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Abstract: The extraction of effective classification features from high-dimensional hyperspectral
images, impeded by the scarcity of labeled samples and uneven sample distribution, represents
a formidable challenge within hyperspectral image classification. Traditional few-shot learning
methods confront the dual dilemma of limited annotated samples and the necessity for deeper, more
effective features from complex hyperspectral data, often resulting in suboptimal outcomes. The
prohibitive cost of sample annotation further exacerbates the challenge, making it difficult to rely
on a scant number of annotated samples for effective feature extraction. Prevailing high-accuracy
algorithms require abundant annotated samples and falter in deriving deep, discriminative features
from limited data, compromising classification performance for complex substances. This paper advo-
cates for an integration of advanced spectral–spatial feature extraction with meta-transfer learning to
address the classification of hyperspectral signals amidst insufficient labeled samples. Initially trained
on a source domain dataset with ample labels, the model undergoes transference to a target domain
with minimal samples, utilizing dense connection blocks and tree-dimensional convolutional residual
connections to enhance feature extraction and maximize spatial and spectral information retrieval.
This approach, validated on three diverse hyperspectral datasets—IP, UP, and Salinas—significantly
surpasses existing classification algorithms and small-sample techniques in accuracy, demonstrating
its applicability to high-dimensional signal classification under label constraints.

Keywords: hyperspectral image; cross-domain few-shot learning; transfer learning; residual dense
connection network; spatial–spectral features

1. Introduction

Hyperspectral imaging (HSI) systems amass extensive spatial and spectral data across
a broad array of spectral bands, presenting a rich tapestry of information [1,2]. This bounty
has catalyzed advancements across varied domains, such as precision agriculture [3], envi-
ronmental surveillance [4,5], and disaster mitigation [6,7], signifying its interdisciplinary
impact. The realm of hyperspectral image classification, a pivotal segment of hyperspectral
analysis, has elicited considerable scholarly interest [8,9]. Yet, the classification endeavors
for hyperspectral remote-sensing imagery confront persistent obstacles. A critical impera-
tive lies in the more profound exploration of the intrinsic deep features within hyperspectral
images. Addressing the paucity of training samples and enhancing classification efficacy in
high-dimensional contexts with limited data remain pressing challenges. These hurdles
underscore the substantial prospects for continued research and advancements in the field.

In traditional classification methods, the classification of hyperspectral images has
focused on manual feature extraction [9–12] and the use of traditional shallow classifiers,
including K-Nearest Neighbor (KNN) [13], Support Vector Machine (SVM) [14], logistic
regression [15], the manifold learning method [16], among others. These conventional
methods can only extract shallow feature information and neglect deep feature information.
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Classification performance relies significantly on prior knowledge, manual parameter
adjustments, and feature selection. However, this approach lacks the adaptability required
to address classification tasks in complex scenarios.

Deep learning methods possess the ability to acquire discriminative features from
extensive annotated data and apply these features to classification tasks. As a result, deep
learning methods have emerged as a promising approach to hyperspectral image (HSI)
classification, offering substantial advantages over traditional methods. Chen et al. [17]
utilized deep stacked autoencoders to extract spatial and spectral features from hyperspec-
tral images. This approach effectively captured contextual spatial information and spectral
information from HSIs, leading to a successful classification and good performance. To ad-
dress the distinct characteristics of hyperspectral image data cubes, Li et al. [18] employed a
3D convolutional neural network (3D-CNN) for hyperspectral image classification. Thomp-
son et al. used deep belief networks to extract features at a deep level for hyperspectral
image classification [19]. Zhong et al. [20] introduced a supervised spectral–spatial residual
network (SSRN) to iteratively acquire discriminative features from the abundant spectral
characteristics and spatial contexts of hyperspectral images (HSI). The goal was to extract
integrated spatial–spectral information and identify significant spectral–spatial features for
classification purposes.

The performance of conventional supervised deep learning methods is based on a
significant number of labeled samples for model training. Nevertheless, the exorbitant cost
of annotation leads to a severely restricted number of labeled samples for hyperspectral im-
ages as a whole. Therefore, using traditional deep learning models for hyperspectral image
classification with insufficient training samples can easily lead to overfitting and suboptimal
classification performance. To overcome this challenge, researchers have proposed various
approaches to tackle the issue of hyperspectral image classification in scenarios with limited
sample sizes. Some approaches [21,22] employ data augmentation to generate additional
training samples for deep learning models such as CNNs, thus expanding data size and
improving the model’s generalizability. Several semi-supervised approaches [23,24] involve
the combination of a limited number of labeled samples with unlabeled samples during
training. These methods leverage the information from unlabeled samples to obtain fea-
ture representations that are more robust and highly generalized. Transfer learning-based
approaches [25,26] employ a model that has been pre-trained on a large-scale dataset. The
weights of the pre-trained model serve as initialization parameters, which are subsequently
fine-tuned on a small sample dataset. By harnessing the feature extraction capabilities of
the pre-trained model, this approach effectively enhances the classification performance
using small-sample datasets.

