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Abstract: The corrugated board is a versatile and durable material that is widely used in the packaging
industry. Its unique structure provides strength and cushioning, while its recyclability and bio-
degradability make it an environmentally friendly option. The strength of the corrugated board
depends on many factors, including the type of individual papers on flat and corrugated layers, the
geometry of the flute, temperature, humidity, etc. This paper presents a new approach to the analysis
of the geometric features of corrugated boards. The experimental set used in the work and the created
software are characterized by high reliability and precision of measurement thanks to the use of an
identification procedure based on image analysis and a genetic algorithm. In the applied procedure,
the thickness of each layer, corrugated cardboard thickness, flute height and center line are calculated.
In most cases, the proposed algorithm successfully approximated these parameters.
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1. Introduction

Corrugated board is commonly used for shipping boxes, retail displays, and other
packaging applications. It is lightweight, easy to handle, and can be printed with custom
designs. Furthermore, corrugated board is recyclable and can be biodegradable, making
it an eco-friendly choice for companies and consumers alike. It is a versatile and popular
material used in the packaging industry [1,2]. It consists of a fluted sheet sandwiched
between two flat linerboards, which provides strength and durability while also allowing
for flexibility.

The fluted sheet in corrugated board is made by passing paper through a series of
fluting rolls, which create the characteristic ridges and valleys that give corrugated board
its name. The flutes come in different sizes, with larger flutes providing more strength and
cushioning, and smaller flutes providing a smoother surface for printing.

The linerboards that make up the outer layers of corrugated board are typically made
from kraft paper, which is a type of paper made from wood pulp. Kraft paper is known
for its strength, durability and ability to resist tearing and puncturing, making it an ideal
material for packaging.

There are several types of fluted sheets used in the production of corrugated board, each
with its own characteristics and advantages. The most common types are the following:

• A-flute: A-flute is the largest and thickest type of flute, with a height of approximately
5 mm. It provides excellent cushioning and is commonly used for packaging heavier
items, such as appliances and furniture.

• B-flute: B-flute has a height of approximately 3 mm and is the second most common
type of flute. It is a versatile option that provides good cushioning and is often used
for shipping boxes and retail displays.
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• C-flute: C-flute has a height of approximately 4 mm and is the most common type
of flute. It provides good cushioning and is a popular choice for shipping boxes and
re-tail displays.

• E-flute: E-flute has a height of approximately 1.6 mm and is the thinnest type of flute.
It provides a smooth surface for printing and is often used for retail displays and
small boxes.

• F-flute: F-flute has a height of approximately 0.8 mm and is the newest type of flute. It
provides excellent printing quality and is ideal for small boxes and retail displays.

Each type of flute offers different benefits and is suitable for different types of pack-
aging applications. Manufacturers can also combine different types of flutes to create
custom corrugated boards that meet specific requirements for strength, cushioning and
printing quality. Figure 1 shows, schematically, the differences between the flute types. One
can notice that the main difference between them is their height.
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local in nature. Beck and Ficherauer developed and described a model of systematic, 
large-scale deflections of the cardboard [3]. In this article, the authors paid more attention 
to local imperfections. The influence of imperfection size on the compressive strength of 
boxes made of the corrugated board was examined by Nordstrand in 1995 [4]. In 2004, the 
same author studied local imperfections by analyzing the nonlinear buckling of Rhodes 
and Harvey orthotropic plates [5]. The mechanical properties of corrugated cardboards, 
with imperfection during compression, were analyzed by Lu et al. [6]. An analytical study 
of double-walled corrugated cardboard bending was performed by Garbowski and Knit-
ter-Piątkowska [7]. A method for the analysis of single-walled corrugated cardboard, in-
troducing initial imperfections, was proposed by Mrówczyński et al. [8]. Cillie and Coet-
zee investigated corrugated cardboards with global and local imperfections under in-
plane compression [9]. Recently, Mrówczyński and Garbowski presented a simple 
method for the calculation of the effective stiffness of corrugated board with geometrical 
imperfections using the finite element method and representative volumetric element 
[10]. 
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The corrugated board can be warped during production and it can also be deformed
after this process, or during its storage, transportation and use. The causes of these
phenomena are related to changes in temperature and humidity or mechanical loads. One
can distinguish two types of imperfections of the corrugated board, which are either global
or local in nature. Beck and Ficherauer developed and described a model of systematic,
large-scale deflections of the cardboard [3]. In this article, the authors paid more attention
to local imperfections. The influence of imperfection size on the compressive strength of
boxes made of the corrugated board was examined by Nordstrand in 1995 [4]. In 2004, the
same author studied local imperfections by analyzing the nonlinear buckling of Rhodes
and Harvey orthotropic plates [5]. The mechanical properties of corrugated cardboards,
with imperfection during compression, were analyzed by Lu et al. [6]. An analytical
study of double-walled corrugated cardboard bending was performed by Garbowski and
Knitter-Piątkowska [7]. A method for the analysis of single-walled corrugated cardboard,
introducing initial imperfections, was proposed by Mrówczyński et al. [8]. Cillie and
Coetzee investigated corrugated cardboards with global and local imperfections under
in-plane compression [9]. Recently, Mrówczyński and Garbowski presented a simple
method for the calculation of the effective stiffness of corrugated board with geometrical
imperfections using the finite element method and representative volumetric element [10].

