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Abstract: In the Global Navigation Satellite System (GNSS) context, the growing number of available
satellites has led to many challenges when it comes to choosing the most-accurate pseudorange
contributions, given the strong impact of biased measurements on positioning accuracy, particularly in
single-epoch scenarios. This work leverages the potential of machine learning in predicting linkwise
measurement quality factors and, hence, optimize measurement weighting. For this purpose, we
used a customized matrix composed of heterogeneous features such as conditional pseudorange
residuals and per-link satellite metrics (e.g., carrier-to-noise-power-density ratio and its empirical
statistics, satellite elevation, carrier phase lock time). This matrix is then fed as an input to a long
short-term memory (LSTM) deep neural network capable of exploiting the hidden correlations
between these features relevant to positioning, leading to the predictions of efficient measurement
weights. Our extensive experimental results on real data, obtained from extensive field measurements,
demonstrate the high potential of our proposed solution, which is able to outperform traditional
measurement weighting and selection strategies from the state-of-the-art. In addition, we included
detailed illustrations based on representative sessions to provide a concrete understanding of the
significant gains of our approach, particularly in strongly GNSS-challenged operating conditions.

Keywords: satellite selection; single-epoch positioning; machine (deep) learning; long short-term
memory neural network; satellite measurement features

1. Introduction

The field of navigation and positioning was revolutionized by the Global Naviga-
tion Satellite System (GNSS), which provides precise location services on a global scale.
The continual evolution and refinement of GNSS technologies have not only enhanced
traditional navigation, but have also opened up new possibilities in diverse fields ranging
from transportation and agriculture to surveying and disaster management. To guarantee
reliable position estimation, multiple satellite vehicle (SV) selection, fault detection and
exclusion (FDE), and weighting techniques must be applied. The challenge is even more
important in the single-epoch context, where no access to previous solutions is granted.

Despite these challenges, single-epoch positioning remains essential in several operat-
ing contexts. First, it is essential in checking the integrity of the provided solution via the
Receiver Autonomous Integrity Monitoring (RAIM) techniques. Second, it can serve as an
initial position estimate to initialize the navigation processor [1]. Third, the loosely coupled
data fusion of GNSS with an Inertial Navigation System (INS) requires the GNSS outputs
(i.e., position and velocity) to be independent. This is to prevent any time-correlated
measurements from occurring at the input of the fusion engine. Therefore, single-epoch
solutions are necessary. Finally, recently developed Internet of Things (IoT) chips, such as
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Semtech’s LoRa chip LR1110 [2], utilize low-power receivers to capture a single snapshot
of GNSS measurements. These measurements are then transmitted via the IoT network to
undergo remote cloud processing. Despite the imposed single-epoch framework, the pro-
cessing power is not actually limited. In addition, newly developed IoT architectures
consider coupling GNSS with low data rate transmissions (e.g., based on LoRa radio
technology) for the purposes of remote cloud processing [3].

The GNSS operating conditions, such as Non-Line of Sight (NLOS) and multi-path
(MP) propagation, strongly affect the signals received from satellites, resulting most of-
ten in strongly biased pseudorange measurements. Accordingly, it is crucial to identify
and remove the most-harmful links/satellites that would have a strong contribution to
the localization error. With the advancement of GNSS technology, this step has become
increasingly challenging with the capability of the receivers to receive tens of satellite
signals at each time epoch. The observation noise is related to single-link features such
as the signal-to-noise-power-density ratio (C/N0) [4] and/or the elevation angle (θ) [5].
Accordingly, widely used pre-selection methods rely on these features for the exclusion or
the mitigation of satellites’ measurements that may cause large localization errors [6,7].

To ensure the integrity of the computed solution, several Receiver Autonomous In-
tegrity Monitory (RAIM) and fault detection and exclusion (FDE) techniques have been
proposed in the literature, including: RANdom SAmple Consensus (RANSAC) [8], itera-
tive re-weighting [9], subset-testing [10], etc. These techniques entail different trade-offs
between computational complexity and performance. Nevertheless, to the best of our
knowledge, the satellite selection and weighting challenges remain open to a large ex-
tent, taking into consideration the high computational cost of testing all the possible
subsets/combinations of available satellites.

Other existing approaches utilize the spatial distribution of positioning solutions condi-
tioned on specific subsets in order to find the satellites that negatively affect the positioning
error [11]. The main limitation of such approaches is that they mostly exclude the strongly
biased satellites, without mitigating their ranging errors. The exclusion of measurements
results in the loss of information, which affects the minimal positioning error that can
be achieved. Hence, mitigating measurements’ bias (i.e., through weighting) preserves
more information, which helps in providing better performance. In addition, conventional
weighting approaches [12] utilize simple parametric functions that depend on linkwise
features (e.g., C/N0, satellite elevation angle, and other coefficients). Such parametric
functions are difficult to fine-tune, which results in sub-optimal positioning errors.

