C); 8.04 (bs, 1H, NH
phenyl, exchangeable); 10.11 (bs, 1H, NH hydraz., exchangeable). 13C NMR (101 MHz,
DMSO-d6): δ 34.60; 55.65; 69.83; 93.65; 110.09; 111.82; 114.32; 119.81; 121.54; 126.86; 127.92;
128.01; 128.46; 129.55; 136.88; 144.49; 148.05; 150.79; 155.29; 160.78. Calcd for C26H26N6O3:
C = 66.37; H = 5.57; N = 17.86. Found: C = 66.45; H = 5.48; N = 17.72.

(E)-5-amino-N′-(4-methoxybenzylidene)-1-methyl-3-(phenylamino)-1H-pyrazole-4-carbohydrazide
12a.

Mp 195–198 ◦C (EtOH); Yield 50%. 1H NMR (400 MHz, DMSO-d6): δ 3.52 (s, 3H,
NCH3); 3.79 (s, 3H, OCH3); 6.39 (bs, 2H, NH2, exchangeable); 6.74–6.79 (m, 1H, arom.
H); 6.98–7.02 (m, 2H, arom. H); 7.16–7.22 (m, 2H, arom. H); 7.35–7.39 (m, 2H, arom. H);
7.58–7.63 (m, 2H arom. H); 8.12 (s, 1H, CH=C); 8.90 (bs, 1H, NH phenyl, exchangeable);
10.52 (bs, 1H, NH hydraz., exchangeable). 13C NMR (101 MHz, DMSO-d6): δ 34.12; 55.32;
85.63; 114.45; 116.06; 119.06; 126.83; 128.36; 128.78; 130.03; 142.42; 144.58; 147.40; 149.62;
160.63. Calcd for C19H20N6O2: C = 62.62; H = 5.53; N = 23.06. Found: C = 62.56; H = 5.63;
N = 22.99.

(E)-5-amino-N′-(3,4-dimethoxybenzylidene)-1-methyl-3-(phenylamino)-1H-pyrazole-4-carbohydrazide
12b.

Mp 104–106 ◦C (EtOH); Yield 35%. 1H NMR (400 MHz, CDCl3): δ 3.59 (s, 3H, NCH3);
3.83 (s, 3H, OCH3); 3.92 (s, 3H, OCH3); 5.45 (bs, 2H, NH2, exchangeable); 6.82–6.85 (m,
1H, arom. H); 6.90–6.94 (m, 1H, arom. H); 7.01–7.05 (m, 1H, arom. H); 7.23–7.30 (m, 4H,
arom. H); 7.32–7.36 (m, 2H, arom. H + CH=C); 7.72 (bs, 1H, NH phenyl, exchangeable);
9.80 (bs, 1H, NH hydraz., exchangeable). 13C NMR (101 MHz, CDCl3): δ 33.92; 55.94; 89.16;
108.12; 110.66; 116.70; 120.73; 122.31; 126.54; 129.34; 143.03; 145.57; 148.90; 149.41; 151.10;
163.16. Calcd for C20H22N6O3: C = 60.90; H = 5.62; N = 21.31. Found: C = 60.65; H = 5.38;
N = 21.45.

(E)-5-amino-N′-(4-methoxy-3-phenoxybenzylidene)-1-methyl-3-(phenylamino)-1H-pyrazole-4-
carbohydrazide 12c.

Mp 234–236 ◦C (EtOH); Yield 68%. 1H NMR (400 MHz, DMSO-d6): δ 3.51 (s, 3H,
NCH3); 3.80 (s, 3H, OCH3); 6.31 (bs, 2H, NH2, exchangeable); 6.74–6.78 (m, 1H, arom.
H); 6.87–6.91 (m, 2H, arom. H); 7.04–7.09 (m, 1H, arom. H); 7.15–7.25 (m, 3H, arom. H);
7.30–7.37 (m, 5H arom. H); 7.44–7.48 (m, 1H, arom. H); 8.10 (s, 1H, CH=C); 8.79 (bs, 1H,
NH phenyl, exchangeable); 10.50 (bs, 1H, NH hydraz., exchangeable). 13C NMR (101 MHz,
DMSO-d6): δ 34.09; 55.89; 85.70; 113.45; 116.05; 116.70; 118.13; 119.08; 122.69; 124.82; 127.60;
128.77; 129.91; 142.45; 144.11; 144.40; 147.36; 149.47; 152.54; 157.33; 162.61. Calcd for
C25H24N6O3: C = 65.78; H = 5.30. N = 18.41; Found: C = 65.70; H = 5.30; N = 18.35.