Taking into account the challenges in hyperspectral image classification, the limited
availability of labeled training samples in hyperspectral images poses a significant con-
straint on the learning and feature extraction capacity of deep neural network models.
Furthermore, the high-dimensional characteristics of hyperspectral images present a chal-
lenge to models trained on a small number of annotated samples regarding the extraction of
an adequate set of features. As a consequence, the extraction of intrinsic deep-level features
from hyperspectral images becomes arduous, leading to a diminished classification accu-
racy in hyperspectral image classification tasks. Therefore, the construction of deep neural
network models for hyperspectral image classification in scenarios with limited training
samples poses a significant research challenge. We took into account that ResNet, through
residual blocks, enables inter-layer connections that reinforce feature reuse and alleviate the
vanishing gradient problem, and in DenseNet structures, each layer is directly connected
to all subsequent layers, allowing the extraction of deeper features, further mitigating the
vanishing gradient problem and effectively extracting deep features. Therefore, to more
effectively extract deep features from the spectral and spatial dimensions of hyperspectral
images under conditions of limited samples and to enhance the performance of hyperspec-
tral classification, this paper presents a meta-transfer framework for few-shot hyperspectral
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image classification based on a three-dimensional Residual Dense Connection Network
(ResDenseNet). The primary contributions of this paper are summarized as follows.

(1) The proposition of a meta-transfer few-shot learning classification (MFSC) method
aimed at surmounting the hurdle of scarce annotated samples: The method employs a
meta-learning training strategy to harmonize data from disparate class samples within a
unified feature space, facilitating the prediction of categories for unlabeled samples through
similarity between the support set and query set within this feature domain.

(2) The introduction of a novel hyperspectral image classification network, dubbed
ResDenseNet, designed to address the underutilization of spectral and spatial information
within hyperspectral images: This architecture synergizes the DenseNet (Densely Con-
nected Convolutional Networks) [27,28] and ResNet (Residual Network) [29] frameworks.
An enhanced spectral dense block is deployed for the assimilation of spatial–spectral
features, complemented by a three-dimensional residual block for the further extraction
of spatial and spectral attributes. Classification is achieved through a multilayer percep-
tron (MLP). The ResDenseNet architecture comprehensively mines deep features within
the proximal space of samples, extracting more discriminative attributes to bolster the
classification acumen of hyperspectral images.

The remainder of this study is structured as follows: Section 2 provides an overview
of the existing cross-domain few-shot hyperspectral classification algorithm for transfer
learning. In Section 3, we present the framework of our proposed MFSC approach, which
aims to tackle the issue of limited labeled samples in hyperspectral images. Section 4
presents the experimental results of our methods, along with our analysis. Finally, Section 5
concludes our work.

2. Related Work

In the context of transfer learning [30–32], a model is initially trained on a source
dataset, which comprises abundant annotated data from multiple classes known as source
classes. Subsequently, the model parameters and features are then adapted to the target
dataset with a limited number of labeled samples, where the classes are non-overlapping.
This process allows the model to be transferred and adjusted to handle the target dataset,
which contains only a small number of labeled samples. Koch et al. [32] proposed an early
technique known as Deep Convolutional Siamese Networks. This method performs feature
extraction on a pair of samples using the same network and employs the Euclidean distance
to measure similarity for classification. However, despite its simplicity and intuitiveness,
this approach often fails to achieve satisfactory results in complex scenarios. Based on
this, Vinyals et al. [33] introduced Matching Networks, which integrate bidirectional LSTM
networks with feature metric learning. By calculating the cosine distance between output
features, it captures the similarity between support set and query set images, thereby
achieving the classification objective. Nevertheless, this approach encounters difficulties
when dealing with intricate and irregular spatial structures. Although this method performs
well when the distribution of the source domain data is close to that of the target domain
data, existing transfer learning methods struggle to effectively generalize the model from
the source domain to the target domain when there is a significant difference in data
distributions. Therefore, research is conducted on cross-domain small-sample classification
techniques for situations where the source and target domain data distributions differ,
aiming to bolster the transfer learning model’s capacity for generalization.

To address the challenges posed by cross-task learning, researchers have proposed
a range of meta-learning techniques [34–39], which can be classified into two main cate-
gories: metric-based and optimization-based approaches. Metric-based methods focus on
acquiring a robust feature space by employing the Euclidean distance to gauge the likeness
between unlabeled samples and labeled samples of each class. Conversely, optimization-
based meta-learning strategies aim to train a universal model capable of swiftly converging
to an effective solution for new tasks through a limited number of gradient descent it-
erations. Nevertheless, when dealing with scant training samples, these methods are
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susceptible to overfitting, and their weight-update process tends to be relatively sluggish.
Consequently, there is a pressing need to enhance and refine these meta-learning techniques
to ensure their practicality and efficacy within the realm of few-shot learning.

On the other hand, given the high-dimensional characteristics of hyperspectral images,
combining more efficient hyperspectral feature extraction methods with small-sample
learning techniques has become a pivotal approach to tackle the challenge of limited anno-
tated samples in hyperspectral data. Liu et al. [39] introduced a Deep Few-shot Learning
(DFSL) method that explores the impact of various feature extraction methods on the metric
space for classification outcomes. However, this approach still faces limitations when
dealing with similarity issues within the metric space. Reference [40] proposes a novel and
compact framework based on the Transformer, called the Spectral Coordinate Transformer
(SCFormer), which employs two mask patterns (Random Mask and Sequential Mask)
in SCFormer-R and SCFormer-S, respectively, aiming to generate more distinguishable
spectral features using the existing spectral priors.

To tackle the challenges posed by the characteristics of high-dimensional data features
in hyperspectral images and the limited number of labeled training samples, which make
it difficult to thoroughly explore the deep-level features of hyperspectral images and
subsequently result in suboptimal classification accuracy, this paper proposes a novel
approach: the meta-transfer few-shot classification method. Furthermore, to enhance the
classification of hyperspectral images, a residual dense connection network is introduced.
On the one hand, this method facilitates the transfer of the transferable knowledge acquired
from a source domain dataset to the target domain with a limited number of samples. This
addresses the issue of restricted training samples that hinder the accuracy of classification
in deep learning models. On the other hand, by taking advantage of the capabilities of the
residual dense connection network, features are used more effectively, and the exchange of
features between convolutional layers is intensified, ultimately contributing to an overall
improvement in classification accuracy.

