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Abstract: COVID-19 is characterized by a wide range of clinical manifestations, where aging, un-
derlying diseases, and genetic background are related to worse outcomes. In the present study, the
differential expression of seven genes related to immunity, IRF9, CCL5, IFI6, TGFB1, IL1B, OAS1,
and TFRC, was analyzed in individuals with COVID-19 diagnoses of different disease severities.
Two-step RT-qPCR was performed to determine the relative gene expression in whole-blood samples
from 160 individuals. The expression of OAS1 (p < 0.05) and IFI6 (p < 0.05) was higher in moderate
hospitalized cases than in severe ones. Increased gene expression of OAS1 (OR = 0.64, CI = 0.52–0.79;
p = 0.001), IRF9 (OR = 0.581, CI = 0.43–0.79; p = 0.001), and IFI6 (OR = 0.544, CI = 0.39–0.69; p < 0.001)
was associated with a lower risk of requiring IMV. Moreover, TGFB1 (OR = 0.646, CI = 0.50–0.83;
p = 0.001), CCL5 (OR = 0.57, CI = 0.39–0.83; p = 0.003), IRF9 (OR = 0.80, CI = 0.653–0.979; p = 0.03),
and IFI6 (OR = 0.827, CI = 0.69–0.991; p = 0.039) expression was associated with patient survival. In
conclusion, the relevance of OAS1, IRF9, and IFI6 in controlling the viral infection was confirmed.

Keywords: antiviral genes; COVID-19; gene expression; immune response; SARS-CoV-2

1. Introduction

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is the causative
agent of Coronavirus Disease 2019 (COVID-19). In December 2019, the novel SARS-CoV-
2 coronavirus was found in hospitalized patients in Wuhan, China. The World Health
Organization (WHO) declared COVID-19 as a pandemic on 11 March 2020, and it was
declared a global health emergency until May 2023.

SARS-CoV-2 is a large, enveloped, and single-stranded RNA virus. The first targets of
SARS-CoV-2 are the epithelial cells from the respiratory tract. As viral replication advances
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to the lungs, an immune response is promoted, which can trigger critical damage in the
lungs if the reaction is excessive and non-coordinated [1–4].

COVID-19 cases can show a wide variety of symptoms, where asymptomatic and
mild symptoms (fatigue, dry cough, fever, headache, anosmia, etc.) are the most common
manifestations of the infection [1,5,6]. However, severe cases are characterized by an
impaired immune response called “cytokine storm”. This phenomenon is promoted by
an increase in proinflammatory cytokines, promoting the influx of immune cells from
the circulation to the lungs. Therefore, this overwhelming response results in continuous
damage to the lung instead of relieving the infection. Cytokine storm can progress and lead
patients to develop acute respiratory distress syndrome (ARDS) and respiratory failure,
followed by multi-organ failure, which is the leading cause of mortality in COVID-19
cases [7,8].

The predisposition to severe COVID-19 forms depends on a wide diversity of factors.
Aging is one of the most significant, as people over 60 are likely to develop severe forms
of the disease [9,10]. Sex is another factor to consider; men have higher ratios of intensive
care admission and mortality than women. Furthermore, underlying diseases like obesity,
diabetes, cardiorespiratory pathologies, etc., increase the risk of developing ARDS [11,12].
Despite what has been previously mentioned, the phenotypic variability in SARS-CoV-2
infection is not clear enough. Genetic background plays a leading role in the pathogenesis
of the virus and host susceptibility. However, studies on the molecular level are necessary
to shed light on this issue.

An analysis of the expression of genes related to antiviral activity or inflammatory
response can be helpful for the prognosis of a patient infected by SARS-CoV-2. Alterations
in gene expression have been linked to a worse disease outcome in respiratory viral
infections, including SARS-CoV-2, especially those related to the interferon pathways
IRF9 and IFI6 [13–15]. In a study by Zaas et al., the expression of immune-related genes
was determined in individuals infected with rhinovirus, respiratory syncytial virus, and
influenza A. Within certain genes, IFI6 expression in peripheral blood was altered during
the infection and enabled the authors to successfully discriminate between infected patients
and the healthy control group [16]. Related to SARS-CoV-2 infection, the overexpression of
genes related to inflammation has been detected in severe COVID-19 cases [17–19].