In this paper, to overcome the limitations of conventional satellite selection and weight-
ing algorithms, we propose a unified algorithmic approach that can handle the two prob-
lems at once (i.e., satellite selection and weighting) in standalone single-epoch positioning
scenarios. One major innovation, hence, resides in the integration of machine learning (ML)
in the domain of pseudorange residuals (i.e., joint features), accompanied by other per-link
features such as C/N0 and the angle elevation, to improve the weights assigned to each
satellite in the positioning solver. The preliminary results of this work have been published
in [13,14].

ML has a great capability to exploit the hidden correlations in the data, specifically
in the extracted features (i.e., the joint and per-link ones) and in the positioning solution.
Therefore, we propose a novel ML-based approach based on the potential of an long short-
term memory neural network (LSTM NN) fed with a customized feature matrix. This
type of neural network (NN) specializes in capturing distant dependencies in its input
data, due to its memory cells and its gates (i.e., input, forget, and output gates). In our
problem, the LSTM NN is intended to generate predictions of measurement quality factors,
which reflect the linkwise standard deviations of pseudorange errors. Subsequently, these
predictions are employed to calculate efficient weights for satellites to be further used in a
conventional positioning solver such as weighted least squares (WLS).

For training, validating, and testing our NN, we used real data, which were collected
during extensive field tests and dedicated measurement campaigns. In total, more than
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290 driving sessions were conducted in various operating environments, resulting in
440,000 epochs. The GNSS receiver utilized during these campaigns has the capability
of receiving signals from multiple constellations (i.e., GPS, GLONASS, GALILEO, etc.)
over multiple bands (e.g., L1, L2, E1, and E5). Also, a high-end GNSS-aided Inertial
Navigation System (INS) system was used to collect the ground-truth positions, providing
centimeter-level accuracy.

Our contributions in this paper can be summarized as follows. First, we describe
a unified innovative solution that simultaneously handles both satellite selection and
weighting problems, while exploiting the potential of ML (i.e., LSTM NN). The latter
is fed with a customized feature matrix as an input, which includes joint features (i.e.,
conditional pseudorange residuals) and per-link features (e.g., carrier-to-noise-power-
density ratio and its statistics, elevation angle, carrier phase lock time). The rationale behind
choosing the LSTM NN is that the customized feature matrix can be viewed as a sequence
of pseudo-observations, which can be effectively handled in this type of NN. Second,
based on the proposed architecture, we show that more-efficient satellites weights can be
computed compared to the conventional parametric state-of-the-art methods based on the
performance in terms of positioning error. Third, we validated the proposed algorithmic
approach based on real field data, which were collected in a variety of representative
environments (including urban, suburban, rural, and even mountainous), hence offering
diverse GNSS conditions in terms of propagation and availability. Beyond assessing
performance over the entire data set, we also illustrate and analyzed the positioning results
achieved on a few typical measurement sessions, hence showing concretely the operating
contexts in which the proposed approach is mostly beneficial in comparison with state-of-
the-art solutions.

The rest of this article is organized as follows. In Section 2, we introduce the system
model, the problem formulation, and existing satellite weighting and selection techniques
from the literature. Then, in Section 3, the general architecture of our approach is explained,
including the data pre-processing steps and the construction of the input features that
are fed into the proposed LSTM NN. Finally, the numerical results obtained on the real
collected data are discussed in Section 4.

2. Problem Formulation

In this section, we introduce the problem under study followed by a review of the
relevant literature, which allows us to position our novel contributions.

2.1. Single-Epoch Positioning

For the sake of simplifying the notations and without loss of generality regarding our
approach, we first considered a set of N single-constellation, single-band pseudorange
measurements (Note that we will later broaden the scope of our study to encompass
scenarios involving multiple bands and constellations when discussing the experimental
results in Section 4.) {ρi}i=1...N , where the measurement from the i-th SV can be simply
modeled as follows:

ρi =
√
(x − xi)2 + (y − yi)2 + (z − zi)2 + c δ + ηi, (1)

assuming the absence of MP or notable biases, where ρi is the pseudorange between the
receiver and the i-th SV, with (xi, yi, zi) and (x, y, z) the coordinates of the i-th satellite
and the receiver, respectively. The parameter c is the speed of light, and δ is the clock
bias between the receiver and the considered constellation. It was assumed that all the
necessary corrections, derived from ephemeris data (including SV clock bias, ionospheric
and tropospheric delays, Sagnac correction, etc.), have been applied. ηi is the observation
noise, which represents both the receiver noise and other additional errors (e.g., resulting
from badly compensated extra delays). Despite the strong correlation of the tropospheric
and ionospheric residual errors after the correction from the navigation messages, the



Sensors 2024, 24, 833 4 of 17

latter are usually considered as independent and zero mean in single-epoch processing.
Accordingly, the observation noise is assumed to follow a centered Gaussian distribution,
i.e., ηi ∼ N (0, (σ2)i).