(E)-5-amino-N′-(3-(benzyloxy)-4-methoxybenzylidene)-1-methyl-3-(phenylamino)-1H-pyrazole-4-
carbohydrazide 12d.

Mp 131–133 ◦C (EtOH); Yield 91%. 1H NMR (400 MHz, DMSO-d6): δ 3.53 (s, 3H,
NCH3); 3.81 (s, 3H, OCH3); 5.01 (s, 2H, CH2Ph); 6.41 (bs, 2H, NH2, exchangeable); 6.74–6.80
(m, 1H, arom. H); 7.01–7.06 (m, 1H, arom. H); 7.16–7.22 (m, 3H, arom. H); 7.35–7.44 (m, 8H,
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arom. H); 8.09 (s, 1H, CH=C); 8.90 (bs, 1H, NH phenyl, exchangeable); 10.59 (bs, 1H, NH
hydraz., exchangeable). 13C NMR (101 MHz, DMSO-d6): δ 34.61; 56.16; 70.20; 86.14; 110.17;
112.37; 116.64; 119.63; 122.09; 127.42; 128.45; 128.93; 129.29; 137.32; 142.84; 145.11; 148.21;
148.65; 149.89; 151.25; 161.27. Calcd for C26H26N6O3: C = 66.37; H = 5.57; N = 17.86. Found:
C = 66.34; H = 5.60. N = 17.68.

(E)-5-amino-1-(2-hydroxy-2-phenylethyl)-N′-(4-methoxybenzylidene)-3-(phenylamino)-1H-pyrazole-
4-carbohydrazide 13a.

Mp 120–122 ◦C (EtOH); Yield 52%. 1H NMR (400 MHz, CDCl3): δ 3.78 (s, 3H, OCH3);
3.85–4.04 (m, 3H, CH2N + CHOH); 5.12–5.17 (m, 1H, OH, exchangeable); 5.43 (bs, 2H, NH2,
exchangeable); 6.76–6.81 (m, 2H, arom. H); 6.83–6.89 (m, 1H, arom. H); 7.14–7.23 (m, 4H,
arom. H); 7.27–7.39 (m, 5H, arom. H); 7.45–7.50 (m, 2H, arom. H); 7.55 (s, 1H, CH=C); 8.61
(bs, 1H, NH phenyl, exchangeable); 9.59 (bs, 1H, NH hydraz., exchangeable). 13C NMR
(101 MHz, CDCl3): δ 55.26; 55.47; 73.50; 89.27; 114.36; 116.86; 120.71; 126.04; 126.18; 128.16;
128.75; 129.13; 129.32; 130.36; 140.97; 142.71; 145.55; 149.12; 161.45. Calcd for C26H26N6O3:
C = 66.37; H = 5.57; N = 17.86. Found: C = 66.40; H = 5.30. N = 17.63.

(E)-5-amino-N′-(3,4-dimethoxybenzylidene)-1-(2-hydroxy-2-phenylethyl)-3-(phenylamino)-1H-
pyrazole-4-carbohydrazide 13b.