Image processing is not so commonly used in corrugated board analysis. However,
the most common example is related to creating a system for automatic waste sorting. For
instance, Liu et al. developed a new model for garbage classification based on transfer
learning and model fusion [11]. Similarly, Rahman et al. developed a classification for recy-
clable waste paper sorting using template matching [12]. Another application of the image
processing algorithm is for the counting of the corrugated board layers. Cebeci applied
some typical image processing operations for the automatic counting of the corrugated
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board [13]. Similarly, Suppitaksakul and Rattakorn applied a machine vision system and
image processing techniques to count the corrugated board [14]. Later, Suppitaksakul and
Suwannakit developed an algorithm for stitching corrugated board images [15].

In the literature, one can find analyses of cross-sectional geometry and classifica-
tions of various materials based on images. Caputo et al. applied the support vector
machine to classify materials based on their images under various illumination and pose
conditions [16]. Iqbal Hussain et al. applied the convolutional neural network, based
on a pretrained network architecture ResNet-50, for the recognition and classification of
woven fabrics [17]. Wyder and Lipson examined convolutional neural networks for the
identification of the static and dynamic properties of cantilever beams based on their raw
cross-section images [18]. Li et al. applied various deep learning techniques for analyzing
the geometric features of a self-piercing riveting cross-section [19]. They showed that the
SOLOv2 and Unet architectures give the best results. Ma et al. analyzed the geometrical
features of crushed, thin-walled, carbon fiber-reinforced polymer tubes cross-sections [20].

Genetic algorithm is an optimization algorithm inspired by the process of natural
selection and genetics [21]. These algorithms are used to solve complex problems by mim-
icking the principles of evolution, such as selection, crossover and mutation. The basic idea
behind genetic algorithms is to create a population of individuals that represent potential
solutions to a given problem. Each individual is encoded as a set of parameters, often called
chromosomes or genomes, which can be considered as the genetic material. These chromo-
somes are subject to operations like selection, crossover and mutation, which emulate the
genetic processes of reproduction and variation. The pioneer of genetic algorithms is John
Henry Holland [22]. Genetic algorithms have been successfully applied to a wide range of
problems in the areas of optimization, scheduling problems or artificial intelligence. They
are particularly useful when dealing with complex, multi-dimensional search spaces, in
which traditional optimization algorithms may have failed. Genetic algorithms have been
also applied in some problems related to corrugated boards. Recently, Shoukat applied a
genetic algorithm in combination with mixed integer linear programming for the problems
of minimizing cost and greenhouse gas emissions during papermaking processes [23].
Hidetaka and Masakazu used a genetic algorithm to solve the scheduling problem of
corrugated board production [24]. However, a genetic algorithm has not been applied yet
to find the geometrical features of the corrugated board.

In this paper, the authors presented a new method for the analysis of corrugated
board geometrical features. Equipment for the acquisition process of the corrugated board
samples was designed and manufactured. Then, an algorithm for the analysis of the
corrugated board geometrical features was proposed and implemented. The algorithm
was based on image processing operations and the application of the genetic algorithm
for finding the geometrical features of the flute. The presented methodology can be a
first step for the automatic modelling of the corrugated board geometry based on its
cross-section image.