Among the wide range of genes suitable for research, interferon-stimulated genes are
particularly interesting. The interferon family is able to induce the synthesis of a wide
diversity of proteins involved in antiviral mechanisms [20]. Among these proteins, OAS1
and IRF9 have been reported as potential biomarkers for COVID-19 prognosis [21,22].
Moreover, in vitro studies have revealed an inhibitory effect of IFI6 in viral replication, the
current study sheds light on whether this inhibitory effect arises in humans [23,24].

Other kinds of gene that are interesting to study concerning this field of research are
chemokines and cytokines. IL-1β is a cytokine found at high levels in ICU patients infected
with SARS-CoV-2 [25]. Among chemokines, CCL5 has been related to cytokine storm in
severe COVID-19 cases [26]. Regarding their predominant role in the immune system,
TGFB1 has been linked to pulmonary fibrosis in COVID-19 patients [27].

Based on relevant results reported in the existing literature and a previous study of
our group [28], the genes CCL5, OAS1, IRF9, IFI6, TGFB1, IL1B, and TFRC were analyzed in
the present study in relation to the severity of COVID-19.

The information that gene expression can provide is essential to understanding the
clinical heterogeneity of the disease and the virus pathogenesis. This study aims to analyze
the differential expression of the proposed antiviral and immune response genes among
moderate and severe COVID-19 cases to identify a potential biomarker profile that can help
improve patient diagnosis, prognosis, and treatment.
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2. Results
2.1. Individuals Included in the Study

Our study group of 160 hospitalized individuals with COVID-19 consisted of 101 men
and 59 women, with average ages of 56 and 62 years old, respectively. Comparisons
between the main clinical characteristics of the included cases in this study are summarized
in Table 1. Within this group, 60.6% of the patients were severe cases. Moderate and severe
hospitalized cases had a average ages of 54 and 61 years, respectively (p = 0.003), and a
higher percentage of individuals over 65 years of age was found among severe patients
(p = 0.006). Both groups presented a mean of 12 (±7) days from symptom onset until
the patient was admitted to the hospital. Moreover, patients with severe disease required
more days of hospitalization and invasive mechanical ventilation than cases with moderate
disease. A total of 41% of deaths were registered in severe cases in contrast to the 25.9%
observed in moderate hospitalized patients. Furthermore, a higher frequency of severe
patients (92.7%) needed steroid treatment (p < 0.001). No significant differences were found
between moderate and severe cases and the rest of the variables.

Table 1. Demographic and clinical characteristics of hospitalized individuals with COVID-19.

Characteristics Moderate
(n = 63)

Severe
(n = 97) p-Value

Age, years (mean ± SD) 53.9 ± 13.5 60.9 ± 15.1 0.003
Age category 0.003

• <65 years 50 (79.4%) 55 (56.7%)
• 65 years 13 (20.6%) 42 (43.3%)

Sex 0.278
• Men (%) 43 (68.3%) 58 (59.8%)
• Women (%) 20 (31.7%) 39 (40.2%)

Tobacco smoking (%) 23 (36.5%) 28 (28.9%) 0.311
BMI (median (P25–P75)) 27.9 (25.5–32.4) 28.5 (25.3–33.4) 0.407
BMI category 0.647

• Normal (21–24) (%) 13 (21.0%) 20 (21.3%)
• Overweight (25–29) (%) 23 (37.1%) 33 (35.1%)
• Obese (≥30) (%) 25 (40.3%) 41 (43.6%)

Hospitalization days (median (P25–P75)) 16.5 (11–35.5) 36 (23.7–58) <0.001
PaO2/FiO2 (mean ± SD) 289.9 ± 55.5 72.1 ± 17.2 <0.001
IMV (%) 32 (50.8%) 97 (100%) <0.001
IMV days (median (P25–P75)) 1.5 (0–21.7) 28.5 (17.7–41) <0.001
Outcome 0.055