Mp 158–159 ◦C (EtOH); Yield 65%. 1H NMR (400 MHz, DMSO-d6): δ 3.74 (s, 3H,
OCH3); 3.80 (s, 3H, OCH3); 3.92–4.12 (m, 2H, CH2N); 5.00–5.05 (m, 1H, CHOH); 5.73–5.76
(m, 1H, OH, exchangeable); 6.28 (bs, 2H, NH2, exchangeable); 6.75–6.80 (m, 1H, arom.
H); 6.98–7.02 (m, 1H, arom. H); 7.12–7.22 (m, 3H, arom. H); 7.27–7.29 (m, 2H, arom. H);
7.32–7.36 (m, 4H, arom. H); 7.42–7.46 (m, 2H, arom. H); 8.09 (s, 1H, CH=C); 8.86 (bs, 1H,
NH phenyl, exchangeable); 10.56 (bs, 1H, NH hydraz., exchangeable). 13C NMR (101 MHz,
DMSO-d6): δ 53.76; 55.29; 55.59; 71.33; 86.03; 107.84; 111.55; 116.13; 119.10; 121.47; 126.35;
126.98; 127.40; 128.14; 128.79; 142.53; 142.77; 144.72; 148.26; 149.11; 149.38; 150.49; 163.07.
Calcd for C27H28N6O4: C = 64.79; H = 5.64; N = 16.79. Found: C = 64.55; H = 5.76. N = 16.52.

(E)-5-amino-1-(2-hydroxy-2-phenylethyl)-N′-(4-methoxy-3-phenoxybenzylidene)-3-(phenylamino)-
1H-pyrazole-4-carbohydrazide 13c.

Mp 144–145 ◦C (EtOH); Yield 59%. 1H NMR (400 MHz, DMSO-d6): δ 3.80 (s, 3H,
OCH3); 3.90–4.10 (m, 2H, CH2N); 4.97–5.03 (m, 1H, CHOH); 5.71–5.74 (m, 1H, OH, ex-
changeable); 6.18 (bs, 2H, NH2, exchangeable); 6.73–6.79 (m, 1H, arom. H); 6.87–6.91 (m, 2H,
arom. H); 7.03–7.09 (m, 1H, arom. H); 7.14–7.25 (m, 3H, arom. H); 7.27–7.37 (m, 8H, arom.
H); 7.39–7.47 (m, 3H, arom. H); 8.09 (s, 1H, CH=C); 8.72 (bs, 1H, NH phenyl, exchangeable);
10.46 (bs, 1H, NH hydraz., exchangeable). 13C NMR (101 MHz, DMSO-d6): δ 53.69; 55.91;
71.32; 86.12; 113.47; 116.09; 116.69; 118.17; 119.11; 122.69; 124.86; 126.33; 127.39; 127.61;
128.12; 128.78; 129.91; 142.60; 142.71; 144.11; 144.38; 148.12; 149.27; 152.56; 157.35. Calcd for
C32H30N6O4: C = 68.31; H = 5.37; N = 14.94. Found: C = 68.01; H = 5.15; N = 15.00.

(E)-5-amino-N′-(3-(benzyloxy)-4-methoxybenzylidene)-1-(2-hydroxy-2-phenylethyl)-3-(phenylamino)-
1H-pyrazole-4-carbohydrazide 13d.

Mp 170–173 ◦C (EtOH); Yield 74%. 1H NMR (400 MHz, DMSO-d6): δ 3.81 (s, 3H,
OCH3); 3.92–4.11 (m, 2H, CH2N); 5.02 (s, 2H, CH2Ph); 5.12–5.16 (m, 1H, CHOH); 5.73–5.76
(m, 1H, OH, exchangeable); 6.29 (bs, 2H, NH2, exchangeable); 6.74–6.81 (m, 1H, arom.
H); 7.02–7.06 (m, 1H, arom. H); 7.16–7.22 (m, 3H, arom. H); 7.32–7.237 (m, 5H, arom. H);
7.38–7.45 (m, 8H, arom. H); 8.08 (s, 1H, CH=C); 8.87 (bs, 1H, NH phenyl, exchangeable);
10.58 (bs, 1H, NH hydraz., exchangeable). 13C NMR (101 MHz, DMSO-d6): δ 53.78; 55.66;
69.73; 71.33; 85.99; 109.55; 111.86; 116.14; 119.09; 121.66; 123.73; 126.34; 126.92; 127.38;
128.01; 128.11; 128.43; 128.48; 128.79; 136.82; 142.49; 142.75; 148.17; 149.34; 150.75; 151.91;
160.77. Calcd for C33H32N6O4: C = 68.73; H = 5.59; N = 14.57. Found: C = 68.78; H = 5.52;
N = 14.67.
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4.1.3. General Synthetic Procedure for the Synthesis of Pyrazole Amides 14–16 and 20–22

