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Abstract: Human activity recognition (HAR) technology enables continuous behavior monitoring,
which is particularly valuable in healthcare. This study investigates the viability of using an ear-worn
motion sensor for classifying daily activities, including lying, sitting/standing, walking, ascending
stairs, descending stairs, and running. Fifty healthy participants (between 20 and 47 years old)
engaged in these activities while under monitoring. Various machine learning algorithms, ranging
from interpretable shallow models to state-of-the-art deep learning approaches designed for HAR
(i.e., DeepConvLSTM and ConvTransformer), were employed for classification. The results demonstrate
the ear sensor’s efficacy, with deep learning models achieving a 98% accuracy rate of classification.
The obtained classification models are agnostic regarding which ear the sensor is worn and robust
against moderate variations in sensor orientation (e.g., due to differences in auricle anatomy), meaning
no initial calibration of the sensor orientation is required. The study underscores the ear’s efficacy
as a suitable site for monitoring human daily activity and suggests its potential for combining
HAR with in-ear vital sign monitoring. This approach offers a practical method for comprehensive
health monitoring by integrating sensors in a single anatomical location. This integration facilitates
individualized health assessments, with potential applications in tele-monitoring, personalized health
insights, and optimizing athletic training regimes.

Keywords: human activity recognition; inertial sensor; ear; in-ear sensing; vital sign monitoring;
wearables; machine learning; deep learning

1. Introduction

Human activity recognition (HAR) has emerged as a transformative technology en-
abling the continuous monitoring of both static and dynamic behaviors in diverse environ-
mental conditions [1]. Its applications extend across industries, sports, and healthcare [2].
With respect to the healthcare sector, continuous HAR monitoring presents an opportunity
to obtain ecologically valid information about a patient’s condition in everyday environ-
ments and facilitates the registration of rare and fluctuating events that are often missed
in stationary short-term clinical assessments [3]. This technology holds significant poten-
tial for identifying diseases in their pre-clinical stages, monitoring disease progression or
evaluating the effects of interventions, and detecting critical events such as falls [4–9].

The technical landscape of HAR in healthcare applications predominantly relies on
wearable motion sensors, primarily accelerometers, often augmented with gyroscopes
or magnetometers. The small size and low energy consumption of these sensors allow
them to be placed either directly on different body parts or to be integrated into wearable
devices (e.g., smartwatches). The placement location on the body is strategically chosen
so that the motion profile captured by the sensor can identify and distinguish various
forms of activities as effectively as possible. Common choices for mounting include the
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lower back [10], thighs [8,11], feet (often integrated into shoes) [12], and wrist (often
integrated into smartwatches or fitness trackers) [13], balancing unobtrusiveness and
seamless integration into daily life.

In this study, we explore an alternative approach by utilizing an ear-worn sensor
for HAR [14,15]. The ear, in contrast to the lower extremities or the trunk, has several
unique advantages for connecting an HAR device. The head, housing crucial sensory
peripheries for vision, audition, and balance, remains exceptionally stable during various
movements [16,17], providing a reliable locus for low-noise identification and differen-
tiation of different bodily activities. Additionally, the ear is a location where users in
particular in the elderly population often already employ assistive devices like hearing aids
or eyeglass frames that could be readily combined with a miniature motion sensor [18].
Finally, beyond motion, the ear is an ideal location for monitoring a person’s physical
and health status, as optical in-ear sensors can reliably capture vital signs such as heart
rate, blood pressure, body temperature, and oxygen saturation [19]. Therefore, the ear
stands out as a promising candidate site for wearing a single integrative sensing device,
facilitating comprehensive continuous monitoring of a person’s activity and health status
in everyday life.