Our aim is to estimate the vector X = [x, y, z, δ]⊤ from the set of measurements
{ρi}i=1...N . An efficient solution that is widely used is the maximum likelihood estimator
(MLE) [15], which simplifies to a WLS estimator for our Gaussian noise model:

X̂ = arg min
X

N

∑
i=1

ωi(ρi − hi(X)
)2, (2)

where the observation function for the i-th satellite is defined as

hi(X) =
√
(x − xi)2 + (y − yi)2 + (z − zi)2 + c δ, (3)

and the optimal weights are equal to

ωi =
1

(σ2)i . (4)

The solution can be computed using an optimization algorithm such as Levenberg–
Marquardt or Gauss–Newton [16].

2.2. GNSS Satellite Selection and Weighting Problems

In general, the exclusion of presumably strongly biased measurements is performed
using an initial rough rejection step based on thresholding over the C/N0 or satellite eleva-
tion angle values. This parametric rejection is followed by a weighting step using empirical
functions that estimate the per-link standard deviation of the accepted measurements [12],
given as follows:

(ν2)i =
1

sin2 (θi)

(
σ2

ρZ +
σ2

ρc

(C/N0)i + σ2
ρa(a2)i

)
. (5)

This function mainly depends on C/N0, the elevation angle θ, and the range accelera-
tion a, in addition to other coefficients (σ2

ρZ, σ2
ρc, σ2

ρa), which are challenging to fine-tune and
cannot easily be generalized.

The accuracy of the resulting estimated position may be significantly degraded be-
cause of the strongly biased measurements that are induced by MP, hence violating the
underlying Gaussian-centered model. Hence, the exclusion or de-weighting (i.e., assigning
zero weights) of such problematic measurements represents a key processing step. In-
novation monitoring tests [17] at the navigation processor stage are capable of efficiently
detecting this type of biased measurement. However, the convergence of the tracking filter
is required, in addition to an accurate predicted state: including position, receiver clock
offset, etc.

In the context of single-epoch processing, there is no predicted solution available,
and the selection of SVs depends solely on the measurements, with minimal prior informa-
tion. This means that detecting k faults among N measurements leads to a combinatorial
number of subsets (CN

k ) to be tested in the case of an exhaustive search, making it pro-
hibitive for real-time applications. To illustrate this precisely, consider a representative
scenario with a maximum of 10 faults among 40 measurements; in this case, more than
847 × 106 subsets have to be tested, which is computationally unfeasible.

2.3. Existing Works

As we have already mentioned, detecting and excluding strongly biased or corrupted
signals comprise an important challenge in GNSS to improve its integrity. For this purpose,
various RAIM techniques have been proposed in the literature. They include classical
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FDE [18], brute force subset testing [19], Advanced Receiver Autonomous Integrity Moni-
toring (ARAIM) [18,20], and range consensus (RANCO) [11].

The classical FDE [18–21] employs a dual-statistical assessment of measurement resid-
uals through global and local tests. In the global test, the residuals are assumed to follow
a centered normal distribution. Accordingly, it follows that the weighted squared sum
of the residuals should conform to a chi-squared distribution. The empirical statistic is
then compared to this expected chi-squared distribution, while specifying a false alarm
probability. If a fault is detected in the global test, the local test is used to detect the faulty
measurement and exclude it. This is performed by excluding the measurement that has
the highest residuals. Measurements are then excluded sequentially in a loop until the
global test stops detecting a fault. Although this approach is efficient in excluding faulty
measurements, it utilizes the least squares (LS), which is very sensitive to outliers. This
makes its loop less efficient, resulting in the wrong exclusions.

The brute force subset testing approach [18,22] assumes the existence of k faulty
measurements among the N received measurements. All the possible subsets constituted
of k out of N measurements are constructed, and their residuals are tested using the global
test. Based on the latter, the subset with the best score is selected. The main disadvantage
of this approach is its computational cost, which is generally not tractable, especially in
real-time systems.

To reduce the computational cost, other approaches have been proposed, such as
range consensus (RANCO) [23]. This approach hinges on the initial selection of a subset
of measurements, determined by a specific condition (e.g., Geometric Dilution of Pre-
cision (GDOP)), and subsequently, deriving a solution through computation. Then, all
the measurements are compared to this solution based on a selected threshold, while the
pseudorange residuals are categorized into inliers (for values below the threshold) and
outliers (for values above the threshold). Subsequently, the inliers from the subset that
receives the highest consensus are selected, while the outliers are rejected. Iteratively and
conditionally, additional subsets can be considered and compared.

At last, other approaches perform statistical tests in the solution domain (by utilizing
the solution’s covariance matrix), rather than the residuals space. As an example, consider
the Multi-Hypothesis Solution Separation (MHSS), which is part of ARAIM [24,25]. This ap-
proach calculates a preliminary position from all the received measurements and compares
it with the solutions estimated from all the possible subsets of measurements. Upon the
detection of a fault using local tests, an exclusion attempt of the faulty measurement is
performed using the subset approach. The main disadvantage of this approach resides
again in its computational cost.