To a DCM solution (10 mL) of 1 or 2 (1 mmol), TEA (211 µL, 1.5 mmol) and the suitable
acyl chloride (1.2 mmol) were sequentially added. After stirring at rt for 24h, the reaction
mixture was washed with saturated NaHCO3 (2 × 10 mL), water (1 × 10 mL), and dried
with anhydrous Na2SO4. Evaporating in vacuo gave crude product that was purified by
crystallization from the suitable solvent or solvent mixture.

Methyl 5-(phenylamino)-3-(3,4,5-trimethoxybenzamido)-1H-pyrazole-4-carboxylate 14.

Mp 164–166 ◦C (DCM/MeOH); Yield 55%. 1H NMR (400 MHz, DMSO-d6): δ 3.85 (s,
12H, OCH3); 6.97–7.05 (m, 1H, arom. H); 7.21–7.34 (m, 4H, arom. H); 7.68–7.76 (m, 2H,
arom. H); 10.96 (s, 1H, CONH, exchangeable); 11.24 (s, 1H, NH phenyl, exchangeable).
Calcd for C21H22N4O6: C = 59.15; H = 5.20; N = 13.14. Found: C = 59.40; H = 5.38; N = 12.86.

Ethyl 3-(4-methoxybenzamido)-5-(phenylamino)-1H-pyrazole-4-carboxylate 15.

Mp 155–157 ◦C (Et2O); Yield 65%. 1H NMR (400 MHz, DMSO-d6): δ 1.35 (t, 3H,
J = 7.1 Hz, CH3); 3.88 (s, 3H, OCH3); 4.34 (q, 2H, J = 7.1 Hz, CH2O); 6.88–6.94 (m, 1H,
arom. H); 7.08–7.14 (m, 2H, arom. H); 7.23–7.30 (m, 2H, arom. H); 7.51–7.57 (m, 2H, arom.
H); 7.67 (bs, 1H, CONH, exchangeable); 8.13–8.20 (m, 2H, arom. H); 8.25 (bs, 1H, NH
phenyl, exchangeable). 13C NMR (101 MHz, DMSO-d6): δ 14.45; 55.60; 59.83; 82.87; 113.22;
117.17; 120.91; 124.67; 128.94; 133.18; 140.17; 151.07; 153.56; 162.76; 163.78; 168.15. Calcd for
C20H20N4O4: C = 63.15; H = 5.30; N = 14.73. Found: C = 63.51; H = 5.23; N = 15.11.

Ethyl 3-(3,4-dimethoxybenzamido)-5-(phenylamino)-1H-pyrazole-4-carboxylate 16.

Mp 143–145 ◦C (EtOH); Yield 71%. 1H NMR (400 MHz, DMSO-d6): δ 1.35 (t, 3H,
J = 7.1 Hz, CH3); 3.79 (s, 3H, OCH3); 3.88 (s, 3H, OCH3); 4.34 (q, 2H, J = 7.1 Hz, CH2O);
6.87–6.96 (m, 1H, arom. H); 7.10–7.18 (m, 1H, arom. H); 7.21–7.30 (m, 2H, arom. H);
7.53–7.60 (m, 2H, arom. H); 7.69 (bs, 1H, CONH, exchangeable); 7.78–7.88 (m, 2H, arom.
H); 8.30 (bs, 1H, NH phenyl, exchangeable). 13C NMR (101 MHz, DMSO-d6): δ 14.45; 55.48;
55.76; 59.87; 82.86; 110.64; 114.08; 117.15; 121.00; 124.53; 125.33; 128.90; 140.18; 147.46; 151.18;
152.65; 153.67; 163.80; 168.08. Calcd for C21H22N4O5: C = 61.46; H = 5.40; N = 13.65. Found:
C = 61.08; H = 5.07; N = 13.72.

Ethyl 3-(2,6-dimethoxybenzamido)-1-methyl-5-(phenylamino)-1H-pyrazole-4-carboxylate 20.