The primary objective of this study was to investigate the potential of an ear-worn
motion sensor, integrated into an in-ear vital sign monitor, to classify various human
activities. In a large group of healthy individuals, daily activities such as lying, sitting,
standing, walking, running, and stair walking were recorded and labeled in a free-living
environment. To achieve a classification of these activities, we employed machine learning
algorithms, adopting a two-fold strategy: shallow machine learning models utilizing
interpretable features or parametrizations of movement (e.g., movement amplitude and
variance) and state-of-the-art deep learning algorithms specifically designed for HAR. This
dual-pronged approach aims to explore the interpretability of features and the robust
classification capabilities offered by deep learning in the context of inertial-sensor-based
HAR. Through these contributions, we aim to provide insights into the potential of ear-worn
sensors for enhancing healthcare monitoring and disease management.

2. Materials and Methods
2.1. Participants

Fifty healthy individuals, between 20 and 47 years old (age: 29.4 ± 6.5 years; height:
1.73 ± 0.10 m; weight: 70.8 ± 15.8 kg; 25 females), participated in the study. All participants
signed written informed consent prior to inclusion and were screened for any neurological
or orthopedic conditions that would influence either balance or locomotion.

2.2. Ear-Worn Motion Sensor

The motion sensor consisted of a triaxial accelerometer (range: ±16 g; accuracy:
0.0002 g; sampling rate: 100 Hz), which is integrated into a commercial, wearable in-ear vi-
tal sign monitor (c-med◦ alpha, size: 55.2 mm × 58.6 mm × 10.0 mm; weight: 7 g, Cosinuss
GmbH, Munich, Germany). The vital sign monitor consists of a silicon earplug that is in
contact with the outer ear canal skin and contains an infrared thermometer for recording
body temperature and an optical sensor for measuring pulse rate and blood oxygen satura-
tion. The earplug is connected to an earpiece hooked around the ear conch, in which the
motion sensor is located (Figure 1A). The wearable device transmits acquired motion and
vital signals in real time via Bluetooth Low Energy to a gateway that subsequently streams
this information into the cosinuss◦ Health server. The server platform can be accessed via a
smartphone application to monitor the acquired signals in real time and to add real-time
annotations (activity labels) to the recording (see ground truth annotation in Section 2.3
Experimental procedures).
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Figure 1. Sensor specification and distribution of activity classes. (A) The in-ear wearable vital sign 
monitor: optical sensors are located on the sensor earplug that goes into the outer ear canal, while 
the triaxial accelerometer is located in the processing unit behind the auricle. (B) Low-dimensional 
embedding of the 6 activity classes (lying, standing/sitting, walking, ascending stairs, descending 
stairs, running) via UMAP. Abbreviations: AP: anterior–posterior axis; ML: medio-lateral axis, IF: 
inferior–superior axis; UMAP: Uniform Manifold Approximation and Projection. 

2.3. Experimental Procedures 
The experiments were conducted in the university research building and outdoors 

(urban environment). Initially, each participant was briefed on the experimental proce-
dures. Subsequently, two ear-worn sensors were attached to the left and right ears with 
the aim of training and obtaining an algorithm for activity classification that works inde-
pendently of the attachment side. 

The focus of activity classification was on so-called low-level activities, characterized 
by a sequence of body movements and postures, typically lasting a few seconds to several 
minutes [20]. The recorded activity forms included lying, sitting, standing, walking, as-
cending or descending stairs, and running (Figure 1B). To make the activity classification 
robust for everyday variations, participants were encouraged to perform them as 

Figure 1. Sensor specification and distribution of activity classes. (A) The in-ear wearable vital sign
monitor: optical sensors are located on the sensor earplug that goes into the outer ear canal, while
the triaxial accelerometer is located in the processing unit behind the auricle. (B) Low-dimensional
embedding of the 6 activity classes (lying, standing/sitting, walking, ascending stairs, descending
stairs, running) via UMAP. Abbreviations: AP: anterior–posterior axis; ML: medio-lateral axis,
IF: inferior–superior axis; UMAP: Uniform Manifold Approximation and Projection.

2.3. Experimental Procedures

The experiments were conducted in the university research building and outdoors
(urban environment). Initially, each participant was briefed on the experimental procedures.
Subsequently, two ear-worn sensors were attached to the left and right ears with the aim of
training and obtaining an algorithm for activity classification that works independently of
the attachment side.