2. Materials and Methods

In this section, the equipment designed and used for the acquisition of the corrugated
board samples, as well as the algorithm proposed to identify geometrical parameters of the
flute are described.

2.1. Device for the Acquisition of Corrugated Board Cross-Section Images

In order to acquire the images of the corrugated board cross-section, a dedicated
device was designed and manufactured. This device allowed us to record the images
of the samples’ cross-sections under uniform acquisition conditions. Figure 2a shows a
visualization of the device with an example of the corrugated board section. The sample
holder is placed on the door, the opening of which allows for the free mounting of the
sample. Closing the door and limiting its uncontrolled opening is ensured by neodymium
magnets placed in the door frame. The camera is mounted on the device frame in such a way
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that its optical axis is directed perpendicularly to the plane of the sample face (Figure 2b).
Two LED strips with a power of 4.8 W/m, mounted on the dividing wall, provide a
uniform illumination of the photographed surface. Lighting is controlled manually by
using a bistable key switch. Two wires are led out of the device, a power cable for the
lighting module and a USB cable, which allows us to acquire the image from the camera
and save it on the computer. The device was manufactured using 3D printing technology.
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Figure 2. Device for corrugated board image acquisition: (a) visualization of the device; (b) layout
diagram of the most important components of the device: 1—corrugated board sample; 2—camera;
3—LED strip.

The system used the ArduCam B0197 camera with the autofocus function and the
Sony IMX179 (1/3.2”) image sensor with a resolution of 8 MPx. The image from the camera
was saved in JPEG format and had a maximum resolution of 3264 × 2448 pixels.

2.2. Algorithm for the Geometrical Feature Determination of the Corrugated Board

The flowchart of the proposed algorithm is presented in Figure 3. It consists of
some preprocessing steps and parallel operations in which the geometrical features of
the corrugated board, including its height, flute period and phase shift, liners and flute
thickness, are determined. The algorithm has been implemented in Python language using
the OpenCV library.

2.2.1. Preprocessing Stage

At the preprocessing stage, a single frame from the camera was acquired. It was an
RGB image with dimensions of 3264 × 2448 pixels. Then, it was converted to a grayscale
image in the range <0, 255>. A fragment of the gray-scale image with dimensions of
800 × 800 pixels was cut out in the central acquisition area. An example of the results of
these operations is shown in Figure 4a. In the next step, the image was blurred using
two operations. At first, the averaging operation with a normalized box filter and with
a kernel size of 3 × 3 was applied. Then, a bilateral filter was used. The result of these
operations is presented in Figure 4b. It allowed us to remove small noise (small fibers) in
the image related to the cutting of the sample. One can notice that the larger fibers are
still visible in the image. The last step in the preprocessing stage was the lower threshold
binarization. The threshold was equal to 75. All the parameters in the preprocessing stage
were chosen empirically.
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2.2.2. Corrugated Cardboard Thickness Estimation

The purpose of the next stage was to estimate the corrugated cardboard thickness.
This can be obtained by observing the boundary points of each corrugated cardboard layer
in each column. This operation is called column-wise image scanning. Furthermore, it is
necessary to estimate the thickness of the flute and liners in the next stages of the proposed
algorithm. In the column-wise image scanning operation, each column of the binary image
(Figure 4c) is analyzed. Starting from the top towards the bottom of the image, the first
white pixel is searched. The y coordinate of this pixel is written in the ULEP matrix, which
contains the external points of the upper liner. In a given column, after finding the first
white pixel, the first black pixel is searched. It describes the background in the flute area.
The y coordinate of this pixel is written in the ULIP matrix, which contains the internal
points of the upper liner. A similar procedure can be applied for the determination of lower
liner points. The only difference is in the direction of searching. For the lower liner, it
should be performed starting from the bottom towards the top of the image. In this way,
the matrices LLEP and LLIP are obtained, which denote the lower liner external points
and lower liner internal points, respectively. The results of the findings of the internal and
external points of the upper and lower liners are presented in Figure 5.
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The corrugated cardboard height can now be obtained by calculating the average distance
between the external points of the upper and lower liners. Thus, it can be expressed as

d =
1

NC

NC−1

∑
x=0
|ULEP(x)− LLEP(x)|, (1)

where x denotes the column index, and NC is the total number of columns. Thus, in this
case (for the cropped image), NC = 800.