Mp 158–160 ◦C (DCM/MeOH); Yield 30%. 1H NMR (400 MHz, DMSO-d6): δ 0.92 (t,
3H, J = 7.1 Hz, CH3); 3.57 (s, 3H, CH3N); 3.78 (s, 6H, 2 x OCH3); 3.96 (q, 2H, J = 7.1 Hz,
CH2); 6.66–6.75 (m, 3H, arom. H); 6.78–6.84 (m, 1H, arom. H); 7.15–7.22 (m, 2H, arom.
H); 7.33–7.44 (m, 2H, arom. H); 8.18 (bs, 1H, NH phenyl, exchangeable); 9.56 (bs, 1H, NH
amide, exchangeable). 13C NMR (101 MHz, DMSO-d6): δ 14.11; 35.80; 56.34; 56.60; 59.95;
95.10; 104.71; 110.97; 115.44; 120.15; 129.58; 133.28; 142.77; 144.86; 157.38; 157.86; 160.77;
163.44. Calcd for C22H24N4O5: C = 62.25; H = 5.70; N = 13.20. Found: C = 62.18; H = 5.53;
N = 13.60.

Ethyl 3-(3,4-dimethoxybenzamido)-1-methyl-5-(phenylamino)-1H-pyrazole-4-carboxylate 21.

Mp 186–187 ◦C (DCM/Et2O); Yield 39%. 1H NMR (400 MHz, DMSO-d6): δ 0.86 (t,
3H, J = 7.1 Hz, CH3); 3.59 (s, 3H, CH3N); 3.82 (s, 3H, OCH3); 3.83 (s, 3H, OCH3); 3.91 (q,
2H, J = 7.1 Hz, CH2); 6.63–6.70 (m, 3H, arom. H); 6.76–6.85 (m, 1H, arom. H); 7.04–7.11
(m, 1H, arom. H); 7.15–7.24 (m, 2H, arom. H); 7.51–7.62 (m, 2H, arom. H); 8.21 (bs, 1H,
NH phenyl, exchangeable); 10.13 (bs, 1H, NH amide, exchangeable). 13C NMR (101 MHz,
DMSO-d6): δ 13.70; 35.34; 55.57; 55.66; 59.18; 98.82; 110.79; 110.99; 114.71; 119.56; 120.96;
126.17; 129.13; 142.95; 144.49; 145.20; 148.31; 151.70; 162.09; 164.74. Calcd for C22H24N4O5:
C = 62.25; H = 5.70; N = 13.20. Found: C = 62.18; H = 5.37; N = 13.08.

Ethyl 1-methyl-5-(phenylamino)-3-(3,4,5-trimethoxybenzamido)-1H-pyrazole-4-carboxylate 22.

Mp 135–138 ◦C (Et2O); Yield 22%. 1H NMR (400 MHz, DMSO-d6): δ 0.87 (t, 3H,
J = 7.1 Hz, CH3); 3.59 (s, 3H, CH3N); 3.73 (s, 3H, OCH3); 3.85 (s, 6H, 2 x OCH3); 3.91 (q,
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2H, J = 7.1 Hz, CH2); 6.63–6.70 (m, 2H, arom. H); 6.76–6.85 (m, 1H, arom. H); 7.16–7.24
(m, 2H, arom. H); 7.28–7.31 (m, 2H, arom. H); 8.21 (bs, 1H, NH phenyl, exchangeable);
10.21 (bs, 1H, NH amide, exchangeable). 13C NMR (101 MHz, DMSO-d6): δ 13.72; 35.35;
56.03; 59.16; 60.15; 99.35; 105.13; 114.67; 119.57; 129.13; 140.33; 143.03; 144.51; 144.87; 152.66;
161.88; 164.87. Calcd for C23H26N4O6: C = 60.78; H = 5.77; N = 12.33. Found: C = 60.97;
H = 5.67; N = 12.65.