The focus of activity classification was on so-called low-level activities, characterized
by a sequence of body movements and postures, typically lasting a few seconds to several
minutes [20]. The recorded activity forms included lying, sitting, standing, walking, ascend-
ing or descending stairs, and running (Figure 1B). To make the activity classification robust
for everyday variations, participants were encouraged to perform them as naturally as pos-
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sible. For example, lying also included turning or restlessly lying in bed, standing involved
tapping in place or chatting, and walking was performed at varying slow, comfortable or
fast speeds. The activities lying and stair climbing were exclusively recorded indoors, while
the other activities were recorded both indoors and outdoors. Each participant performed
all activities multiple times in a pseudorandomized order. The average recording duration
was approximately 30 min per participant.

An experimenter accompanied the participant throughout the entire experiment and
instructed them on when to end one activity and start a new one. The experimenter
simultaneously performed ground truth annotation (activity type) by annotating the real-
time sensor time series with the respective activity label via a smartphone application.
The activity label was assigned for the period shortly after the onset of the activity until
its termination. Transitions between activities or brief interruptions in the experimental
procedure did not receive a label.

In preliminary analyses, it was observed that the activity classes of sitting and standing
were fundamentally indistinguishable, which is expected, as the head behaves in the same
orientation during both activities. Therefore, the two classes were combined for further
investigations resulting in a total of six activity classes: lying, sitting/standing, walking,
ascending stairs, descending stairs, and running.

2.4. Classification Models
2.4.1. Data Segmentation

The acquired three-dimensional motion time series (anterior–posterior dimension:
AP; superior–inferior dimension: SI; medio-lateral dimension: ML) were segmented by
using the sliding window technique employing various sizes of non-overlapping windows
(i.e., 0.5, 1, 2 s) to determine an optimal configuration. These sizes correspond to the
commonly used window sizes in HAR applications, reflecting the average duration of basic
everyday activities [21,22]. Only recording sequences with an activity label were used,
and simultaneously, it was ensured that each recording segment contained only a unique
activity label.

2.4.2. Shallow Learning Models

After segmentation, a set of statistical features established for time series analysis of
physiological signals and previously applied in HAR were computed per segment [23–26].
These included the mean, mean of sum of absolute values, minimum, maximum, range,
sum, standard deviation, variance, root-mean-square, interquartile range, zero-crossing
rate, skewness, kurtosis, signal energy, and spectral entropy that were computed per
motion axis as well as for the acceleration magnitude vector (accAP, accSI , accML, accmagn).
In addition, the Pearson and Kendall correlation coefficients were computed for every
combination between motion axes, resulting in a total number of 64 features.

For pre-evaluation, a set of eight standard machine learning models were trained,
including K-Nearest Neighbors, Decision Tree, Support Vector Machine, Naive Bayes, Bagging,
Random Forest, ExtraTrees, and Gradient Boosting. Input features were first normalized by
applying a transformation to zero-mean and unit-variance distribution, and subsequently,
each model was trained using a stratified 10-fold cross-validation that ensured that data
from one participant were only represented in either the training or testing set. From
the set of all model and sliding window combinations tested, the model with the highest
accuracy was selected for further hyperparameter optimization using grid search with
cross-validation. Finally, feature selection on the optimized classifier was performed using
univariate statistical comparisons (i.e., ANOVA F-value between features) to identify a par-
simonious set of the most informative features that still ensure high classification accuracy.

2.4.3. Deep Learning Models

Besides shallow learning models, which use pre-engineered motion features, the
performance of deep learning models that automate feature extraction from raw sensor



Sensors 2024, 24, 2665 5 of 11

inputs was evaluated. Two deep learning models specifically designed for the task of
HAR on wearable motion signals were considered. The DeepConvLSTM architecture com-
bines a convolutional neural network with a long short-term memory recurrent network
(LSTM) and has been widely applied in the past [27]. The model employs a series of
convolutional layers that learn to extract essential features from the raw motion time series
followed by LSTM layers that model their temporal dependencies. The ConvTransformer
based on a combination of a convolutional neural network with a transformer model is a
more recent model that achieves state-of-the-art performance on many publicly available
datasets [28]. The model initially utilizes a convolutional layer to model the local infor-
mation of the motion time series and then uses a transformer to represent the temporal
information of the modeled signal features and adds an attention mechanism to determine
the essential features.