All the above approaches are standalone and do not have access to previous position
estimates. A more-recent solution proposed in [26] relies on a new FDE, which uses a
standalone FDE block along with an FDE-based Extended Kalman Filter (EKF). The stan-
dalone part of this approach is based on a residual test using WLS. The utilization of each
system part depends on both the covariance matrix and a predefined threshold. More
precisely, when the covariance matrix falls below a certain a priori threshold (elementwise),
the FDE-based EKF is used; otherwise, a standalone FDE is applied. This algorithm is based
on a subset testing method for SV selection and a standard WLS for position computation.

In comparison with the previous existing approaches, the method in [26] was shown
to significantly improve the positioning performance. This approach was compared with
both the well-known GNSS software RTKlib 2.4.2 and the solution delivered by the Ublox
receiver. Furthermore, it was evaluated in single-epoch mode and filtered mode. The first
comparison was performed in single-epoch mode with respect to the RTKlib solution.
Multiple tests were performed over different sessions, where this approach showed a good
performance over the RTKlib solution, as shown in Table 1.
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Table 1. Performance comparison in terms of horizontal and vertical errors in single-epoch mode:
RTKlib versus the approach in [26].

Horizontal Error (m) Vertical Error (m)

RMS P68 P99 RMS P68 P99

RTK lib 1.45 1.09 4.47 2.36 1.32 8.68

[26] approach 0.63 0.61 1.45 1.08 1.08 2.42

The second comparison was performed in filtered mode with respect to the solution
provided by the Ublox chip, since only the Ublox chip provides a filtered solution. Different
Ublox chips were used (i.e., NEO-M8P and ZED-F9P), both using the Airborn 4G filtering
profile. The comparison was performed in various operating conditions such as urban,
suburban, highways, etc. As shown in Tables 2 and 3, the solution provided by the approach
in [26] yielded a better performance with respect to the solution provided by the Ublox
chip in filtered mode.

Due to the good performance demonstrated by the approach in [26] compared to
two representative and well-known approaches, we chose it as a reference benchmark in
this paper. As our study is focused on single-epoch localization, we considered only its
standalone part.

Table 2. Performance comparison in terms of horizontal and vertical errors in filtered mode: the
Ublox solution (NEO-M8P) versus the approach in [26].

Solution
Normal Degraded

P68 P99 P68 P99

Horizontal Error (m)
Ublox filtered
(Airborn 4G)

2.09 4.62 2.69 6.92

[26] filtered 1.7 3.97 2.13 6.95

Vertical Error (m)
Ublox filtered
(Airborn 4G)

3.21 6.28 3.93 9.48

[26] filtered 3.17 5.11 3.33 6.6

Table 3. Performance comparison in terms of horizontal and vertical errors in filtered mode: Ublox
(ZED-F9P) versus the approach in [26].

Solution
Normal Degraded

P68 P99 P68 P99

Horizontal Error (m)
Ublox filtered
(Airborn 4G)

1.84 4.94 2.97 5.83

[26] filtered 1.48 3.6 2.25 4.10

Vertical Error (m)
Ublox filtered
(Airborn 4G)

3.00 9.64 6.97 12.02

[26] filtered 2.85 5.25 3.62 5.81

As opposed to the aforementioned state-of-the-art, our work is the first to propose a
unified ML-based satellite selection and weighting approach using an LSTM NN. The satel-
lite selection problem is cast into a weighting problem, where nearly zero weights are
assigned by our algorithm for satellite measurements that should be excluded. Another
novelty of our approach lies in exploiting per-link features (i.e., C/N0, elevation angle, etc.)
jointly with joint features (i.e., residual matrix) to efficiently weight satellite measurements.



Sensors 2024, 24, 833 7 of 17

3. Proposed System Architecture

Our main goal is to efficiently weight the contributions of all the satellite measure-
ments while estimating a position, which requires exploiting the complex hidden inter-
dependencies across multiple radio links from distinct satellites. For this purpose, we
used deep learning (DL), a powerful toolbox, which has the ability to exploit such complex
hidden inter-dependencies.

We start by constructing a comprehensive and representative feature set to be provided
as an input to the chosen NN. A distinctive aspect of our approach is that we incorporated
joint and per-link features in a unique comprehensive input matrix. The construction of this
matrix will be explained in detail in the following sections. This matrix will be fed to the
NN (i.e., LSTM NN), which will be trained to predict the weights ω̂i, which are hopefully
related to the underlying distribution of pseudorange errors according to (4). Our intuition
and expectation are that the strongly biased pseudorange measurements will be excluded
by the NN by assigning them close-to-zero weights. In summary, the satellite selection
problem is turned into a soft weighting problem. The complete proposed architecture is
shown in Figure 1.

Figure 1. Complete architecture of our proposed approach.

3.1. Data Normalization and Parametric Rejection of Outliers

When it comes to deep-learning-based approaches, aside from choosing the relevant
input features discussed in the next subsections, the value ranges of the input features are
also crucial. This is especially true for LSTM NNs, which do not handle large values well.
To tackle this issue, we can normalize the input features. However, the challenge behind
huge data outliers (i.e., unusual data points) still remains. The presence of such outliers
has a negative impact on the normalization scale, may suppress important information,
and should be rooted out from the start, as shown in Figure 1. Indeed, our analysis of the
collected data showed that the worst outliers, caused by some corrupted signals, led to
significant errors in the pseudorange residuals, which are the main components of our
proposed joint features (see Section 3.3).