3. Proposed Meta-Transfer Hyperspectral Image Few-Shot Classification
3.1. Proposed MFSC Framework

The entire process flow diagram is shown in Figure 1. It comprises two main com-
ponents: the cross-domain few-shot learning strategy and the residual dense connection
feature extraction and classification network. Arrows indicate the flow of feature vectors
in the algorithm, with red arrows representing feature vectors originating from the target
domain, while black arrows represent feature vectors coming from the source domain.

The few-shot learning strategy, based on metric learning-based meta-transfer, lever-
ages the transferrable feature knowledge trained from the source domain dataset and
transfers this knowledge to the target domain with a small number of labeled samples.
These two types of small-sample learning are conducted simultaneously. Model weights
trained on the source domain dataset are used to initialize the weights of the feature extrac-
tion network. This is performed to enhance the hyperspectral image (HSI) classification
accuracy, addressing the issue of limited training samples that constrain the classification
accuracy in deep learning models.

By utilizing the mapping layer and the residual dense connection network, features
from the source domain and the target domain are mapped to a feature space. This ensures
that samples from the same class have a similar distribution in the feature space, while
samples from different classes are distributed as far apart as possible in the feature space.
The residual dense connection network allows for the more comprehensive extraction of
spatial–spectral features and enhances direct feature transfer between convolutional layers,
thus improving classification accuracy.
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3.2. Cross-Domain Few-Shot Learning and Training Strategy

The entire process flowchart for the few-shot learning is shown in Figure 2. Training
of the few-shot learning model consists of two stages. First, a set of data called source class
data are used to train the model, with this class having an abundant number of samples.
Then, training and testing are carried out on the target class data, where the classes do
not overlap and only a small number of labeled samples are available. These two stages
alternate until the model converges.
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From the original HSI datasets of the source and target classes, C classes are randomly
selected from each, with each class containing K labeled samples to create the source domain
support set Ss = {(xsi, ysi)}C×K

i=1 and the target domain support set St = {(xti, yti)}C×K
i=1 .

Then, N unlabeled samples are randomly selected from the remaining data in both the
source and target domains to create the source domain query set, Qs =

{
(xsj, ysj)

}C×N
j=1 ,

and the target domain query set, Qt =
{
(xtj, ytj)

}C×N
j=1 . This entire selection process is

referred to as a C-way K-shot task. Each time the support and query sets are selected for
model training, it constitutes an episode.

In each training episode, during the training cycle, the model is first trained on the
source domain dataset. The source domain support set, Ss = {(xsi, ysi)}C×K

i=1 , is fed into
the network to extract features, and the feature vectors, csk, for the k-th class in the support
set in the feature space are computed. The source domain query set samples, xsj, are then
passed through the feature network to extract embedded features, f φ(xsj). The Euclidean
distance, d

(
f φ

(
xsj

)
, csk

)
, between the feature vectors of the query set samples, xsj, and the

feature vector, csk, of the class to which the support set samples belong in the feature space
is calculated [41]. Subsequently, the probability that a query set sample, xsj, belongs to
class k in the support set is computed using the following the SoftMax function:

P
(
yj = k | xsj ∈ QS

)
=

exp
(
−d

(
f φ

(
xsj

)
, csk

))
∑C

k=1 exp
(
−d

(
f φ

(
xsj

)
, csk

)) (1)

In each episode, during the training process, f φ represents a mapping layer and a
spatial–spectral feature extraction network with learnable parameters denoted as φ, yj
represents the true class labels of the samples xsj, and C is the number of classes in each
episode. The training loss in each episode is calculated as the sum of the negative log
probabilities between all query set samples and their corresponding true class labels:

Ls =

− ∑
(xsj ,ysj)∈Qs

log pφ

(
ysj = k

∣∣xsj
) (2)

Then, the model continues training using the target domain data. The support set data,
St = {(xti, yti)}C×K

i=1 , from the target domain dataset are fed into the model trained on the
source domain data. This calculates the feature vector, ctk, for the k-th class in the feature

space. Similarly, the samples xtj from the target domain query set, Qt =
{
(xtj, ytj)

}C×N

j=1
,

are input into the feature extraction network, extracting embedded features, f φ(xtj), for the
query set samples. The Euclidean distance, d

(
f φ

(
xtj

)
, ctk

)
, between the query sample xtj

and the feature vectors of the samples belonging to class k in the feature space is computed.
The probability that the query sample xtj belongs to class k is calculated through the SoftMax
function. On this basis, the loss value for the query sample is also computed.

Lt =

− ∑
(xtj ,ytj)∈Qt

log pφ

(
ytj = k

∣∣xtj
) (3)

The data from the source domain and the target domain are randomly selected to
form a training dataset that includes support and query sets. The model is trained by
minimizing the loss function and optimizing the parameters of the model. This ensures that
the features f φ(xsj) and f φ(xti) of the query samples from the source domain and target
domain, respectively, are as close as possible to the corresponding support set features, csk
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and ctk, for that sample. The minimization of the loss function, J(φ), is calculated using
Equation (4).

J(φ) = −logP(yj = k|xj ∈ Qs) = d( f φ(xj), ck) + log∑C
k=1 e(−d( f φ(xj),ck)) (4)

After multiple rounds of training with multiple episodes and models, when the loss
function in the target domain meets the termination condition, the training is concluded.