After the column-wise image scanning operation, the external boundaries of the
liners can be determined using the matrices ULEP and LLEP. Both boundaries can be
approximated using linear functions based on the matrices of these coordinates:

yU = aU x + bU , (2)

yL = aLx + bL, (3)

where aU and bU denote the parameters of the upper liner approximation, while aL and bL
are the parameters of the lower liner approximation.

2.2.3. Corrugated Cardboard Center Line and Flute Height Estimations

In the next stage, the corrugated cardboard center line and flute height are estimated.
The row sum curve of the binary image is determined in order to find the localization of
liners. Now, the rows of the binary image are analyzed and the sum of white pixels at
each row is calculated. The corrugated carboard sample is placed horizontally. Therefore,
the maximums in the row sum curve are related to the liners’ localizations. Due to the
flute and other disturbances, many local maximums can be observed in the row sum curve.
Therefore, curve smoothing is applied using the Savitzky–Golay filter with 30 interpolation
points and a polynomial of the first degree. In such a way, the number of local minima
is limited. Furthermore, to find the additional conditions, the following were taken into
account: the minimal distance between maximums, which was equal to 20, and the minimal
value of the local maximum, which was equal to 0.4 of the global maximum value. The
local minimums, found in such a way, are related to the vertical positions of liners (their y
coordinates). This study was limited to 3-layered corrugated boards, which always have
2 liners and 1 flute. Thus, at this stage, two local maximums should be detected, as is
depicted in Figure 6a. This figure shows the row sum curve and the result of its smoothing
using the Savitzky–Golay filter. It is also worth noting that for both the ideal samples and
the creased samples, the layers of the corrugated carboard can have different thicknesses
and can be deformed in different ways, which affects the peak values, and it is possible
that they can differ significantly in the values of the local maximums.

Now, the original non-smoothed row sum curve can be analyzed, see Figure 6b. It
is divided into two ranges. The split of them is determined as a middle point between
the two local maximums (black bold dashed line). In Figure 6b, the upper liner range is
marked in red, while the lower liner range is marked in green. Within each of these ranges,
the following steps are performed:

1. The local maximum is determined.
2. All the points in the range, which have values greater than 0.9 of the local maximum,

and their boundary points are chosen. This is depicted in Figure 6b. The boundary
points of these points, which have values greater than 0.9 of the local maximum value,
are marked by bold dots within each range.

3. The distances between the boundary points are calculated and denoted as bUS and
bBS for the upper and bottom liners, respectively.
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Figure 6. The row sum curve and localizations of the vertical positions of liners: (a) the row sum curve
(red line) and the smoothed curve (blue line); (b) the upper (red) and lower (green) liners’ ranges.

The boundary lines are used in the next steps for the limitation of the searching range.
Based on the external boundaries of the liners expressed in Equations (2) and (3), the
boundary lines limit the flute searching. They can be written in the following forms:

yUBL = aU x + bU + bUS, (4)

yLBL = aLx + bL − bLS. (5)

These boundary lines are depicted in red in Figure 7, while the external boundary lines,
expressed in Equations (2) and (3), are presented in green. The center line is approximated
as a central line between these two red lines and can be expressed as

ycenter = acenterx + bcenter, (6)

where acenter, bcenter are the parameters of the center line.
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The height of the flute, which is equal to two times the amplitude of the sinusoidal
function, can be approximated using the following formula:

H =
1

NC

NC−1

∑
x=0
|yUBL(x)− yLBL(x)| = 1

NC

NC−1

∑
x=0
|(aU − aL)x + bU + bUS − bL + bLS|. (7)

2.2.4. Limitations for the Flute Period Searching

In next step, the skeleton of the binary image is determined, see Figure 8a. There are
some disturbances in the skeleton related to existence of the fibers coming from the cutting
process of the samples. Due to the presence of these unfavorable side branches, which
are formed due to the skeletonization of the binary image, the skeleton is additionally
subjected to a filtering process. It consists of removing side branches when their contour
length is less than 50 pixels, see Figure 8b.
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Figure 8. (a) Results of the skeletonization process; (b) results after skeletonization process and
removing side branches; (c) 3 parallel green lines for period limitations.