• Survival (%) 43 (74.1%) 51 (58.6%)

• Non-survival (%) 15 (25.9%) 36 (41.4%)

Type 2 diabetes (%) 20 (31.7%) 33 (34.0%) 0.765
Hypertension (%) 20 (31.7%) 39 (40.2%) 0.278
Chronic respiratory disease (%) 10 (15.9%) 7 (7.2%) 0.083
Steroid treatment (%) 44 (69.8%) 89 (92.7%) <0.001

Data are expressed as n (%), mean ± SD, or median (P25–P75). BMI, body mass index; IMV, invasive mechanical
ventilation. p-values < 0.05 were considered significant.

Moreover, after analyzing the gender effect, non-significant differences were found
between the sexes and the clinical variables; it was only observed that men were more
likely tobacco smokers (43.6%) than women (11.9%) (p < 0.001).

Within the hospitalized patients, 18 individuals presented a chronic respiratory disease.
Considering the treatment provided, seven individuals received antibiotics, three required
antivirals, six required immunotherapies, and two were treated with convalescent plasma.
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2.2. Gene Expression Analysis

The gene expression of TFRC, TGFB1, IRF9, IFI6, OAS1, IL1B, and CCL5 was deter-
mined in all the participants. Significant differences in gene expression related to clinical
features were observed among hospitalized COVID-19 cases. Patients under 65 years old
showed a higher expression of TFRC (p = 0.002), CCL5 (p < 0.001) and IFI6 (p = 0.006), and
those with obesity (BMI ≥ 30) presented higher expression of OAS1 (p = 0.008) and TGFB1
(p = 0.008). Concerning the treatment, lower expression levels of OAS1 (p = 0.014) and IFI6
(p = 0.008) were found in those patients treated with steroids.

Interestingly, the expression of OAS1 (p = 0.041) and IFI6 (p = 0.027) was increased in
those individuals with moderate disease compared to severe cases. Regarding invasive
mechanical ventilation (IMV), increased expression levels were observed for all the studied
genes in non-IMV patients, except for TFRC (Figure 1A–G). TFRC, OAS1, IRF9, and IFI6
gene expression was associated with a lower risk of requiring IMV (Table 2). In the same
way, the higher expression of CCL5, TGFB1, IRF9, and IFI6 (Figure 2A–G) observed in
survivors hospitalized patients was associated with patient survival (Table 2).
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Figure 1. Differential gene expression among invasive mechanical ventilation patients (IMV) and non-
invasive mechanical ventilation patients (non-IMV) within the hospitalized group. Lines represent
the median with an interquartile range. (A) TFRC, (B) CCL5, (C) TGFB1, (D) OAS1, (E) IRF9, (F) IFI6,
and (G) IL1B. p-values < 0.05 were considered significant.

Table 2. Binary logistic regression analysis showing adjusted effect of differential expression of
studied genes.

Gene OR CI (95%) p-Value

Survival
TFRC - - ns
CCL5 0.574 0.396–0.832 0.003
TGFB1 0.646 0.500–0.835 0.001
OAS1 - - ns
IRF9 0.800 0.653–0.979 0.030
IFI6 0.827 0.690–0.991 0.039
IL1B - - ns
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Table 2. Cont.

Gene OR CI (95%) p-Value

IMV
TFRC 0.787 0.620–0.999 0.049
CCL5 - - ns
TGFB1 - - ns
OAS1 0.642 0.516–0.798 0.001
IRF9 0.581 0.427–0.790 0.001
IFI6 0.544 0.391–0.688 <0.001
IL1B - - ns

OR = odds ratio; CI (95%) confidence interval at 95%. p-values < 0.05 were considered significant. ns = non-
significant. In the binary logistic regression model, age, sex, and normalized gene expression were considered
predictor variables.
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Figure 2. Differential gene expression among patients who underwent hospitalization in relation to
survival (Surv vs. Non-surv.). Lines represent the median with an interquartile range (25th–75th pc).
(A) TFRC, (B) CCL5, (C) TGFB1, (D) OAS1, (E) IRF9, (F) IFI6, and (G) IL1B. p-values < 0.05 were
considered significant.