In order to visualize the outliers, in Figure 2, we show scatter plots of the pseudor-
ange bias versus the elevation angle (Figure 2A) and the pseudorange bias versus C/N0
(Figure 2B), calculated from the ground-truth position data. It can be observed that low
elevation angles and low values of C/N0 will increase the probability of having a biased
pseudorange, as expected. Although the proportion of such corrupted signals is relatively
small, as can be seen from the shaded histograms in Figure 2A,B, as mentioned above, it is
important to exclude them using parametric rejection via thresholding, prior to weighting.

On the other side, a too-severe parametric rejection incurs the risk of losing informative
satellite signals that would be useful to our ML model. Thus, a careful balance between the
negative outliers’ effect and losing informative signals has to be reached. Our exhaustive
tests showed empirically that the rejection threshold values that reach a good balance
and lead to the best positioning performance are: 30 dB-Hz for the C/N0 and 5◦ for the
elevation angle.
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Figure 2. Data analysis for parametric rejection of outliers: (A) pseudorange bias (m) vs. satellite
elevation angle and (B) pseudorange bias (m) vs. C/N0.

3.2. Per-Link Features

Numerous per-link measurement features may contain valuable information with
respect to positioning and, hence, accordingly, may be beneficial to the NN as inputs. These
include the SV elevation angle θ, the carrier phase lock time, C/N0, and its empirical
statistics.

For instance, as shown in Figure 2A, SV signals with low elevation angles have a
higher probability of being strongly biased. This is mainly caused by the fact that the
signals received under such angles tend to travel longer distances in the ionospheric and
tropospheric layers of the atmosphere. Likewise, they are more prone to suffer from severe
NLOS conditions. Besides, the carrier phase lock time somehow indicates if a signal is
newly acquired.

In Figure 2B, one can also note that SV signals with low C/N0 have a higher probability
of being strongly biased. Intuitively, these signals have a higher tracking noise in the
ranging processor, which also leads to a higher pseudorange measurement noise.

Beyond this, as pointed out in [27], the empirical statistics of C/N0 (i.e., its variance
σ2

C/N0
and mean (C/N0)i, calculated over a short period of time) can also reflect the current

MP operating conditions. While our work focuses on single-epoch processing, we can
still effectively estimate the variance of C/N0 over short intervals of a (past) few seconds.
This approximation will primarily impact measurement weights and introduce negligible
correlation among them.

As a new SV can be acquired or lost during a navigation session, the number of
consecutive measurements of C/N0 may change. Hence, the sliding window can vary
in size (as illustrated in Figure 3), with a maximum of 10 epochs (which is equivalent to
2 s). In the case of a newly acquired SV, where only one entry is present in the window,
an arbitrary large variance value is assigned. Thus, we also make use of this window size
as an extra feature. On its own, it indeed indicates if the quality of the received signal is
erratic in the short-term and/or if the amount of related information is too limited.

To sum up, the above acquired per-link features are combined into a sub-matrix that
comprises six feature column vectors, each with a dimension N (see Figure 1).
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Figure 3. Variable size sliding window for C/N0 variance and mean calculation.

3.3. Joint Features

Joint features accounting for the simultaneous impact of multiple measurements over
distinct links (i.e., in contrast to per-link features) can also be extracted from the comparison
of the positioning solutions from different tested subsets. To overcome the challenge of
testing all the possible subset combinations, which is computationally prohibitive, our
approach leverages the ability of ML to extract hidden inter-dependencies from only N
such subsets.

At each navigation epoch, we assume that multiple (i.e., N) satellite signals are re-
ceived, and a new matrix of positioning residuals M is constructed, as follows. We generate
N subsets Sn of N − 1 satellites, where we exclude one distinct satellite (i.e, the n-th satellite)
at a time.

Sn = {ρi}, i = 1 . . . N, i ̸= n (6)

For each subset Sn, we calculate the corresponding solution Xn using (2) with equal
weights. Then, for each of the N resulting positions {X1, ..., XN}, we calculate the N − 1
pseudorange residuals:

δρi
Xn

= ρi − hi(Xn), i ̸= n (7)

The coefficient [M]n,i (i.e., row n, column i) of the residual matrix M is then simply
given by the corresponding residual for non-diagonal coefficients or by an arbitrary large
value γ for the diagonal terms, indicating that the satellite has been deliberately excluded.

[M]n,i =

{
δρi

Xn
, i ̸= n

γ, i = n
(8)

Each row n of the matrix will, thus, provide residuals associated with the exclusion
of the n-th measurement. Although it assumes a single fault per subset (i.e., row), our
intuition is that such a matrix is able to reveal the complex joint contributions of each
satellite to the positioning solution, while being fed as a single input to the NN.