3.3. Spatial–Spectral Feature Extraction Module Based on ResDenseNet Network

The proposed algorithm workflow is illustrated in Figure 1, which shows the MFSC
framework. It mainly consists of three parts: the mapping layer module, the ResDenseNet
feature extractor, and the multilayer perceptron module.

3.3.1. Mapping Layer Module

In the mapping module, first 9 × 9 × Sc data cubes, DS, are selected from the source
dataset as the network’s input, where 9 × 9 represents the spatial dimensions, and Sc
represents the number of spectral bands. For the target domain dataset, 9 × 9 × TC data
cubes, DT , are selected as input for network testing, where TC represents the number of
spectral bands. Mapping layers are used to reduce the dimensionality of the input samples,
ensuring that the input dimensions are the same. Due to the large number of spectral bands
in HSI and strong correlations between adjacent bands, mapping layers use a 1 × 1 × 100
convolutional kernel to reduce the number of spectral bands in both the source and target
domains, reducing the data to 100 dimensions for convenience in subsequent convolution
calculations. The final output of the mapping layer is a support feature vector or a query
set feature vector with a size of 9 × 9 × 100.

3.3.2. ResDenseNet Feature Extractor

The ResDenseNet feature extractor is used as the spatial–spectral feature extraction
network; it consists mainly of a DenseNet module and ResidualNet module. In order
to address the loss of feature information due to gradient vanishing, amplify feature
propagation, and extract feature vectors more effectively, the algorithm initially employs
DenseNet module for model training.

The spectral dense block consists of four sets of convolutional kernels, with each set
containing 8 filters of size 3× 3× 3. These are combined with Mish activation functions and
batch normalization (BN) to perform non-linear transformations on the feature maps. In
DenseNet, each layer is concatenated with all preceding layers along the channel dimension,
combining feature maps from all previous layers as input for the next layer to achieve
feature reuse and enhance efficiency:

DXl = DH([DX0, DX1, · · · DXl−1]) (5)

where DH(•) is a non-linear transformation function, which uses the structure of Con-
volution 3 × 3 × 3 (Conv), batch normalization (BN), Mish, and concatenation opera-
tions. The subscript l denotes the layer number. The ReLU function causes some neu-
rons to have an output of 0, resulting in network sparsity, and the Mish [42] function,
f (x) = xtanh(ln(1 + ex)), unlike the ReLU function, has a softer zero boundary and
smoother characteristics, allowing for a better flow of information into deep neural net-
works and better preservation of information, thus producing enhanced accuracy and
generalization. The output of the function is not affected by saturation, and positive val-
ues can reach arbitrarily high values, avoiding saturation due to a cap. Therefore, Mish
is used as the activation function in this paper. The output feature map from the last
layer of dense connection block undergoes average pooling, yielding a vector, DenseFV,
of dimensions 8 × 7 × 7 × 100. Subsequently, this vector is fed into the three-dimensional
ResidualNet module.
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In the ResidualNet module, there are four sets of non-linear transformation functions.
Each set of non-linear transformation functions includes 16 filters of size 3 × 3 × 3, batch
normalization (BN), and Mish activation. It employs a shortcut connection structure,
creating a skip connection between the input of the first layer and the output of the last
layer. This design allows the network to concentrate on learning the disparity between
input and output, streamlining the learning objectives and challenges. The output feature
map of the residual block is of size 16 × 7 × 7 × 100. After undergoing average pooling,
max pooling, and a set of 32 filters of size 3 × 3 × 3, the feature map is flattened to a
1 × 1 × 160 vector (ResidualFV). This vector is then processed through a fully connected
layer and a SoftMax activation function. Additionally, it undergoes a multilinear mapping
as input to the MLP. The number of nodes in the fully connected layer corresponds to the
number of classes in the dataset.

3.3.3. Multilayer Perceptron Module

The ultimately extracted feature vector from the multilinear mapping is fed into the
MLP for classification. This MLP consists of five fully connected layers, with the first four
layers each containing 1024 nodes. The final fully connected layer has only one node. ReLU
activation functions and dropout are incorporated between adjacent fully connected layers.
The ultimate output of the multilayer perceptron is employed to compute the loss value
following Formula (4), after which the classification process is executed.

Through training, the loss function of the spatial–spectral feature extraction network
model is minimized. This optimization of parameters in the residual dense connection
module allows it to extract features from the input sample data, mapping them into feature
space. In this space, the feature vectors of samples with the same class are closer to each
other, resulting in smaller interclass distances, while the feature vectors of samples from
different classes are farther apart, leading to larger interclass distances.

4. Experiments
4.1. Experimental Dataset

To validate the effectiveness of our approach, we utilized the hyperspectral Chikusei
dataset as the source domain dataset, and the Indian Pines, Pavia University, and Salinas
datasets [43,44] as the target domain datasets. The pseudo-color images and real land cover
maps of this experimental dataset are shown in Figures 3 and 4.
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The Chikusei dataset has a spectral wavelength range of 343–1080 nm, a spatial
resolution of approximately 2.5 m, and a data size of 2571 × 2335 pixels. It consists of
128 spectral bands and includes 77,592 ground pixels, categorized into 19 distinct land
cover classes.