3. Discussion

COVID-19 shows a wide range of clinical manifestations where genetic factors can play
a relevant role in the development of the disease [29,30]. In the present study, we evaluated
the expression of genes related to the immune response and antiviral activity in subjects
infected with SARS-CoV-2 with different severity of the disease. Our main findings point
towards differences in the expression of the studied genes concerning invasive mechanical
ventilation (IMV), and survival in hospitalized cases.

Within the hospitalized patients, moderate cases showed higher expression levels of
OAS1 and IFI6 than severe cases of the disease, which was also associated with a reduced
risk of needing IMV. Moreover, IFI6 expression was associated with an increase in survival
rate. OAS1 is an interferon-stimulated gene crucial for pathogen control, recognizing
viral RNA and promoting RNA degradation via the RNase L pathway [31]. A protective
effect against severe forms of COVID-19 has been demonstrated to be associated with
this gene [22,32,33]. IFI6 is another interferon-stimulated gene and a mitochondrial-target
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protein that regulates apoptosis [34]. SARS-CoV-2 infection promotes IFI6 expression [15],
but an inhibitory effect in hepatitis C virus infection and Ebola virus replication has also
been suggested according to the expression of this gene [23,24]. This fact might explain
the relationship between IFI6 expression and the lower incidence of severe outcomes.
However, it is essential to remark that both genes present polymorphisms that can alter
their expression, and they have not been considered in this study [22,35].

IRF9 is an interferon-stimulated gene; its deficiency has been related to worse out-
comes in respiratory viral infections [36,37]. In human airway cultures, IRF9 expression is
upregulated in response to SARS-CoV-2 infection [38]. Moreover, a previous study from us
reported higher expression of IRF9 in the upper airways of mild cases of SARS-CoV-2 [28].
This current research found an association of IRF9 expression with a lower risk of IMV
and survival increase. Regarding this finding, we can confirm that IRF9 plays a central
role in SARS-CoV-2 infection. IRF9 deficiency was associated with impaired control of
other viral diseases and may act as a risk biomarker of COVID-19 [21,36]. Furthermore, it
is well known that SARS-CoV-2 can alter the expression of certain genes for its own benefit.
For example, one of the host immune evasion strategies is the suppression of interferon
pathways that are effective against viral infections [39,40].

TGF-β1 is the predominant isoform expressed in the immune system and is involved
in cell proliferation, differentiation, migration, and survival [41]. According to the literature,
higher levels of TGF-β1 detected in lung tissue were associated with pulmonary fibrosis in
COVID-19 patients [27,42]. Our study showed an association between increased TGFB1
expression and lower mortality risk. Higher levels of TGFB1 were found in hospitalized
patients who survived this infective disease compared to non-survivors. In the same way,
in a study performed by Kang et al., decreased TGF-β1 concentrations were found in
COVID-19 patients with fatal outcomes [43]. Moreover, transgenic mice knocked down
for TGFB1 had premature death due to an excessive inflammatory response. Our results
confirm what was already reported for TGF-β1; it can act as an immunosuppressor of
proinflammatory cytokines, preventing an uncontrollable inflammatory response [44].

CCL5, also called RANTES (Regulated upon Activation, Normal T Cell Expressed and
Presumably Secreted), is a chemokine that belongs to the C-C chemokine subfamily. Being
produced by several cell types (platelets, macrophages, fibroblasts, etc.) and promoting
the migration and recruitment of immune cells, it has been related to multiple biological
processes like pathogen control, cancer, and atherosclerosis [45]. Studies performed on
CCL5 with COVID-19 should be considered with caution. The upregulation of CCL5 has
been related to cytokine storm, and high levels of CCL5 in plasma have been found in
critical COVID-19 patients [26,46]. However, a low expression of CCL5 in upper airway
studies has been associated with worse outcomes [47,48]. Our study revealed that surviving
patients and those who did not require IMV expressed higher levels of CCL5. Moreover, we
found an association between the expression of CCL5 and a lower risk of death. These data
suggest once more that the early expression of CCL5 plays an essential role in controlling
viral replication and macrophage survival, preventing a prolonged inflammatory response,
and controlling viral infection [45].

