
sensors

Article

A Fast Room Temperature NH3 Sensor Based on
an Al/p-Si/Al Structure with Schottky Electrodes

Suwan Zhu 1 ID , Xiaolong Liu 2, Jun Zhuang 2,* and Li Zhao 1,*
1 Collaborative Innovation Center of Advanced Microstructures, State Key Laboratory of Surface Physics and

Department of Physics, Fudan University, Shanghai 200433, China; swzhu14@fudan.edu.cn
2 Shanghai Ultra-Precision Optical Manufacturing Engineering Center and Department of Optical Science and

Engineering, Fudan University, Shanghai 200433, China; 15110720002@fudan.edu.cn
* Correspondence: junzhuang@fudan.edu.cn (J.Z.); lizhao@fudan.edu.cn (L.Z.); Tel.: +86-21-6564-2726 (L.Z.)

Received: 12 July 2017; Accepted: 19 August 2017; Published: 22 August 2017

Abstract: In this paper, an electrical-based NH3 sensor with an Al/p-Si/Al structure is reported.
The p-Si substrate is microstructured by fs-laser irradiation and then etched with 30% alkaline
solution. This sensor works well at room temperature with fast response/recovery for NH3 gas
at 5–100 ppm concentration. However, when the sensor is annealed in N2/H2 forming gas or
short-circuited for Al/Si electrodes, its sensitivity decreases drastically and almost vanishes. Further
I-V and FT-IR results show that the two back-to-back Schottky diodes on the device play a key role in
its sensing performance.
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1. Introduction

Ammonia is a frequently-used industrial gas, irritating at high concentration but inconspicuous
at lower concentration, that can cause cumulative health effects on human being with continuous
exposure. Different types of ammonia sensors have been developed based on different materials in
application to specific scenarios [1]. For example, metal-oxide gas sensors typically operate at elevated
temperatures independent of humidity and are highly sensitive [2,3]. Magnetic nanofluids are used
to develop optical gas sensor that are useful for online monitoring [4]. Conducting polymers like
polyaniline (PANI) can be prepared on flexible substrates and shows fine reproducibility through
gravure printing [5–7]. In recent years, low-dimensional materials have aroused extensive interests,
such as carbon-based materials like carbon nanotubes (CNTs) [8,9], graphene oxide (GO) [10] and
reduced graphene oxide (rGO) [11], which can be functionalized through different synthesis methods
to improve gas selectivity.

As it is the most important material in the semiconductor industry, silicon is often chosen
as a substrate material for gas sensors because of its easy integration with silicon-based circuits.
But for resistive gas sensing, e.g., for ammonia gas, pristine silicon material shows relatively weak
response. In order to improve gas response of silicon material, porous silicon has been given extensive
consideration due to its large surface to volume ratio which gives it the ability to react with gases and
sense them readily [12–18]. Generally speaking, higher porosity and larger surface area can improve
the sensitivity of the gas sensors, while the response and recovery time are usually longer [16,17]. One
of the methods for improving both sensitivity and response time, is to optimize the parameters of
porous silicon during the preparation process [18].

In the present work, we fabricate a resistive NH3 sensor based on a special microstructured
silicon, with the hope of enlarging the sensing area and improving the sensor response. Meanwhile,
because such a microstructure is distinct from the porous structure, we expect the sensor will also
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have a fast response and recovery time. The microstructured substrate is prepared using laser-textured
silicon etched by hot a concentrated alkaline solution. Two aluminum electrodes are deposited onto
the front of the silicon substrate to form a sensor with an Al/p-Si/Al structure. Room temperature
(RT, 25 ◦C) sensing results indicate that such a silicon sensor with a moderate large surface to volume
ratio, achieves not only short response and recovery time at consecutive 5–100 ppm NH3, but also
an improved response compared to that of the pristine silicon material. To investigate the causes for
the improved sensitivity, the sensing properties of the devices whose electrodes are annealed and
short-circuited are further studied. Unexpectedly, the results indicate that the improved sensitivity
derives from the two Schottky diodes of the sensor, other than the large surface area, which stems from
the microstructure.

Although gas sensors based on Schottky barriers have been reported, the electrodes that form
the contact play different roles. For sensors based on catalytic metals such as Pd [19,20] or Pt [21], the
metal film is a part of the Schottky diode and, at the same time, acts as sensing area. Furthermore,
in a similar structure of Al-porous silicon single Schottky junction [22], the author focuses on the
interaction of adsorbed molecules with the dangling bonds on the interface. However, in this paper,
we compare the different types of contacts and demonstrate that the Schottky contact can enhance
sensor response under proper conditions. The relevant research has not been reported.