The Indian Pines dataset covers a spectral wavelength range of 400–2500 nm, with a
spatial resolution of about 20 m. The image data size is 145 × 145 pixels and comprises
200 spectral bands. It encompasses a total of 16 land cover classes. The Salinas dataset has a
spectral wavelength range of 400–2500 nm and a spatial resolution of approximately 3.7 m.
The image size for this dataset is 512 × 217 pixels and includes 224 spectral bands. However,
due to the impact of water vapor absorption on certain bands, only 204 bands are retained.
This dataset covers 16 different categories of agricultural land cover, including, but not
limited to, corn, wheat, soybeans, grasslands, and vineyards. The Pavia University dataset’s
spectral wavelength range is 430–860 nm, with a spatial resolution of approximately 1.3 m.
After preprocessing, the dataset has a total of 115 spectral bands, with 13 noisy bands
removed. Land cover types in this region consist of nine classes, including asphalt roads,
meadows, gravel, trees, metals, bare land, asphalt roofs, bricks, and shadows.

4.2. Experimental Settings

To evaluate the effectiveness of the MFSC method, 9 × 9 × C data cubes were selected
as input for the network from the Chikusei source domain dataset, where 9 × 9 represents
the spatial dimensions, and C is the number of spectral bands. For the target domain
datasets, namely Indian Pines, Pavia University, and Salinas, 9 × 9 × L cubes were chosen
as the input for testing, where L is the number of spectral bands. The model was trained
for 10,000 episodes, and for each episode iteration, following the few-shot training method,
1 labeled sample and 19 unlabeled samples from each class were randomly selected to
form the source dataset for model training. The Adam optimizer was used, and to balance
convergence speed and accuracy, the model learning rate was set to 0.001. Furthermore,
to account for the impact of random sample selection on model training, all experimental



Sensors 2024, 24, 2664 10 of 18

results were averaged over 10 trials. The hardware environment used for this experiment
is a laptop equipped with an Intel Core i7-4810MQ 8-core 2.80 GHz processor, 16 GB of
memory, and an NVIDIA GeForce RTX 2060 graphics card with 6 GB RAM, while the
software environment utilized Python 3.8 and PyTorch 1.7.1 running on Windows 10.

4.3. Experimental Results and Analysis

To validate the effectiveness of the proposed method in the paper, it was compared
with non-few-shot learning methods and few-shot learning methods. In experiments com-
paring the proposed method with non-few-shot learning methods, the proposed method
was compared with SVM, 3D-CNN [45], and SSRN [46]. In experiments comparing the pro-
posed method with other few-shot learning methods, the proposed method was compared
with the DFSL + NN [37], DFSL + SVM [47,48], RN-FSL [49], Gai-CFSL [50], DPGN [51],
DCFSL [52], SCFormer-R, and SCFormer-S [41] methods. In each comparison experiment,
the same training approach as the few-shot methods was employed. Five labeled samples
from each class in the target domain dataset were randomly selected for transferring the
model trained in the source domain to the target domain, with the remaining target domain
samples used as test data. For the small-sample learning methods in comparison, we
randomly selected 200 labeled source domain samples from each class to learn transferable
knowledge, following the same setup for comparison. To verify the effectiveness of the
Mish function and batch normalization (BN) added to the model in the paper, a comparative
performance analysis was performed using the DCFSL method. In this comparison, the
Mish + BN part was removed, while keeping the rest of the network structure consistent,
serving as a set of ablation experiments. The results of the ablation experiments are pre-
sented in the “MFSC” row of the tables, where the activation function used is the Softmax
activation function, consistent with the DCFSL method. In contrast, the experimental data
in the “Ours” row were obtained under the MFSC algorithm framework, incorporating
Mish + BN and replacing the original Softmax activation function. For the IP, UP, and
Salinas datasets, the study compared the classification performance of different methods.
The evaluation was carried out using three metrics: overall accuracy (OA), average accuracy
(AA), and Kappa coefficient. Specific comparative results are shown in Tables 1–3.

Table 1. Comparison of the classification performance of different methods in Indian Pines datasets
at number of labeled samples K = 5.

Methods OA (%) AA (%) Kappa × 100

Non-few-shot
learning

SVM 45.85 59.24 39.68
3D-CNN 54.76 63.93 48.72

SSRN 61.36 59.75 56.91

Few-shot
learning

DFSL + NN 59.65 72.24 54.55
DFSL + SVM 61.69 73.05 56.78

RN-FSC 58.17 69.90 52.52
Gai-CFSL 63.77 74.98 59.20

DCFSL 66.81 77.89 62.64
SCFormer-R 65.01 74.65 60.20
SCFormer-S 64.95 75.59 60.31

MFSC 71.49 81.19 67.81
MFSC (Mish + BN) Ours 72.60 81.62 69.16

Tables 1–3 present the results of comparative experiments on the target datasets, IP, UP,
and Salinas, with each class having five labeled samples. From the tables, it can be observed
that the methods based on few-shot learning achieve higher overall accuracy compared to
non-few-shot methods. This indicates that the episodic training strategy is better suited for
classification tasks with limited labeled samples. In the IP dataset, the proposed few-shot
learning method shows significant improvements over the traditional SVM classification
method, with an increase of 25.64% in OA, 21.95% in AA, and a 28.13% increase in Kappa.
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In the IP, UP, and Salinas datasets, when compared to deep learning-based methods like
3D-CNN and SSRN, the proposed method achieves significant increases in OA when the
number of labeled samples is five, with improvements of 16.73%, 19.35% and 6.34% in IP;
and 10.13%, 8.83%, and 4.15% in UP and Salinas, respectively. This indicates that the meta-
learning training strategy allows the model to learn transferable knowledge and features
from the source-class data, thus aiding in predicting the target-class data. The relatively
low performance of the non-few-shot learning methods shown in Tables 1–3 illustrates that
non-small-sample learning methods extract shallow features with weaker discriminative
capabilities for different target categories. The limited labeled samples are insufficient for
non-small-sample learning methods to effectively train a classification model. However,
meta-learning training strategies enable the model to learn transferable knowledge and
features from the source-class data, aiding in predicting target-class data.