The limitation for the range of period searching determined by the values Tmin and
Tmax (the range of the period searching in pixels) is based on calculating the distances
between the intersection points of the skeleton contours, with 3 parallel lines (parallel to
the upper liner) drawn through the central flute area, see Figure 8c. Based on the averaged
distances between successive intersection points and the maximum distance, the values
Tmin = 0.5diav, Tmax = 3dimax are taken, where diav is the average distance between the
intersection points for the 3 parallel lines and dimax denotes the maximal value of the
distances between these intersection points. When the skeleton has too many disturbances,
making it impossible to determine these values, e.g., due to the presence of long branches
or critical deformation of the sample, the values Tmin = 50, Tmax = 800 are adopted.

2.2.5. Sinusoidal Function Parameters Searching Using Genetic Algorithm

In the searching process for the parameters of the flute, the following formula for its
approximation was taken into account:

y f lute = acenterx + bcenter − Asin
(

ϕ +
2π

T
x
)

, (8)

where the parameters acenter, bcenter and amplitude A = H/2 were determined in the
previous stages of the proposed algorithm. The phase shift ϕ and the period T were
determined using the genetic algorithm.
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As the input to the genetic algorithm, the eroded image of the binary image is treated,
as presented in Figure 9a. Furthermore, the search for the phase shift ϕ and period T is
limited by ϕmin = 0, ϕmax = 2π, Tmin, and Tmax. The objective function is the sum of the
joint pixels for the eroded image and the function expressed in Equation (8) for the given ϕ
and T.
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which the thickness of the papers can be measured. It allows us to avoid the ranges of the 
gluing between the liner and flute. In these regions, there are also lower numbers of dis-
turbances related to the fibers coming from the sample cutting process. The area of the 
upper liner, where the thickness can be measured, is marked in red. A similar area for the 
bottom liner is marked in blue. The green color indicates the area in which the thickness 
of the fluting layer is determined. 

Figure 9. (a) The eroded image; (b) an example result of the optimization process using the genetic
algorithm (red line).

The following parameters of the genetic algorithm were used:

• Maximal number of iterations: 500;
• Population size: 100;
• Mutation probability: 0.15;
• Elite group ratio: 0.01;
• Crossover probability: 0.2;
• Parents portion: 0.2;
• Crossover type: uniform.

An example of the genetic algorithm results is shown in Figure 9b.

2.2.6. Estimation of the Corrugated Cardboard Layers Thicknesses

The estimation of the thicknesses is schematically shown in Figure 10. The estimated
position of the flute in the image allows us to choose the areas of the liners and flute in
which the thickness of the papers can be measured. It allows us to avoid the ranges of
the gluing between the liner and flute. In these regions, there are also lower numbers of
disturbances related to the fibers coming from the sample cutting process. The area of the
upper liner, where the thickness can be measured, is marked in red. A similar area for the
bottom liner is marked in blue. The green color indicates the area in which the thickness of
the fluting layer is determined.
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These three areas were determined based on the sinusoidal function approximation
determined in the previous step using the genetic algorithm. An example of the results is
presented in Figure 11.
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3. Results

The procedure presented above allowed us to identify the geometrical parameters of
any single-wall corrugated board sample in a fully automatic manner. However, reliable
results were obtained only for the samples with relatively small cross-section crushing and
those cut in a way that does not damage the structure of individual layers.

Figure 12 shows the visualization of the recognized fluting shapes of corrugated board
and the thickness of individual layers for three samples, i.e., for flute C, B and E. All the
geometrical features of the single-ply corrugated cardboard cross-section identified by the
procedure presented in this paper are summarized in Table 1. The results are presented
both in the form of measured pixels and millimeters converted in the calibration process.
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In Figure 13, it is easy to see that the precision of identifying both the thickness of 
individual papers and the shape of the corrugated layer depends on the quality of the 
sample. If the sample has many jagged edges, it is difficult to identify the thickness, while 
when the sample is crushed (on the right) and the shape of the fluting changes, the sinus-
oidal function approximation is still possible but does not reflect its real shape. In such 
cases, the identified period and wave height can only be used as auxiliary indicators. 