2. Materials and Methods

As a first step, we prepared a special microstructured silicon by using intense femtosecond-laser
irradiation [23,24]. Double-polished p-type (100) silicon wafers with resistivity of 1–3 Ω·cm are
cleaned by standard RCA process [25] and then mounted on a three-axis translation stage in a
stainless-steel chamber with a transparent glass against the stage. The chamber is vacuumized
and then backfilled with 70 kPa SF6 gas. The wafers are irradiated at normal incidence with a Yb:KGW
fs-laser (1 kHz train of 190 fs, 515 nm laser pulses) at a fixed fluence of 8 kJ/m2. The laser beam is
focused on the sample with a 250-mm focal length lens. A textured area of 10 × 5 mm2 is prepared
by translating each silicon wafer by a stepper motor in continuous raster scan pattern at a speed of
0.5 mm/s.

The sample is not ready to use immediately as a sensing material because, firstly, plume is
produced in the laser-ablation process [26], in which some clusters are attached to the surface by
physisorption and may contribute to poor metal contacts. Secondly, the surface is covered with a
thin layer of disordered material [27,28] that serves as a barrier between the conductive bulk and the
sensitive surface. Thirdly, the habitual way of storing samples in organic solvents like acetone [29]
to prevent oxidation can passivate the surface dangling bonds with unexpected chemical groups,
thus changing the gas adsorption properties of the material. Based on these considerations, 30 wt %
KOH solution is prepared and then heated in water bath to 80 ± 5 ◦C. The as-prepared laser-textured
silicon is etched by the heated alkaline solution for about 5 s, rinsed in deionized water and then
N2-dried at RT. The surface morphology of the laser-textured substrate before and after alkaline etching
is viewed with a field-emission scanning electron microscope (FE-SEM, ΣIGMA500, Carl Zeiss AG,
Oberkochen, Germany) with an accelerating voltage at 5.0 kV. Figure 1 shows SEM micrographs of
the microstructured surfaces. After intense femtosecond-laser irradiation, quasi-regular sharp conical
spikes are produced with an average height of 10 µm and a spacing of about 5 µm along the translation
path, as shown in Figure 1a. The conical spikes are etched and corrugated by the alkaline solution,
contiguous near the bottom. The disordered layer beneath the surface of the laser-textured silicon has
a thickness of hundreds of nanometers only, determined by transmission electron microscopy [28],
so the etching process exposes the pristine silicon body. The final microstructure with a depth-diameter
ratio of about 1 (10 µm:10 µm) is as shown in Figure 1b. Although the depth-diameter ratio for porous
silicon can be changed by different preparation parameters, the typical value of this is usually greater
than 10 [15–17], which means that our microstructured silicon has a moderately large surface to volume
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ratio. After the etching process, a pair of aluminum electrodes (3 × 3 mm2, 400 nm thickness, for each)
is formed by thermal evaporation onto the surface.Sensors 2017, 17, 1929 3 of 9 
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Figure 1. SEM micrographs (viewed at 45°) of laser-textured silicon surface (a) before and (b) after 
alkaline etching. 

To measure the sensor response in NH3 gas, a sensing test system is set up. The sensor is placed 
in a sealed organic glass test chamber in a constant RT/RH laboratory. The test chamber is filled with 
clean air before sensing measurement. The sensor’s contacts are made an electrical connection with 
two silver test probes. A stirring mini-fan inside the chamber is used to promote the uniformity of 
the gas mixture. A predetermined amount of pure gas is injected into the chamber directly by a micro-
injector to obtain the desired concentration, which is calculated from the volume ratio of pure NH3 
to test chamber according to the static volumetric method [30]. Dynamic resistance during sensing 
measurement is transferred to a PC by using a precision measurement unit (B2902A, Keysight 
Technologies Inc., Santa Rosa, CA, USA). The schematic diagram of sensor fabrication and test is 
shown in Figure 2. 
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The sensing test is carried out at RT with a RH of ~40%. The sensor’s resistance at 0.3 V bias is 
obtained directly between the two electrodes on the top of the substrate. We choose this bias for two 
reasons, first, to avoid breakdown of the Schottky electrodes, and second, to reach a relatively weak 
background current. The details are discussed in the following sections. Figure 3a shows the dynamic 
response of the freshly prepared sensor versus the concentration of NH3 from 5 to 100 ppm. The 
sensor shows a high sensitivity: an increase in the resistance can be seen even at a concentration as 

Figure 1. SEM micrographs (viewed at 45◦) of laser-textured silicon surface (a) before and (b) after
alkaline etching.