4.1.4. Synthesis of Pyrazole Amides 17 and 18

To a dry DMF solution (5 mL) of pyrazole 3 (266 mg, 1 mmol), TMEDA (169 µL,
1.1 mmol) and the proper acyl chloride (1.1 mmol) were sequentially added. After stirring
at 120 ◦C for 2 h, the reaction mixture was cooled at rt, and water (40 mL) was added. The
precipitated solid was collected by filtration and recrystallized from the proper solvent or
solvent mixture.

Ethyl 3-(cyclopropanecarboxamido)-1-methyl-5-(phenylamino)-1H-pyrazole-4-carboxylate 17.

Mp 144–145 ◦C (EtOH); Yield 43%. 1H NMR (400 MHz, CDCl3): δ 0.82–0.93 (m, 2H,
CH2-cycloprop); 1.08–1.18 (m, 2H, CH2-cycloprop); 1.33 (t, 3H, J = 7.1 Hz, CH3); 1.44–1.74
(m, 1H, CHCO); 3.46 (s, 3H, CH3N); 4.30 (q, 2H, J = 7.1 Hz, CH2O); 6.75–6.85 (m, 3H, arom.
H + NH amide, exchangeable); 6.99–7.08 (m, 1H, arom. H); 7.23–7.35 (m, 2H, arom. H); 9.18
(bs, 1H, NH phenyl, exchangeable). Calcd for C17H20N4O3: C = 62.18; H = 6.14; N = 17.06.
Found: C = 61.86; H = 5.96; N = 16.65.

Ethyl 3-(4-chlorobenzamido)-1-methyl-5-(phenylamino)-1H-pyrazole-4-carboxylate 18.

Mp 158–161 ◦C (Et2O/ligroin); Yield 36%. 1H NMR (400 MHz, DMSO-d6): δ 0.85 (t,
3H, J = 7.1 Hz, CH3); 3.59 (s, 3H, CH3N); 3.91 (q, 2H, J = 7.1 Hz, CH2); 6.62–6.70 (m, 2H,
arom. H); 6.75–6.86 (m, 1H, arom. H); 7.12–7.24 (m, 2H, arom. H); 7.55–7.65 (m, 2H, arom.
H); 7.94–7.99 (m, 2H, arom. H); 8.23 (bs, 1H, NH phenyl, exchangeable); 10.34 (bs, 1H, NH
amide, exchangeable). 13C NMR (101 MHz, DMSO-d6): δ 13.69; 35.40; 59.21; 98.96; 114.76;
119.62; 128.66; 129.14; 129.54; 132.74; 136.67; 143.12; 144.41; 144.77; 161.93; 164.45. Calcd for
C20H19ClN4O3: C = 60.23; H = 4.80; N = 14.05. Found: C = 59.87; H = 4.81; N = 14.39.

4.1.5. Synthesis of Ethyl 3-(4-Methoxybenzamido)-1-methyl-5-(phenylamino)-1H-
pyrazole-4-carboxylate 19

To a dry ACN solution (10 mL) of 3 (266 mg, 1 mmol), TEA (214 µL, 1.5 mmol),
and p-methoxybenzoyl chloride (164 µL, 1.2 mmol) dissolved in dry ACN (2 mL) were
sequentially added. After stirring at rt for 72 h, the reaction mixture was refluxed for 0.5 h.
After cooling at rt, the solvent was evaporated in vacuo and saturated NaHCO3 (10 mL)
was added. The mixture was extracted with DCM (2 × 10 mL), and the pooled organic
phases were washed with water (1 × 10 mL), dried and filtered. Evaporating in vacuo
gave a crude residue, which was purified by column chromatography (silica gel, eluent:
Et2O-Et2O/5% EtOH).

Mp 143–145 ◦C (Et2O); Yield 30%. 1H NMR (400 MHz, DMSO-d6): δ 0.85 (t, 3H,
J = 7.1 Hz, CH3); 3.58 (s, 3H, CH3N); 3.83 (s, 3H, OCH3); 3.91 (q, 2H, J = 7.1 Hz, CH2);
6.63–6.71 (m, 2H, arom. H); 6.76–6.85 (m, 1H, arom. H); 7.02–7.10 (m, 2H, arom. H);
7.15–7.24 (m, 2H, arom. H); 7.90–7.97 (m, 2H, arom. H); 8.21 (bs, 1H, NH phenyl, exchange-
able); 10.11 (bs, 1H, NH amide, exchangeable). 13C NMR (101 MHz, DMSO-d6): δ 13.67;
35.34; 55.44; 59.19; 98.46; 113.75; 114.75; 119.58; 126.15; 129.12; 129.48; 142.93; 144.45; 145.30;
162.04; 162.19; 164.57. Calcd for C21H22N4O4: C = 63.95; H = 5.62; N = 14.20. Found:
C = 63.56; H = 5.55; N = 14.39.