In SARS-CoV-2 infection, the massive synthesis of cytokines leads to cytokine storm, in
which an excessive pro-inflammatory response can lead to lung injury instead of removing
the infection [8,49]. One of the most critical pro-inflammatory cytokines of the innate
immune response is 1L-1β [8]. Higher levels of IL-1β in plasma have been reported in
plasma from hospitalized patients and subjects with post-acute sequelae [25,50]. However,
our study did not find significant differences among groups, but increased expression levels
of IL1B were observed in non-IMV patients. SARS-CoV-2 infection has been associated
with lower levels of IL-1β when compared to other respiratory viruses, probably because
inflammasome pathways are non-responsive in SARS-CoV-2 infection, decreasing the
synthesis of IL-1β [15].

TFRC is a gene that encodes the TfR1 protein, a cell surface receptor that transports
iron from the outside to the inside of the cell via receptor-mediated endocytosis. Alteration
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in the levels of TFRC has been associated with malignant forms of certain cancers [51].
Concerning COVID-19, Muhammad et al. (2022) did not observe significant differences in
TFRC expression between asymptomatic–mild cases and the severe group [52]. However,
we found a higher expression of TFRC associated with a lower risk of IMV. In agreement
with this finding, previous research by our group reported a higher gene expression of TFRC
in the upper airways of mild COVID-19 cases [28]. An in silico analysis showed that TFRC
could be affected by SARS-CoV-2 infection through the ACE2 interaction network [53].

Clinical features affect the expression of genes. One of the most relevant is age. It is
known that ACE2 expression and the apoptotic process are influenced by age [10]. In the
current study, we observed a higher expression of CCL5 and IFI6 in individuals under 65.
Both genes have been associated with a lower risk of death, promoting a protective effect
that in elderly patients could be altered. TFRC expression has been shown to be higher in
this range of age. TFRC has an indirect relationship with ACE2 that influences its expression,
but at the same time, ACE2 is affected by aging [10]. Obesity is considered one of the major
risk factors for COVID-19. Multiple studies show an increase in gene expression related
to the immune system. Our study shows a higher expression of OAS1 and TGFB1 in
individuals with obesity. Obesity can impact the innate and adaptative immune responses,
promoting pro-inflammatory pathways and triggering severe forms of COVID-19 [54]. On
the other hand, patients treated with steroids showed lower expression levels of OAS1
and IFI6. Steroids can modulate the immune response, avoiding excessive inflammation;
alterations have been reported in the expression of interferon-stimulated genes in patients
undergoing steroid treatment [55,56].

Our study is not exempt from limitations. Firstly, the sample collection period was
ample, potentially including different SARS-CoV-2 variants we did not consider. Second,
the analysis of the different fractions of blood cells was beyond the scope of this research,
but we are aware that some genes express differently within different leucocyte cells. Third,
gene expression may differ between different types of tissues, which may be the case for
gene expression in inflammatory cells and lymphoid organs during the immune response
in contrast to peripheral blood. Last, replication on an independent cohort is needed to
clarify our results, especially the contradictory results.

In conclusion, the expression of IFI6, OAS1, and IRF9 was shown to be associated
with a lower risk of death and IMV. The expression of these genes could show a protective
effect against SARS-CoV-2 infection. Paradoxically, we found that the expression of TGFB1
and CCL5 is associated with the survival of patients. Future prospective studies in a larger
cohort are necessary to confirm the present findings.

4. Materials and Methods
4.1. Patients and Study Samples

A total of 160 individuals with a COVID-19 diagnosis hospitalized in the Instituto
Nacional de Enfermedades Respiratorias Ismael Cosio Villegas (INER) in Mexico City,
Mexico, were included in this study. Subjects with a hospital admission PaO2/FiO2
ratio above 100 were considered moderate cases, while subjects with a PaO2/FiO2 ra-
tio under 100 were considered severe cases [57]. The body mass index (BMI) was cat-
egorized using the parameters from the Centres for Disease Control and Prevention
(https://www.cdc.gov/healthyweight/assessing/bmi/adult_bmi/index.html accessed on
20 May 2023). Only 18% of the patients had receive vaccinations, with 5% of them having
received a second boost.