To measure the sensor response in NH3 gas, a sensing test system is set up. The sensor is placed
in a sealed organic glass test chamber in a constant RT/RH laboratory. The test chamber is filled
with clean air before sensing measurement. The sensor’s contacts are made an electrical connection
with two silver test probes. A stirring mini-fan inside the chamber is used to promote the uniformity
of the gas mixture. A predetermined amount of pure gas is injected into the chamber directly by
a micro-injector to obtain the desired concentration, which is calculated from the volume ratio of
pure NH3 to test chamber according to the static volumetric method [30]. Dynamic resistance during
sensing measurement is transferred to a PC by using a precision measurement unit (B2902A, Keysight
Technologies Inc., Santa Rosa, CA, USA). The schematic diagram of sensor fabrication and testing is
shown in Figure 2.
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Figure 2. Schematic diagram of sensor fabrication and sensing test system.

3. Results and Discussion

3.1. Dynamic NH3 Response

The sensing test is carried out at RT with a RH of ~40%. The sensor’s resistance at 0.3 V bias is
obtained directly between the two electrodes on the top of the substrate. We choose this bias for two
reasons; first, to avoid breakdown of the Schottky electrodes; and second, to reach a relatively weak
background current. The details are discussed in the following sections. Figure 3a shows the dynamic
response of the freshly prepared sensor versus the concentration of NH3 from 5 to 100 ppm. The sensor
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shows a high sensitivity: an increase in the resistance can be seen even at a concentration as low as
5 ppm, in which a ratio of Rg/Ra (Rg > Ra) is ~1.3, where Ra is the sensor resistance in air and Rg is the
dynamic resistance in targeted gas. Compared with graphene- or CNT-based ammonia sensors, where
the maximum sensor response to 500 ppm at RT is 30% [10], the response to 100 ppm, shown in Figure 3,
is ~100% based on the definition of sensor response (Rg − Ra)/Ra in ref [10]. The response time is
defined as the time consumption of a sensor to achieve 90% of the total resistance change in the ambient
of the targeted gas, or the recovery time in the ambient of clean air. The response and recovery time of our
sensor are less than 25 s and 10 s, respectively, at a typical concentration of 50 ppm. The dynamic curve
suggests that the baseline shift is reversible or the recovery appears to be complete, indicating a reversible
adsorption of NH3 molecules on the silicon’s surface. To check the sensor response for long term stability,
the freshly-prepared sample is placed in air for natural ageing. After 6 months, gas response of the aged
sample is measured and shown in Figure 3b at concentrations from 5 to 100 ppm NH3. Compared to the
freshly-prepared sample, the air-stored sample exhibits a much more stable response curve. Meanwhile,
it can be noticed that the response time and recovery time have been prolonged, which may be attributed
to the oxygen and carbon passivation of the silicon surface due to the high surface coverage of these
species derived from the air. This view is underpinned by XPS detection in Figure 3c, in which the
increase of both O 1s and C 1s species for the aged sample can be found.
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Gas selectivity at 50 ppm concentration is also studied in different gases such as NH3, CH4, H2,
C2H5OH, CH3COCH3 and HCl under the same experimental conditions. As is shown in Figure 3d,
only a relatively stronger response of ~1.02 is detected in CH4 ambient. The sensor exhibits a much
larger response to NH3 than to other referenced gases.

The sensor’s resistance increases on exposure to NH3 in both Figure 3a,b, exhibiting a typical
p-type conductivity where holes are the majority carriers. It is well known that NH3 is a reducing agent
that can donate electrons to the sensing material [17]. The influence of NH3 on mesoporous silicon has
been demonstrated by IR-absorption and conductivity variations [31]. Similar to porous silicon, our
microstructured silicon belongs to the surface-controlled type in which the effective specific surface
area and microstructure characteristics are the main factors determining the gas-sensing properties.
However, there is still a lack of consensus for the exact NH3-sensing mechanism of the porous silicon.
Here we draw on some principles from p-type oxide semiconductors [32], the electrons injected into
silicon through the oxidation reaction between NH3 and Si-surface decrease the concentration of
holes in silicon, which in turn increases the sensor resistance. Although the materials and surface
characteristics are not the same, the simplified electron transfer during redox process may explain the
resistive changes.