Table 2. Comparison of the classification performance of different methods in Pavia University
datasets at number of labeled samples K = 5.

Methods OA (%) AA (%) Kappa × 100

Non-few-shot
learning

SVM 64.12 68.18 55.59
3D-CNN 65.74 73.72 57.37

SSRN 76.26 79.51 70.56

Few-shot
learning

DFSL + NN 77.75 72.24 54.55
DFSL + SVM 79.63 76.41 73.05

RN-FSC 80.18 77.12 73.73
Gai-CFSL 83.12 82.35 77.96

DCFSL 83.65 83.77 78.70
SCFormer-R 82.31 82.25 76.55
SCFormer-S 83.83 82.47 78.47

MFSC 85.09 86.69 80.78
MFSC (Mish + BN) Ours 86.02 88.21 81.93

Table 3. Comparison of the classification performance of different methods in Salinas datasets at
number of labeled samples K = 5.

Methods OA (%) AA (%) Kappa × 100

Non-few-shot
learning

SVM 80.71 87.58 78.61
3D-CNN 84.20 89.56 82.46

SSRN 86.39 93.24 84.95

Few-shot learning

DFSL + NN 87.05 91.01 85.63
DFSL + SVM 86.95 90.08 85.51

RN-FSC 84.11 88.83 82.38
Gai-CFSL 87.83 92.41 86.48

DCFSL 89.34 94.04 88.17
SCFormer-R 89.30 93.89 88.10
SCFormer-S 88.82 94.13 87.57

MFSC 90.54 94.49 89.47
MFSC (Mish + BN) Ours 90.97 95.36 89.98

In the few-shot classification methods, the method proposed in this paper also demon-
strates significant improvements in detection accuracy compared to other methods. On
the IP, UP, and Salinas datasets, when compared to the DFSL + NN, DFSL + SVM, RN-FSL,
Gai-CFSL, DCFSL, SCFormer-R, and SCFormer-S methods, the proposed method achieves
improvements in OA of 12.95%, 10.91%, 14.43%, 8.83%, 5.79%, 7.59%, and 7.65% on IP;
8.27%, 6.39%, 5.84%, 2.9%, 2.37%, 3.71%, and 2.19% on UP; and 3.92%, 4.02%, 6.86%, 3.14%,
1.63% 1.67%, and 2.15% on Salinas, respectively, when there are few labeled samples in
the target domain. With the presence of a small number of labeled samples in the target
domain, the method proposed in this article utilizes the ResDenseNet network to reduce
data distribution differences and learn more discriminative feature spaces. Compared to
other methods, this approach can obtain a better feature space, which can improve the
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classification performance of the target domain samples. The classification results on the IP,
UP, and Salinas datasets show that the proposed method achieves average accuracy (OA)
of 72.60%, 86.02%, and 90.97%, respectively. This strongly confirms the effectiveness and
robustness of the ResDenseNet model in the few-shot high-dimensional spectral data classi-
fication task. Additionally, the incorporation of the Mish function and batch normalization
(BN) not only effectively mitigates the vanishing gradient problem but also enhances the
model’s generalization capabilities. Furthermore, compared to the ReLU function, the Mish
function is smoother, leading to an improvement in training stability and average accuracy.

Tables 4–6 report the detailed classification results of different classification algorithms
on the UP, IP, and Salinas datasets, respectively. The last columns of the tables present
the classification accuracy and standard deviation for each class in the dataset based on
multiple experiments. It can be observed from Table 4 that, compared to other algorithms,
the proposed method achieved the highest recognition rates in three of nine categories. It
also performed well in accurately classifying the “Bricks”, “Bitumen”, “Metal sheets”, and
“Trees” categories, which were challenging for other methods. The proposed method shows
a certain gap from the optimal results among the three categories, including “Gravel”,
“Meadows”, and “Asphalt” in the UP dataset, when compared to the methods of contrast.
The UP dataset has the highest spatial resolution among the three datasets, but it has
the lowest spectral resolution. The data for the three categories are the most prone to
generating spectrally similar but different substances. The data in Tables 5 and 6 illustrate
that, compared to other algorithms, the method proposed in the paper achieved the highest
recognition rates in 11 out of 16 categories and 10 out of 16 categories, respectively. It
significantly improved the classification accuracy for categories like “Grapes_untrained”,
“Vinyard_untrained”, and “Soil_vinyard_develop” in the Salines dataset, where other
methods had relatively lower accuracy. Furthermore, compared to other methods, the
proposed method also substantially increased the classification accuracy of categories like
“Grass-pasture”, “Corn”, “Corn-mintill”, “Corn-notill”, and "Woods” in the IP dataset.

Table 4. Class-specific classification accuracy (%) of different methods for the target-scene UP datasets
(five labeled samples from TD).