4.2. Biology
4.2.1. MTT Assays

All reagents were purchased from EuroClone, Milan, Italy). The following cell lines
were used for MTT assays: SKOV-3 (ovarian adenocarcinoma, ATCC, Manassas, VA, USA);
MCF-7 (breast adenocarcinoma, Biologic Bank and Cell Factory, IRCCS Policlinico San
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Martino, Genoa, Italy); Hep-G2 (hepatocellular carcinoma, ATCC, Manassas, VA, USA);
SK-MEL28 (skin melanoma, Biologic Bank and Cell Factory, IRCCS Policlinico San Martino,
Genoa, Italy), GM-6114 (embryonic human fibroblast, ATCC, Manassas, VA, USA); MDA-
MB231 (breast adenocarcinoma, Biologic Bank and Cell Factory, IRCCS Policlinico San
Martino, Genoa, Italy); HeLa (cervical adenocarcinoma, Biologic Bank and Cell Factory,
IRCCS Policlinico San Martino, Genoa, Italy); SK-BR3 (breast andenocarcinoma, Biologic
Bank and Cell Factory, IRCCS Policlinico San Martino, Genoa, Italy); A549 (lung carcinoma,
Biologic Bank and Cell Factory, IRCCS Policlinico San Martino, Genoa, Italy); HUVEC
(Human Umbilical Vein Endothelial Cells, ATCC, Manassas, VA, USA). All cell lines were
grown in their medium with 10% FBS, 2 mM Glutamine, and 1% penstrep and incubated at
37 ◦C in 5% CO2 in a humidified environment. The cell lines were plated in 96-well plates
at an adequate number to reach 80–90% confluence at the end of the assay. 16 h after cell
plating, a 10 mM DMSO stock solution of the compounds was diluted in growth medium
and added at a final working concentration of 10 µM. After 48h of incubation, a 2 mg/mL
PBS solution of MTT (3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide)
was added (30 µL/well). After 4h, the supernatant was removed, and the Formazan
precipitates were dissolved in DMSO (100 µL/well). The 96-well plates were incubated
for 20 min, and absorbance was measured at 570 nm using a plate reader. The results
are expressed as a percentage ratio over control samples (100%) in which the cells were
incubated with the same amount of DMSO but without compounds. Each value is the
mean of three independent experiments run in six replicates.

The IC50 values were extrapolated from nonlinear regression analysis of concentration–
response curves (used concentrations: 1, 5, 10 µM), using the MS Excel software (Microsoft
365 suite). Each IC50 value is the mean of three independent experiments run in duplicate.

4.2.2. Blood Collection

Freshly drawn venous blood from healthy volunteers from “Centro Trasfusionale” (IR-
CCS Policlinico San Martino, Genoa, Italy) was collected into a 130 mM aqueous trisodium
citrate anticoagulant solution (9:1). The donors claimed to not have taken drugs known to
interfere with platelet function during the two weeks prior to blood collection and gave
their informed consent. Whole blood was centrifuged at 100× g for 20 min to afford platelet-
rich plasma that was then spun at 1100× g for 15 min. The obtained pellet was washed
once with a pH 5.2 ACD solution (75 mM trisodium citrate, 42 mM citric acid, and 136 mM
glucose), centrifuged at 1100× g for 15 min, and then re-suspended in pH 7.4 Hepes buffer
(145 mM NaCl, 5 mM KCl, 1 mM MgSO4, 10 mM glucose, and 10 mM HEPES).