The two deep learning models were trained for the same window sizes as described
above. Initially, raw motion sensor data were normalized by applying a transformation
to zero-mean and unit-variance distribution, and subsequently, each model was trained
using a stratified 10-fold cross-validation that ensured that data from one participant were
only represented in either the training or testing set. Both models are trained to reduce
categorical cross-entropy loss using the Adam optimizer.

2.4.4. Performance Metrics and Implementation

The performance of the different studied shallow and deep learning models was
evaluated based on the number of correctly recognized activities (true positives; TPs), the
number of incorrectly recognized activities (false positives; FPs), the number of correctly
rejected activities (true negative; TNs), and the number of incorrectly rejected activities
(false negative; FNs). Based on these numbers, model performance war primarily evaluated
by the weighted F1-Score, which considers both precision and recall while considering
imbalances in class distribution. It calculates the harmonic mean of precision and recall
and ranges between 1 and 0 reflecting the best and worst performance, respectively:

precision =
TP

TP + FP
,

recall =
TP

TP + FN
,

F1 =
2 ∗ precision ∗ recall

precision + recall
,

All analyses and models were implemented in Python 3.9 using scikit-learn 1.3 and
the Keras API 2.10 with TensorFlow backend.

3. Results
3.1. Dataset Characteristics

A total of 50.8 h (left ear-worn sensors: 27.0 h; right ear-worn sensors: 23.8 h) of activity
was recorded from the 50 participants. In six participants, sensor data were only available
from one ear-worn device due to transmission or battery issues occurring during recording.
The distribution of recorded activity classes and the corresponding duration statistics for
single periods of activity are shown in Table 1. Recorded activities had a varying duration
between 3 and 200 s. The final dataset reveals a certain imbalance between the measured
activity classes, with walking dominating at 31% of all cases, and descending stairs being
the least represented at only 6% of the cases. To address this imbalance between activity
classes in the subsequent analyses, each classification model was trained using a stratified
cross-validation, and the model performance was evaluated based on the weighted F1-score,
which considers imbalances between the classes.
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Table 1. Distribution of recorded activities and corresponding duration statistics of single activity periods.

Activity Percentage Mean (s) Std (s) Min (s) Max (s)

lying 12.8 62.0 10.5 30.0 100.4
sitting/standing 29.0 25.8 14.1 3.0 78.2
walking 30.6 66.7 28.2 12 199.1
ascending stairs 7.1 8.6 1.1 4.9 12.4
descending stairs 6.3 7.7 1.8 4.3 33.2
running 14.2 32.4 9.5 9.9 84.4

3.2. Shallow Learning Models

Table 2 shows the results of the pre-evaluation for various window sizes used for data
segmentation and different shallow machine learning models. All models achieved better
classification rates for longer window sizes. Across all examined window sizes, Support
Vector Machine was leading in classification, achieving the best accuracy of 93% with a
window size of 2 s.

Table 2. Pre-evaluation of different shallow learning models on varying window sizes used for data
segmentation. The best configuration (classifier and window size) is underlined.

Classifier Win Size 0.5 s 1 s 2 s

K-Nearest Neighbors 0.890 0.892 0.889
Decision Tree 0.868 0.882 0.879
Support Vector Machine 0.924 0.929 0.930
Naive Bayes 0.861 0.867 0.870
Bagging 0.903 0.910 0.910
Random Forest 0.911 0.918 0.917
ExtraTrees 0.906 0.911 0.911
Gradient Boosting 0.921 0.925 0.925

Hyperparameter optimization of this classifier performed using grid search with
cross-validation yielded a gamma value of 0.0001 and a regularization parameter of C of
10,000. Table 3 presents the classification report of this optimized model with an average
classification accuracy of 95%. It almost perfectly identified and differentiated between
the activities lying, sitting/standing, and running but still showed some difficulties in
distinguishing between the activities walking and ascending and descending stairs.