Whole-blood samples were collected from all the subjects infected with SARS-CoV-2
between July 2020 and January 2023. The mean number of days from symptom onset to
sample collection was 27 ± 11. The diagnosis of COVID-19 was carried out by reverse
transcription–polymerase chain reaction (RT-qPCR) from upper airway samples.

All the clinical data were registered, and informed consent was obtained from every
participant in the study. The study was approved by the Institutional Ethical Research

https://www.cdc.gov/healthyweight/assessing/bmi/adult_bmi/index.html
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and Investigation Committees from INER (C53-20). All the procedures were performed
following the Declaration of Helsinki.

4.2. Gene Expression Study

The following genes related to the host immune response and inflammatory process
were analyzed: CCL5, OAS1, IRF9, IFI6, TGFB1, and IL1B. TFRC was also selected due to
our previous findings (Gajate-Arenas et al., 2023 [28]).

RNA isolation was carried out using Qiazol Lysis Reagent (QiagenTM, Hilden, Ger-
many) and TRIzol™ Reagent (InvitrogenTM, Carlsbad, CA, USA), and its quality was
evaluated by NanoDrop Lite (Thermo Fisher Scientific, Waltham, MA, USA). The relative
gene expression analysis was set up in two-step RT-qPCR. First, RNA was retrotranscribed
into cDNA using the SuperScriptTM VILOTM cDNA Synthesis Kit (InvitrogenTM, Carls-
bad, CA, USA) following the manufacturer’s instructions. Second, qPCR was performed
using the TaqMan™ Gene Expression Master Mix and TaqMan™ Gene Expression As-
says (Thermo Fisher Scientific, Applied Biosystem, Waltham, MA, USA). The reaction
was performed in a real-time qPCR machine QuantStudio 5 (Thermo Fisher Scientific,
Applied Biosystem, Waltham, MA, USA). Each reaction was performed in duplicate, setting
up the experiment in 40 cycles. For data normalization, the ACTB housekeeping gene
was used (resulting the most stable gene analyzed with NormFinder and Bestkeeper v.1
software, https://www.moma.dk/software/normfinder, accessed on 15 May 2021, and
https://www.gene-quantification.de/bestkeeper.html, accessed on 15 May 2021). Relative
expression analysis of the target genes was performed using the comparative threshold
method 2∆∆Ct.

4.3. Statistical Analysis

Continuous variables were described using means and standard deviation when
normally distributed and medians and percentiles (P25; P75) when not normally distributed,
and categorical variables using frequency and percentage. Outliers in the data were
assessed through the inspection of boxplots, and, when necessary, the normality distribution
of the variables was evaluated by a Shapiro–Wilk test or Kolmogorov–Smirnov test as
appropriate (p > 0.05). Data were normalized using the method of log two-fold and
absolute gene-wise changes in expression. Parametric tests (t-test and ANOVA) and non-
parametric tests (the Mann–Whitney U test and the Kruskal–Wallis test) were used for
group comparisons as appropriate. A t-test was carried out for age, and ANOVA was
performed to measure the effect of age among groups. A Chi-squared test was performed
to determine differences in gene expression and clinical variables among groups.

To determine predictor variables for survival and IMV, a binary logistic regression
model, one for each, was fitted. Age, sex, and normalized gene expression were considered
as predictor variables. All assumptions for binary logistic regression were checked. Using
the forward Likelihood Ratio method, the final models retained all predictor variables
significantly associated with the outcomes (p < 0.05). Odds ratios (OR) with 95% confidence
intervals were reported. A Hosmer and Lemeshow goodness-of-fit test (p > 0.05) was used
to check model fitness.

Statistical analyses were performed using SPSS v. 25 (IBM Corp, New York, NY, USA)
and GraphPad Prism v. 9.4.1 (Dotmatics, Boston, MA, USA) software.
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