3.2. Improved Response with Schottky Electrodes

To explore the mechanism of the sensor’s improved response, we have conducted several
experiments including an I-V test and an annealing/circuit-shorting sensing test, followed by a FT-IR
and XPS test. The I-V curve of the freshly prepared sensor is displayed in Figure 4a, which reveals the
existence of two Schottky junctions on the surface of the microstructured silicon in series-opposing
conditions. To investigate the influence of the Schottky electrodes on gas response, the rectifying
junctions from the Al/p-Si/Al structure are eliminated by two methods. One is to form Si-Al alloy
junctions by annealing the device in a forming gas (95% N2 and 5% H2) at 450 ◦C for 3 min. The other
is to short the Schottky electrodes by depositing a narrow layer of Au (100 nm thickness) at the joint
of each Al/p-Si junction using thermal evaporation. I-V characteristics of the treated sensors are
displayed in Figure 4b,c, respectively. As can be clearly seen from Figure 4, both treated sensors show
that the electrodes have been transformed into Ohmic contacts. Further SEM micrographs display the
Al/Au/Si structure and the annealed silicon surface, as shown in Figure 5. In Figure 5a, the presence
of a narrow gold layer is designed for eliminating the Al/p-Si junction. In addition, Figure 5b shows
that sensor morphology has been mostly retained after annealing at the elevated temperature.
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The NH3 response of the freshly prepared and treated sensors at 50 ppm concentration are
exhibited in Figure 6. Unexpectedly, the gas sensitivity declines drastically to <~1.015 for either treated
devices. The inset of Figure 6 suggests that the sensors after treatment still show a very weak response
to NH3, and this vestigial response mainly results from the semiconducting property of the pristine Si
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material. Furthernore, the annealed sensitivity is higher than the short-circuited one, this phenomenon
is probably due to the incomplete Ohmic annealing process as revealed in Figure 4c.Sensors 2017, 17, 1929 6 of 9 
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To rule out other possible uncertainties raised by N2/H2 annealing to the material, FT-IR
(Bruker Optics ALPHA) and XPS (PHI 5000C ESCA System) spectra are measured to detect the
chemical bonds. Figure 7 demonstrates the FT-IR and XPS spectra of the sensors before (red curve) and
after (blue curve) annealing treatment. As can be seen in Figure 7a, after gas annealing, no additional
chemical component has been introduced to the sensor in the range of 500–2500 cm−1 wavenumber
that covers the information of Si-Si, Si-O-Si and SiHx, etc. [33]. In addition, Figure 7b shows the XPS
spectra giving the peaks associated with silicon, carbon and oxygen species. In the fresh sample, the
binding energies of Si 2p, C 1s and O 1s are centered at 101, 285 and 533 eV respectively. Moreover, it
can be observed that the sample after annealing shows no significant changes for these peaks. Based
on these factors, the Al/p-Si Schottky electrodes undoubtedly play a crucial role in accounting for the
improved NH3 response, instead of the larger surface area stems from our microstructured silicon.
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How to comprehend the improved sensitivity for the Schottky device? The variation of the
baseline current ∆Ib resulting from the presence of NH3 gas was reviewed for the three sensors,
showing that the values are of the same order of magnitude (~0.3 µA, 0.2 µA and 0.4 µA respectively),
indicating that ∆Ib is mainly the resistance change of the pristine-Si surface after NH3 adsorption.
However, the baseline current (current in the air) Ib at 0.3 V bias for the three sensors differ enormously,
and are ~0.19 µA, 0.7 mA and 0.35 mA respectively, as shown in Figure 4. The gas sensitivity defined
as Ra/Rg is positively associated with the value of ∆Ib/Ib. Accordingly, when the Schottky junctions
are eliminated, Ib increases dramatically, thus resulting in a sharp decrease of ∆Ib/Ib. This can account
for the distinct disparity of the sensitivity between the Schottky device and the Ohmic ones.

3.3. Effective Adsorption Sites

Finally, we also investigate the effective adsorption sites for gas response on the sensor by
conducting a contrast experiment. The experiment is carried out with two sensors: one is the freshly
prepared device (sample A), and the other is the device with vaseline coating on the surface of the
electrodes (sample B). NH3 response at 5 ppm concentration for the two samples is shown in Figure 8.
and no essential sensing disparity can be found. This result indicates that the effective adsorption sites
in the sensor occur only on the interface between the gas and the silicon surface, not on either the Al
electrodes or on the Al-Si Schottky junction.
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4. Conclusions

In summary, an Al/p-Si/Al microstructured NH3 sensor is fabricated and studied. The sensor
shows not only a moderate sensitivity but also a fast response-recovery rate at RT. I-V curves reveal
the existence of two Schottky diodes on the surface of the microstructured silicon. When Schottky
junctions are eliminated, the NH3 sensitivity of the devices almost vanishes. These results suggest
that the NH3 sensitivity of our silicon material is improved by the Al/p-Si Schottky diodes connected
to p-Si body rather than the high surface area. Furthermore, an electrode-coating experiment reveals
the effective adsorption sites for sensor response. Our studies not only enrich the silicon-based NH3

sensors for fast response operating at RT, but also present a way of improving the sensor response.
In other words, by fabricating adaptive electrical structures and properties to reduce the background
signal, one can significantly improve the week response of other electrical-based sensing materials.
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sensors based on plasma treated carbon nanostructures. IEEE Sens. J. 2017, 7, 1964–1970. [CrossRef]

9. Rana, M.M.; Ibrahim, D.S.; Asyraf, M.R.M.; Jarin, S.; Tomal, A. A review on recent advances of CNTs as gas
sensors. In Sensor Review; Emerald Publishing Limited: Bingley, UK, 2017; Volume 19, pp. 127–136.
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