4.2.3. ROS Assay

2′,7′-Dichlorofluorescein diacetate (DCFH-DA) and thrombin were purchased from
Sigma-Aldrich/Merck Millipore. DMSO solutions of 10–22 were diluted in saline imme-
diately before each experiment. ROS production was quantified by DCFH-DA, a ROS-
sensitive probe that yields, upon oxidation, the fluorescent adduct DCF that is trapped
inside the cells [55]. Briefly, washed platelets (1.0 × 108/mL), pre-incubated with saline
solutions of 10–22 for 15 min at 37 ◦C, were stimulated by 0.1 U/mL thrombin. Incubation
was stopped by cooling samples in an ice bath, and then samples were immediately an-
alyzed in a Merck Millipore Bioscience Guava easyCyte flow cytometer (Merk Millipore,
Burlington, MA, USA). The reported IC50 values represent the molar concentration of the
compounds able to inhibit 50% of the maximal aggregation induced by the agonist and
are calculated as the percentage inhibition of the maximal aggregation measured in the
presence of the agent compared with the measure in a control sample containing saline,
carried out under the same conditions. The IC50 values were extrapolated from nonlinear
regression analysis of concentration–response curves (three points) using MS Excel software
(Microsoft 365 suite). Each IC50 value is the mean of six independent experiments.
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4.2.4. Platelet Aggregation

Thrombin was purchased from Sigma-Aldrich/Merck Millipore. A DMSO solution of
compounds 10–22 was diluted in saline immediately before each experiment and added
to the washed platelets (3.0 × 108/mL) at 37 ◦C. After 3 min, 0.1 U/mL thrombin was
added, and platelet aggregation was quantified according to Born’s method [56] using a
Bio-Data Aggregometer (Bio-Data Corporation, Horsham, PA, USA). The IC50 values were
calculated as detailed above.

4.3. DPPH Radical-Scavenging Activity

Compounds 10b, 11a, 11d, 12d, 13d, 14, and 22 (ca. 3 mg) were dissolved in DMSO
(1 mL), and then 100 µL of this solution was mixed with 3.9 mL of DPPH methanol solution
(65 µM). Absorbance was measured at 517 nm after reacting for 30 min in the dark. The
linear calibration curve was obtained using Trolox standards (ranging between 20 and
200 mg/L, R2 = 0.9955). The result was calculated as Trolox equivalent in mg/L, and
the percentage of antioxidant activity (AA%) was calculated from the ratio of decreasing
absorbance of sample solution (A0 − As) to absorbance of blank DPPH solution (A0), as
expressed in Equation (1) [57,58].

AA% =
(A0 − As)

A0
× 100 (1)

All analyses were carried out in duplicate (n = 2), and values are given as means ±
standard deviation (SD).

5. Conclusions

To further extend the SARs of antioxidant derivatives IV and V, pyrazolyl acylhydra-
zones 10–13 and amides 14–22 were prepared from APs 1–5 through a divergent approach.
The novel compounds were evaluated for (i) antiproliferative activity in cell-based assays;
(ii) antioxidant and antiaggregating properties in platelets; and (iii) anti-scavenging efficacy.
Compound 11a displayed micromolar IC50 values against selected tumor cell lines (namely,
HeLa, MCF7, SKOV3, and SKMEL28 cells), and NCI screening on a large panel of tumor
cell lines confirmed the promising cytotoxic activity of this derivative. Different from all its
analogues, pyrazolyl amide 14 showed relevant and unexpected antiproliferative activity
against melanoma (SKMEL28), lung (A549), and cervical (HeLa) tumors. Unfortunately,
the compound was as cytotoxic as cisplatin against GM6114 normal fibroblasts. Despite
resulting in less activity compared to lead compounds IV and V, selected pyrazole acylhy-
drazones and amides significantly inhibited aggregation and ROS production in platelets
and proved to be more effective than ASA and NAC. Moreover, the antiproliferative activ-
ity does not seem to correlate with the antioxidant/antiaggregant values. Finally, DPPH
experiments indicate relevant radical scavenging properties of acylhydrazones, which can,
therefore, represent a privilege scaffold for the development of novel antiproliferative and
antioxidant agents.
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