3.4. Long Short-Term Memory Neural Network

Obtaining the best performance of the NN requires choosing a suitable architecture
for the investigated problem. This may be a challenging task, taking into consideration the
wide variety of possible NNs. For this purpose, an empirical evaluation of different types
of NNs was performed [14]. The tested NN architectures included convolutional neural
networks (CNNs), fully connected neural networks (FCNNs), and various other types of
recurrent neural networks (Simple-RNN, LSTM [28], Bi-LSTM [29], and gated recurrent
units (GRUs)). Among the tested architectures, the best positioning performance, taking
into consideration the complexity of the NN, was obtained by the LSTM NN. Accordingly,
this architecture was selected and further optimized as explained in Section 4.2.1.

The overall input matrix of features being fed to the NN can be seen as a sequence of N
pseudo-observations. At each observation, a single pseudorange measurement is excluded
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from computing the solution. By analyzing this sequence, the LSTM NN can exploit the
correlations between the excluded measurement and the solution and pinpoint which
measurement exclusions have the best impact on the quality of the positioning solution.
As a result, the NN will be capable of predicting weights that exclude multiple biased
measurements by analyzing the sequence of pseudo-observations, set as joint features (see
Section 3.3). Besides, the additional per-link features for the excluded measurements were
concatenated for each pseudo-observation to provide more information about the excluded
satellites (see Section 3.2).

In this kind of problem, the LSTM NN architecture, which is a type of recurrent neural
network (RNN) [30], has the advantage of keeping memory over multiple (possibly distant)
pseudo time steps. Hence, it is also suited to exploiting the correlations across the matrix
rows in our case, even if we explicitly deal with a single-epoch problem. Similar appli-
cations of the LSTM NN to other time-invariant problems have already been considered.
For instance, in [31], an LSTM NN was used to process data with long-range interdepen-
dence (i.e., using the geometric properties of the trajectory for unconstrained handwriting
recognition).

Note that several other (more-complex) NN architectures were evaluated. For instance,
we considered a more-complex architecture composed of two different concatenated NNs.
The first NN processes only the residual matrix as the input. Its output is concatenated
with the additional per-link features and fed as the inputs to the second fully connected
NN (FCNN). However, such architectures did not provide any significant improvement
over the LSTM NN, which only processes our constructed feature matrix.

4. Numerical Results

To assess the feasibility of our approach, the selected neural network architecture was
first optimized. Then, a comprehensive performance assessment was performed based on
the collected real-world measurement data, as described below.

4.1. Data Collection and Scenarios

To train, validate, and test our approach, we exploited real field data, which were
collected through extensive measurement campaigns. These campaigns were conducted in
various operating conditions and environments in different cities and countries (e.g., France
and the USA), including dense urban areas, open skies, and different mobility scenarios.
A multi-sensor platform developed by CEA-Leti, named Vehloc, was used for the data
collection. This platform offers the possibility to integrate two different receiver chips:
either a NEO-M8P or a ZED-F9P, both manufactured by Ublox. The ZED-F9P, a dual-band
RTK GNSS receiver, has the capability of receiving up to N = 184 satellite signals from
multiple constellations (e.g., GLONASS, GALILEO, GPS, etc.) at different frequencies (E1,
E5, L1, and L2 bands). The NEO-M8P chip has the capability of receiving signals from
multiple constellations (only GLONASS and GPS were used), but it operates on single-
band L1 signals. The raw measurements, including: the pseudorange, SV ID, frequency ID,
constellation ID, C/N0, pseudorange rate carrier phase, carrier phase lock-time, etc., were
collected at a 5 Hz rate, along with the broadcast ephemeris.

The raw reference position was first acquired by a high-end, GNSS-aided INS Ekinox
platform from SBG. These collected data were then post-processed using the Qinertia
3.4.304 software, also from SBG, to obtain the final reference positions within centimeter-
level accuracy, even in the most-challenging operating conditions. The experimental setup,
which was installed on the rooftop of a vehicle, is shown in Figure 4. The picture shows
two essential components of the experimental setup, namely the SBG reference system and
the Ublox antenna of the Vehloc platform.

Overall, a total of 291 sessions, comprising 440,000 epochs, were carried out during
the data collection, resulting in a comprehensive, diverse, and extensive dataset, which we
used to validate our approach.
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Figure 4. Experimental setup used for measurement data collection.

4.2. Evaluation Results

As we are following a supervised training for our NN, an important aspect is the
ground-truth labels that are used for training. Ideally, the labels shall be the optimal
weights. However, optimal weights in our case are not well-defined for several reasons.
From the Bayesian estimation perspective, this would require having access to the true
distribution (i.e., the standard deviation in particular, assuming a Gaussian distribution
of the measurements errors), while only a single sample of this distribution is available.
Indeed, having more-precise information about the underlying distribution would require
collecting multiple measurements from the same receiver’s position, also with the same SV
positions, which is not feasible. When dealing with a single sample/observation, the most-
accurate estimate of the standard deviation is the absolute value of the error calculated
specifically for that measurement. This approach is further reinforced by empirical evidence,
by utilizing the weights as:

ωi = 1/(ρi − h(Xtrue))
2, (9)

where Xtrue stands for the ground-truth position collected from the reference system. Uti-
lizing this weighting method has provided very good results, as shown in Figures 5 and 6;
thus, these weights were used as the data labels.