Table 2 shows the identification results for two samples of the same cardboard (flute C), 
one of which (on the left) is not damaged in any way by creasing, while the other is damaged 
stochastically. Both samples are cut on a plotter with an oscillating knife, which means that 
the cut edges are not regular, and, in both cases, shreds of cellulose fibers represented an ad-
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Figure 12. Visualization of the recognized fluting shapes of corrugated board: (a) flute C sample;
(b) results obtained for the flute C sample; (c) flute B sample; (d) results obtained for the flute B
sample; (e) flute E sample; (f) results obtained for the flute F sample.

Each measurement method has a certain precision and limitations. In the case of the
procedure presented here, the precision of the measurement, and thus the identification
of the geometrical parameters of the corrugated board, is closely related to the quality
of the provided sample. Any imperfections of the sample in the form of deformation of
the corrugated layer as a result of crushing, shreds of fibers, or the inaccuracy of cutting
directly affect the precision of the algorithms used for image analysis.
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Table 1. Identification results of the geometrical features for the corrugated boards with flutes C, B
and E.

Flute C Flute B Flute E
[px] [mm] [px] [mm] [px] [mm]

Flute height 187 3.60 140 2.70 67 1.30
Flute period 428 8.13 339 6.39 185 3.50
Board thickness 226 4.29 165 3.13 94 1.79
Upper liner thickness 27 0.51 24 0.46 21 0.40
Flute thickness 26 0.49 19 0.34 19 0.36
Bottom liner thickness 26 0.49 18 0.36 22 0.42

In Figure 13, it is easy to see that the precision of identifying both the thickness of
individual papers and the shape of the corrugated layer depends on the quality of the
sample. If the sample has many jagged edges, it is difficult to identify the thickness,
while when the sample is crushed (on the right) and the shape of the fluting changes, the
sinusoidal function approximation is still possible but does not reflect its real shape. In
such cases, the identified period and wave height can only be used as auxiliary indicators.
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Table 3 contains all identified geometrical features of both corrugated board samples 
with the B-flute. It can be seen that in the case of cardboard with a lower flute, the identi-
fication of the shape of damaged cardboard is less error-prone, which makes the identified 
parameters of the corrugated layer more useful. 

Figure 13. Examples of samples difficult to identify: (a) with many jagged edges; (b) results of
identification of the sample with many jagged edges; (c) crushed sample; (d) results of identification
of the crushed sample.

Table 2 shows the identification results for two samples of the same cardboard (flute
C), one of which (on the left) is not damaged in any way by creasing, while the other is
damaged stochastically. Both samples are cut on a plotter with an oscillating knife, which
means that the cut edges are not regular, and, in both cases, shreds of cellulose fibers
represented an additional difficulty in the identification process.

Table 2. Identification results of the geometrical features for the corrugated board with flute C
(reference and crushed samples).

Flute C (Reference) Flute C (Crushed)
[px] [mm] [px] [mm]

Flute height 187 3.60 157 3.00
Flute period 428 8.13 414 7.82
Board thickness 226 4.29 182 3.46
Upper liner thickness 27 0.51 27 0.51
Flute thickness 26 0.49 30 0.57
Bottom liner thickness 26 0.49 18 0.34
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Figure 14 shows two samples of corrugated board with flute B. Again, two cases are
presented here–cardboard without damage (left) and with damage in the form of a crushed
flute (right).

Sensors 2023, 23, 6242 13 of 18 
 

 

  
(a) (c) 

  
(b) (d) 

Figure 13. Examples of samples difficult to identify: (a) with many jagged edges; (b) results of iden-
tification of the sample with many jagged edges; (c) crushed sample; (d) results of identification of 
the crushed sample. 

Table 2. Identification results of the geometrical features for the corrugated board with flute C (ref-
erence and crushed samples). 

 Flute C (Reference) Flute C (Crushed) 
[px] [mm] [px] [mm] 

Flute height 187 3.60 157 3.00 
Flute period 428 8.13 414 7.82 
Board thickness 226 4.29 182 3.46 
Upper liner thickness 27 0.51 27 0.51 
Flute thickness 26 0.49 30 0.57 
Bottom liner thickness 26 0.49 18 0.34 

Figure 14 shows two samples of corrugated board with flute B. Again, two cases are 
presented here–cardboard without damage (left) and with damage in the form of a 
crushed flute (right). 