Class SVM 3DCNN SSRN DFSL + NN Gai-CFSL RN-FSC DCFSL SCFormer-R SCFormer-S Ours

Shadow 99.13 35.57 98.08 96.92 79.62 99.19 98.66 99.08 95.46 98.52 ± 0.32
Bricks 68.17 57.27 85.34 58.13 88.59 63.48 66.73 74.21 78.15 89.22 ± 0.64

Bitumen 40.62 87.64 60.07 70.62 62.06 70.04 81.18 86.97 81.55 87.28 ± 1.47
Bare soil 37.12 63.40 53.56 71.23 90.66 57.99 77.32 57.50 62.96 87.14 ± 2.45

Metal Sheet 95.44 90.77 98.34 100 98.54 99.43 99.49 98.90 99.01 100 ± 0.0
Trees 60.22 77.31 78.02 89.99 74.65 92.15 93.45 86.54 80.92 94.53 ± 1.59

Gravel 39.98 68.91 55.23 57.47 77.74 49.81 67.46 69.26 71.32 66.19 ± 0.24
Meadows 83.91 63.05 95.13 84.63 71.49 93.44 87.74 90.92 92.04 84.54 ± 1.13
Asphalt 88.98 59.82 91.84 69.19 97.77 68.55 82.20 76.92 80.78 89.42 ± 2.78

Table 5. Class-specific classification accuracy (%) of different methods for the Salinas target scene
datasets (five labeled samples from TD).

Class SVM Res-3D-
CNN

SS-
CNN

Gai-
CFSL DPGN RN-FSC DCFSL SCFormer-R SCFormer-S Ours

Brocoli_green_weeds_1 85.60 39.47 93.02 99.59 87.72 96.45 99.55 98.96 98.22 99.91 ± 0.20
Brocoli_green_weeds_2 98.54 74.02 93.51 98.81 99.49 99.15 99.71 99.87 99.95 99.92 ± 0.14

Fallow 65.38 49.33 84.31 90.18 79.76 85.85 93.68 93.54 98.62 98.55 ± 1.23
Fallow_rough_plow 95.82 88.71 86.43 98.23 98.34 98.49 99.45 98.69 96.26 99.89 ± 0.06

Fallow_smooth 95.83 77.50 90.91 86.75 80.13 82.67 90.39 92.86 96.67 93.48 ± 1.39
Stubble 99.92 97.52 99.55 99.21 99.92 97.29 99.27 99.91 99.95 99.47 ± 0.60
Celery 95.29 61.53 97.54 98.58 99.86 99.39 99.04 98.64 99.11 99.94 ± 0.04

Grapes_untrained 57.00 68.93 73.52 74.23 50.84 71.59 72.61 76.63 72.00 78.77 ± 2.28
Soil_vinyard_develop 90.64 92.83 93.81 97.74 89.03 88.16 99.74 99.58 99.56 99.99 ± 0.01

Corn_sensced_green_weeds 85.87 69.33 77.21 80.54 81.24 69.72 84.51 81.52 86.72 84.10 ± 2.31
Lettuce_romaince_4wk 38.32 59.07 42.37 96.43 89.46 89.29 98.17 97.84 96.59 99.15 ± 0.71
Lettuce_romaince_5wk 87.56 70.59 95.85 99.13 99.17 94.03 99.04 99.56 99.65 99.97 ± 0.04
Lettuce_romaince_6wk 88.66 75.38 99.23 98.61 99.56 99.45 98.97 99.64 99.42 99.12 ± 0.69
Lettuce_romaince_7wk 87.87 89.12 92.98 97.95 98.87 96.58 97.77 98.40 98.19 99.04 ± 0.73

Vinyard_untrained 33.18 47.62 50.37 73.85 59.75 69.30 74.12 73.90 72.65 80.40 ± 4.08
Vinyard_vertical_trellis 81.64 88.90 80.54 88.75 77.69 81.86 90.62 91.34 92.52 87.26 ± 4.4
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Table 6. Class-specific classification accuracy (%) of different methods for the Indian Pines datasets
from the target scene (five TD labeled samples).

Class SVM 3D-CNN DFSL Gai-CFSL DPGN RN-FSC DCFSL SCFormer-R SCFormer-S Ours

Alfalfa 41.30 92.68 97.44 91.60 95.12 96.65 95.61 87.80 93.41 100.00 ± 0.0
Corn-notill 42.86 38.44 38.34 50.46 47.15 45.95 50.44 46.13 50.25 55.02 ± 5.06

Corn-mintill 39.04 44.85 43.35 44.88 27.03 41.25 48.42 45.68 51.84 66.91 ± 4.99
Corn 59.49 36.64 68.45 81.61 56.47 59.06 79.57 64.01 61.77 97.24 ± 2.16

Grass-pasture 59.63 71.13 70.21 70.76 39.75 65.90 73.89 73.87 77.85 84.77 ± 2.57
Grass-Tree 84.79 72.69 76.38 84.25 61.38 69.51 88.26 87.54 90.41 84.50 ± 8.58

Grass-pasture-moved 92.86 100 99.77 97.10 100 99.65 99.57 96.96 99.13 99.13 ± 1.74
Hay-windrowed 90.79 83.93 75.67 91.12 92.39 76.91 88.44 86.15 90 78.73 ± 3.46

Oats 90.00 33.33 99.00 99.26 100 100 100 98.67 98 100.00 ± 0.0
Soybean-notill 34.57 64.84 47.90 62.68 57.91 26.05 61.71 58.42 56.06 72.37 ± 1.47

Soybean-mintill 0.00 58.04 57.80 66.54 41.18 65.36 57.82 64.48 57.87 66.47 ± 4.85
Soybean-clean 15.01 23.64 38.13 42.06 47.96 26.31 40.34 34.46 34.97 45.99 ± 6.59

Wheat 89.76 91.00 98.04 97.11 89.00 99.28 99.25 98.20 95.60 100.00 ± 0.0
Woods 90.91 53..97 83.08 87.10 78.65 75.66 87.26 85.35 86.90 97.17 ± 0.56

Building_Grass-Trees_drives 17.36 56.96 62.86 68.74 46.72 69.90 68.71 66.85 65.62 67.19 ± 7.36
Stone-Stell_Towers 86.02 100 99.94 97.47 98.86 99.88 98.52 99.89 99.77 100.00 ± 0.0