Figure 5. Empirical cumulative density function (CDF) of horizontal error for various measurement
weighting/selection strategies on real field data (over the unseen test dataset of the epochs from the
ZED-F9P receiver).
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Figure 6. Empirical CDF of vertical error for various measurement weighting/selection strategies on
real field data (over the unseen test dataset of the epochs from the ZED-F9P receiver).

In the following sections, we will compare the performance of three different ap-
proaches from various perspectives. The first approach, referred to as the “ground-truth”,
utilizes weights as in (9) with the ground-truth position, before applying WLS positioning.
The second approach, named “our approach”, exploits the overall feature matrix com-
prising the two sub-matrices (i.e., the “residual matrix” concatenated with the additional
per-link features) as an input to the NN to predict linkwise quality factors, which are then
used to compute the weights as in (4) for WLS positioning. Finally, in the third “SOTA”
method, the state-of-the-art solution from [26] (see Section 2.3) is used for positioning.

4.2.1. Neural Network Optimization

To improve the performance of our NN architecture as much as possible, we focused
on choosing the best possibilities (out of the tested possibilities) for two primary hyperpa-
rameters: the number of hidden layers and the number of neurons per layer. In addition,
our consideration of the training time of the NN led us to the selection of other relevant
hyperparameters, such as the activation function for each layer. Specifically, given the
strictly positive nature of the label weights, the rectified linear unit (ReLU) activation
function was employed for the output layer. Also, the Adam optimizer was used to train
the NN due to its computational efficiency [32].

To mitigate the computational complexity associated with an exhaustive search over
all possible combinations of the number of neurons and the number of hidden layers, we
adopted an incremental approach. The number of neurons was systematically increased
based on a heuristic rule of thumb commonly used in machine learning, where the number
of neurons in a hidden layer is a multiple of the number of input features.

We proceeded in two steps to evaluate the performance of the tested NN architectures
and prevent overfitting. Firstly, the dataset was partitioned into three disjoint subsets, allo-
cating 60% for training, 20% for validation, and 20% for testing. Secondly, an early stopping
callback mechanism, utilizing the validation subset, was implemented to terminate the
training process in the absence of further performance improvement.

After the training and validation steps, the performance evaluation was performed
on unseen data (i.e., test subset) to measure the effectiveness of the model in an unseen
context. This overall process in training, testing, and optimizing the architecture of the NN
contributes to creating a robust and reliable model.

The CDF of the 3D positioning error for a small sample of the tested NN architectures
is shown in Figure 7. The description of each of the labeled architectures is as follows:



Sensors 2024, 24, 833 13 of 17

• NN #0: an LSTM NN with 1 hidden layer of 550 neurons.
• NN #1: an LSTM NN with 2 hidden layers: 330 neurons in the first hidden layer

and 220 neurons in the second hidden layer.
• NN #2: an LSTM NN with 2 hidden layers: 550 neurons in the first hidden layer

and 440 neurons in the second hidden layer.
• NN #3: an LSTM NN with 1 hidden layer of 1100 neurons.
• NN #4: an LSTM NN with 2 hidden layers: 990 neurons in the first hidden layer

and 880 neurons in the second hidden layer.
• NN #5: an LSTM NN with 3 hidden layers: 110 neurons in the first hidden layer,

440 neurons in the second hidden layer, and 550 neurons in the third hidden layer.

All the compared NNs had better performance with respect to the SOTA approach.
However, the best performance was from NN #4, which achieved 2.5 m of 3D positioning
error at 68% (i.e., 37.1% improvement compared to the SOTA approach.)

Figure 7. Comparison of the cumulative density function of different NN architectures on unseen
(test) data.

4.2.2. Performance on Representative Sessions

In order to gain a better understanding and visualize the difference in performance
between the state-of-the-art (SOTA) and our approach, we examined two vehicular sessions:
Session 1 was an open-sky session, where we illustrate our typical relative improvement
with respect to the SOTA approach in typical operating conditions. The horizontal and ver-
tical errors for this session are represented in Figure 8A and Figure 8B, respectively. Session
2 was a different session in a more-GNSS-challenged environment, where a significant part
of this session was under solar panels. The latter caused a significant obstruction of the
signals, in addition to MP propagation conditions. The horizontal and vertical errors for
this session are represented in Figure 9A and Figure 9B, respectively.

In Session 1, the average 3D positioning error for the SOTA approach was 2.37 m
and 1.52 me for our approach. As can be seen from Figure 8A, most of the horizontal errors
for our approach fell within the radius of 1 m, while for the SOTA approach, most of the
errors fell within the radius of 1.75 m. Besides, the scattering of the horizontal errors of
the SOTA approach on a wider radius compared to ours highlights the robustness of our
approach. Figure 8B shows the superiority of our approach also in terms of the vertical
error: the interquartile range of our approach was indeed much closer to the ground-truth
than the SOTA approach.