  
(a) (c) 

  
(b) (d) 

Figure 14. Flute B example: (a) cardboard without damage; (b) results of identification; (c) damaged 
sample; (d) results of identification. 

Table 3 contains all identified geometrical features of both corrugated board samples 
with the B-flute. It can be seen that in the case of cardboard with a lower flute, the identi-
fication of the shape of damaged cardboard is less error-prone, which makes the identified 
parameters of the corrugated layer more useful. 

Figure 14. Flute B example: (a) cardboard without damage; (b) results of identification; (c) damaged
sample; (d) results of identification.

Table 3 contains all identified geometrical features of both corrugated board samples
with the B-flute. It can be seen that in the case of cardboard with a lower flute, the
identification of the shape of damaged cardboard is less error-prone, which makes the
identified parameters of the corrugated layer more useful.

Table 3. Identification results of the geometrical features for the corrugated board with flute B
(reference and crushed samples).

Flute B (Reference) Flute B (Crushed)
[px] [mm] [px] [mm]

Flute height 140 2.70 118 2.20
Flute period 339 6.39 349 6.60
Board thickness 165 3.13 135 2.56
Upper liner thickness 24 0.46 23 0.44
Flute thickness 19 0.34 22 0.42
Bottom liner thickness 18 0.36 18 0.34

The last example is shown in Figure 15, where two samples of corrugated board with
E-flute are presented. This is the lowest flute of all the cases presented here; therefore,
the crease in such cardboard is less visible (example on the right). As the geometrical
dimensions of the cross-section are reduced, the measurement noise, which arises as a
result of jagged edges, becomes more important and thus it is more difficult to obtain
reliable values of the thickness of individual papers.

Table 4 presents the results of the identification of parameters for both samples of
corrugated board with E-flute. Also, in this case, damage to the board in the form of creases
is not as spectacular as in the case of cardboard with C-flute, which makes the identified
parameters of the flute geometry more reliable.

The results presented in this section are only a small sample of all analyzed cases.
The proposed identification procedure was tested on over 200 different cases. As already
mentioned in the research campaign, both undamaged and damaged samples were used.
All damages in the form of corrugated layer crushing were caused by completely stochastic
processes with different forces and in different sample locations.
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creases is not as spectacular as in the case of cardboard with C-flute, which makes the 
identified parameters of the flute geometry more reliable. 

Table 4. Identification results of the geometrical features for the corrugated board with flute E (ref-
erence and crushed samples). 

 Flute E (Reference) Flute E (Crushed) 
 [px] [mm] [px] [mm] 

Flute height 67 1.30 56 1.10 
Flute period 185 3.50 191 3.61 
Board thickness 94 1.79 82 1.56 
Upper liner thickness 21 0.40 14 0.27 
Flute thickness 19 0.36 22 0.30 
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Figure 15. Flute E example: (a) cardboard without damage; (b) results of identification; (c) damaged
sample; (d) results of identification.

Table 4. Identification results of the geometrical features for the corrugated board with flute E
(reference and crushed samples).

Flute E (Reference) Flute E (Crushed)
[px] [mm] [px] [mm]

Flute height 67 1.30 56 1.10
Flute period 185 3.50 191 3.61
Board thickness 94 1.79 82 1.56
Upper liner thickness 21 0.40 14 0.27
Flute thickness 19 0.36 22 0.30
Bottom liner thickness 22 0.42 16 0.42

4. Discussion

The previous section presents representative examples of the operation of the algo-
rithm for identifying the geometric parameters of cross-sections of various cardboard sam-
ples. Since, according to our knowledge, in the professional and scientific literature there
are no similar attempts to identify the parameters describing the shape of the corrugated
layer and the thickness of individual cross-section layers on real cardboard samples, this
section focuses on a critical discussion of the results obtained, with a particular emphasis
on the limitations of the presented technique.

As already mentioned, the effectiveness of the method depends, to a large extent, on
the quality of sample excision. Each attempt to cut the sample with the use of oscillating
knives resulted in the formation of shreds of cellulose fibers at the edges of the sample.
Their presence obviously interfered with the effectiveness of the algorithms, mainly in
the part that is responsible for recognizing the thickness of individual layers of paper in
corrugated board. The second negative effect, which significantly affected the accuracy of
the created algorithms, was damage to the sample before or after cutting, by the accidental
crushing of the corrugated layer in the stochastic locations of the cross-section.