Figures 5–7 display the classification results of the proposed method and compara-
tive methods using the IP, UP, and Salinas datasets. It can be seen from the figures that
the method proposed in this paper exhibits fewer misclassifications. On the contrary,
the SVM-based method shows more misclassified objects. Compared to the SVM-based
method, the 3D-CNN and SSRN methods have fewer misclassifications, mainly due to the
stronger representation learning capabilities of deep learning methods. However, deep
learning methods require a large number of training samples, and when the number of
training samples is reduced, these methods experience a significant decrease in classifica-
tion accuracy. This indicates that, when labeled samples are limited, the extracted features
are not effective enough, leading to lower accuracy when classifying objects with similar
spectral characteristics. In the case of few-shot data, using a few-shot learning approach to
construct ResDenseNet significantly improves the classification accuracy compared to the
SVM method and deep learning methods like 3D-CNN and SSRN.
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In complex scenes, objects within a specific area are rarely composed of just one type
of material. Typically, there are varying amounts of other material categories present,
leading to spectral noise from other categories within the spectral characteristics of the
primary material. Additionally, at the boundaries between two different land cover types,
there inevitably exists interference from neighboring land cover categories’ spectral feature
vectors. This makes it difficult to accurately extract both the spatial and spectral information
of land cover, resulting in subtle differences between different types of land cover. In
addition, it can lead to significant distinctions between the same types of land cover,
causing the misclassification of certain land cover areas at the boundaries. In the case
of few-shot data, while methods like DFSL + NN, DFSL + SVM, and RN-FSC consider
the scarcity of labeled samples in hyperspectral imagery, their performance in accurately
classifying challenging classes still lags behind the method proposed in this paper.

From the experimental results shown in the figures, it can be observed that when land
cover features are relatively easy to distinguish and the feature vectors are distinct, the
classification method employed in this paper, as well as other few-shot learning methods,
can achieve good classification results. For example, in Figure 5, for the IP dataset, classes
like “Oats” and “Grass-Trees”; in Figure 6, for the UP dataset, classes like “Asphalt”
and “Shadow”; and in Figure 7, for the Salinas dataset, classes like “Celery”, “Stubble”,
“Fallow_smooth”, “Lettuce_romaince_5wk”, and “Brocoil_green_weeds_1” have feature
vectors in the feature space that are relatively easy to differentiate. In situations with only
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a small number of labeled samples, traditional machine learning methods, such as SVM,
and general few-shot learning methods can also achieve good classification results. On the
contrary, deep learning methods that require a large number of training samples are prone
to overfitting, leading to a lower classification accuracy.
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For land cover categories with similar features and small feature vector distances that
tend to produce errors in classification, such as “Meadows” and “Alfalfa” in the UP dataset;
“Vinyard_untrained”, “Vinyard_vertical_trellis”, and “Corn_senesced_green_weeds” in
the Salinas dataset; and “Stone-Steel-Tower”, “Hay-windrowed”, “Woods”, and “Soybean-
mintill” in the IP dataset, the classification results rely more on the effective extraction of
land cover features. From the classification results, it can be seen that the method proposed
in this paper achieves a relatively good classification accuracy for such categories. MFSC
follows, and DCFSL has fewer misclassifications compared to SVM, 3D-CNN, and SSRN.
This indicates, on the one hand, that meta-learning training strategies are advantageous for
enhanced knowledge transfer and improved classification performance. On the other hand,
it also demonstrates that the residual dense connection network designed in this paper can
reduce data distribution differences, leading to a better feature space with higher interclass
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discriminability. Under small-sample training conditions, the training data’s effectiveness
and robustness are superior to those of other methods. Furthermore, the method proposed
in this paper has fewer misclassification points than DCFSL, indicating that this network
model has good generalizability, can extract deeper and more discriminative features, and
can achieve better classification results for classes that are difficult to accurately classify.

5. Conclusions

To address the contradiction between the limited number of training samples in HSI
(hyperspectral imaging) and the need for a large number of annotated samples for effective
deep learning, as well as the trade-off between a small number of labeled samples and
the extraction of more effective feature vectors, this paper proposes a hyperspectral image
classification method based on the residual dense connection network in the metric learning
framework. The main contributions are as follows:

Improved ResDenseNet Network: In comparison to traditional residual networks,
this paper introduces a dense connection structure in the three-dimensional convolutional
block of the improved ResDenseNet network. This structure can fully explore deep features
in the spatial neighborhood of samples, effectively extract spatial and spectral features,
and complement the original spectral features. It can obtain more representative features,
contributing to hyperspectral images classification.

Activation function and batch normalization: Building on the original network, the
ReLU activation function is replaced with the Mish function, and batch normalization
(BN) is introduced. This not only effectively alleviates the problem of gradient vanishing;
it also enhances the model’s generalization ability. Additionally, compared to the ReLU
function, the Mish function is smoother, leading to improvement in training stability and
average accuracy.

The experimental results demonstrate that the proposed method, when compared to
classical hyperspectral image classification methods and other classic few-shot learning
methods, exhibits strong generalization capabilities in deep network models on three
datasets: IP, UP, and Salinas. When only a limited number of labeled samples are available,
the proposed method achieves a higher recognition accuracy than the algorithms used
in the control experiments. Our future work will focus on accurately identifying ground
objects in the presence of mixed substances, investigating Transformer learning strategies
that can more effectively mine the spatial–spectral features of hyperspectral images, thereby
enhancing the classification accuracy of complex ground objects.
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