In Session 2, the superiority of our approach was even more evident. In this session,
the average 3D positioning error for the SOTA approach was 5.19 m and 2.16 m for our
approach. The SOTA approach’s performance was lower compared to Session 1 because it
failed to reject at least one strongly biased measurement, which was apparently present
for most of the session duration (likely due to similar multipath propagation conditions)
and affected the overall performance. This can be seen clearly in Figure 9A, where the



Sensors 2024, 24, 833 14 of 17

horizontal positioning errors of the SOTA approach are systematically shifted in the same
direction. On the contrary, our approach was capable of excluding such strongly biased
measurements. Furthermore, the interquartile ranges of the vertical errors in Figure 9B
again show the superiority of our approach in terms of the vertical error as well. Finally, it
is worth highlighting that our approach exhibited a greater magnitude of improvement in
increasingly GNSS-challenged condition, as interpreted in these two sessions.

Figure 8. The positioning error traces in the horizontal plane as shown in (A) and in the vertical plane
as shown in (B) for our proposed approach (in orange color), the state-of-the-art approach (in blue
color), and the ground-truth approach (in green color) for Session 1.

Figure 9. The positioning error traces in the horizontal plane as shown in (A) and in the vertical plane
as shown in (B) for our proposed approach (in orange color), the state-of-the-art approach (in blue
color), and the ground-truth approach (in green color) for Session 2.

As previously mentioned, our approach was designed to address both the satellite-
measurement-selection problem and the weighting problem. To assess and illustrate its
effectiveness across these dimensions, we chose two more distinct navigation sessions con-
ducted in very different operating environments: one in a country-side setting and another
in an urban area.

The rationale behind selecting these specific operating conditions is as follows. In
country-side areas, during navigation sessions, the likelihood of encountering signals
in NLOS conditions is relatively low. In this session, the average SV acceptance rate in
the SOTA algorithm was 73.5% per epoch. Consequently, the primary challenge lies in
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effectively weighting the satellite measurements. Conversely, in urban areas, there is a
higher probability of receiving strongly biased measurements due to NLOS conditions.
In this session, the average SV acceptance rate in the SOTA algorithm was 53.1% per epoch.
This poses the challenge of excluding the strongly biased measurements.

In Figure 10, we present two sessions from both operating conditions alongside their
CDF of the 3D positioning error for three approaches: the SOTA approach, our proposed
approach, and the ground-truth approach. In both operating environments, our approach
yielded an improved performance compared to the SOTA approach. In particular, in the
country-side session, we obtained a 25.2% (at a 68% CDF) improvement, while for the
urban area session, we achieved a 32.9% improvement compared to the SOTA.

Figure 10. Performance comparison of the SOTA, the ground-truth, and our proposed approach in a
country-side and an urban area session.

4.2.3. Overall Performance

Finally, Figures 5 and 6 show the empirical CDF of the horizontal and vertical posi-
tioning errors obtained with the three different weighting strategies (i.e., the ground-truth,
the SOTA, and our approach) over the unseen testing subset from all the navigation sessions
from the ZED-F9P receiver (77,200 epochs).

In these figures, we observe a significant improvement in terms of both the horizontal
and vertical errors of the our approach compared to the state-of-the-art solution. Indeed,
our approach exhibited a performance gain with respect to the SOTA approach of 0.76 m
(i.e., 42.7%) in terms of the horizontal error at a 68% CDF. As for the vertical error, we also
observed an improvement of 1.34 m (i.e., 38.1%) at a 68%CDF.

At last, note that a similar performance was also obtained when tested on the NEO-
M8P data. To avoid redundancy, we do not include the corresponding figures in this paper.

5. Conclusions

In this paper, we introduced a novel approach for SV measurement weighting in
single-epoch GNSS positioning by exploiting a combination of joint features (i.e., condi-
tional pseudorange residuals) and per-link features (i.e., C/N0 and its empirical statistics,
satellite vehicle elevation angle, carrier phase lock time). Our approach relies on an LSTM
neural network in predicting several quality factors to weight the contributions of dif-
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ferent measurement into the calculation of a position. Our results on real data obtained
from field experimental sessions demonstrated the robust performance of the proposed
solution in challenging environments, while outperforming a recent state-of-the-art ap-
proach. Furthermore, to provide a more-concrete understanding of the significant gains
and benefits observed with our approach, we included detailed numerical results obtained
in representative sessions. To sum up, our proposed solution is particularly promising in
IoT applications (remote processing), where accurate single-epoch positioning is essential,
whether in real-time or offline.

The main contributions of our work can be summarized as follows:

(i) A unified ML-based approach was proposed for satellite selection and weighting,
using heterogeneous input features.

(ii) Our approach was validated using real data. These data were collected from exten-
sive data-collection campaigns, which included diverse operating conditions (i.e.,
urban, suburban, countryside, etc.).

(iii) Our approach exhibited significant improvement with respect to recent SOTA ap-
proaches of 42.7% (respectively, 38.1%) at a 68% CDF, in terms of horizontal (respec-
tively, vertical) error.
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