In the case of the edge delamination of the paper or when an irregular edge was
formed at the sample cut (example shown in Figure 16a,b), there was a clear difficulty in
determining the correct thickness of the liners (flat layers), shown in Figure 16a, or the
thickness of the flute (see Figure 16b). Damage to the corrugated board by crushing the
corrugated layer obviously had the biggest impact on identifying the fluting period and
amplitude (see examples shown in Figure 16c,d). Figure 16b also shows an inaccurate fit
of the approximating function, which was assumed as a sine function, to the shape of the
crushed fluting. However, despite the inaccurate adjustment of the approximating function
to the real shape of the distorted corrugated layer, the period of the wave in most of the
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analyzed cases was determined with a good approximation. The amplitude in such cases
was treated only as an indicator, determining the height of the cross-section after creasing.
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ple cut; (c,d) damages caused by crushing the corrugated layer. 

Unfortunately, almost all crushed microwave samples were only suitable for determin-
ing the wave period and amplitude (which are usually very well matched), while the problem 
was to determine the thickness of individual layers. This was due to too much interference 
(jagged fibers) in relation to the size of the area between the fluting walls. The solution that 

Figure 16. Examples of the corrugated board with damages: (a,b) irregular edges formed at the
sample cut; (c,d) damages caused by crushing the corrugated layer.

Unfortunately, almost all crushed microwave samples were only suitable for deter-
mining the wave period and amplitude (which are usually very well matched), while
the problem was to determine the thickness of individual layers. This was due to too
much interference (jagged fibers) in relation to the size of the area between the fluting
walls. The solution that often allowed us to improve the efficiency of the algorithm was
to limit the area on which the thickness of the liners was measured. The original example
(weak effect) and the operation on the same image after changing this area are shown in
Figure 17a,b, respectively.
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Figure 17. (a) The original example (weak effect) and (b) the operation on the same image after
changing this area.

In most cases, the source of the errors and failures of the algorithm for identifying
the geometric parameters of the cardboard cross-section are paper fibers. Due to the fact
that all samples were cut on a plotter with an oscillating knife, the disadvantage of which
is precisely leaving this type of disturbance on the cutting edge, the task of the created
program was significantly difficult. It can be suspected that cutting samples on a laser
plotter would significantly improve the reliability of the results and would ensure an
increase in the efficiency of the developed algorithm. However, the known edge-burning
effect of the laser could also introduce other types of interference into the identification
process, for example, leaving black soot on the cut edge, which could visually reduce the
thickness of the papers in the analyzed cardboard samples.

In order to overcome all the above imperfections of the algorithm, we plan to apply
artificial neural networks in future works on the identification of corrugated board types.
Furthermore, the proposed algorithm can be utilized for other geometries, e.g., corrugated
plastic sheets.
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5. Conclusions

This article presents the procedure for identifying the geometric parameters of the
cross-section of single-wall corrugated board. This procedure is based on a laboratory
device developed for the purposes of this research, which was used to take pictures of
cardboard samples in constant and controlled conditions. The developed procedure uses a
genetic algorithm, which is characterized by a high efficiency and allows for very quick
identification of the geometrical parameters of the corrugated board cross-section. The use
of local algorithms based on, for example, gradients is unfortunately not possible in this
case due to the specific formulation of the optimization problem.

Unfortunately, the effectiveness of the procedure is strongly dependent on the quality
of the excised sample. In most cases, it was possible to correctly determine the wave
period of the corrugated layer approximated by the sine function. The determination
of the amplitude and thus also the adjustment of the approximating function to the flut-
ing shape depended, to a large extent, on the level of cardboard cross-section crushing.
Fluting parameters in samples without damage were identified in almost 100 percent of
cases correctly.

However, the presented procedure is only the first step for automatic corrugated
board type identification and modelling. It allows us to quickly find the main geometric
characteristics of the corrugated board. In future, it can result in the possibility of per-
forming numerical analyses, taking into account the real model of the corrugated board.
Calculations made on a real (correctly mapped geometrically) model allow, for example, a
more reliable analysis of the composition of the cardboard, and thus also the obtainment of
greater savings in the optimization process.
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