Table 3. Classification report of the optimized (grid search cross-validation) best-performing configu-
ration, i.e., Support Vector Machine with a window size of 2 s.

Activity Precision Recall F1-Score Support

lying 0.987 0.997 0.992 8095
sitting/standing 0.984 0.997 0.990 16,410
walking 0.939 0.936 0.937 19,288
ascending stairs 0.700 0.690 0.695 2549
descending stairs 0.802 0.828 0.815 2001
running 0.995 0.965 0.979 8367

accuracy 0.951 56,710
macro avg 0.901 0.902 0.901 56,710
weighted avg 0.951 0.951 0.951 56,710

In a final step, a feature selection was performed to obtain a parsimonious model
with a concise number of parameters without significantly compromising classification
accuracy. This procedure revealed that a model based on ten signal features was sufficient
to yield a classification accuracy above 91% (Table 4). The top-ranked features reflected
basic time-domain characteristics (e.g., variance, range, minimum) of the up and down
head acceleration and the acceleration magnitude vector (accSI and accmagn).
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Table 4. Outcomes from feature selection performed on the optimized best-performing configuration.

(1) min accSI (2) min accmagn (3) min accmagn
(5) std accSI (6) std accmagn (7) iqr accSI
(9) range accSI (10) range accmagn

min: minimum; var: variance; std: standard deviation; iqr: interquartile range.

3.3. Deep Learning Models

Both examined deep learning models showed an overall improved classification
compared to the optimized best-performing shallow learning model. The increase in
classification accuracy ranged between 2 and 3%. The more recent model, ConvTransformer,
did not show any advantage over the DeepConvLSTM network. Table 5 displays the
classification performance of both networks for various window sizes.

Table 5. Pre-evaluation of different deep learning models on varying window sizes used for data
segmentation. The best configuration (classifier and window size) is underlined.

Classifier Win Size 0.5 s 1 s 2 s

DeepConvLSTM 0.964 0.975 0.981
ConvTransformer 0.966 0.978 0.977

Table 6 presents the classification report for the best configuration yielding an average
classification accuracy of 98% (DeepConvLSTM with a window size of 2 s), and Figure 2
presents the corresponding confusion matrix.
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Table 6. Classification report of the best-performing model, i.e., DeepConvLSTM with a window size of 2 s.

Activity Precision Recall F1-Score Support

lying 0.985 0.999 0.992 6010
sitting/standing 0.986 0.997 0.992 13,518
walking 0.987 0.967 0.977 14,262
ascending stairs 0.907 0.937 0.922 3285
descending stairs 0.970 0.959 0.965 2940
running 0.998 0.996 0.997 6624

accuracy 0.981 46,639
macro avg 0.972 0.976 0.974 46,639
weighted avg 0.981 0.981 0.981 46,639

4. Discussion

The primary objective of this study was to assess the efficacy of an ear-mounted
motion sensor in classifying various human activities. Our findings substantiate the ear’s
suitability as a measurement site for an activity monitor, given its stability during diverse
movements and the potential integration with commonly worn assistive devices, such as
hearing aids and eyeglass frames. Moreover, the ear’s capacity to host both motion and
vital sign sensors positions it as a promising location for comprehensive health monitoring.
The application of state-of-the-art deep learning models yielded excellent results, achieving
a 98% accuracy in classifying six common activities, which surpasses previous equivalent
approaches [14,15] and is comparable to current benchmark activity classifiers using one or
multiple motion sensors at the trunk or lower extremities. Furthermore, even a conventional
shallow network demonstrated compelling performance using a concise set of interpretable
statistical features. It should be emphasized that the yielded classification algorithm is
agnostic regarding which ear the sensor is worn and robust against moderate variations
in sensor orientation (e.g., due to differences in auricle anatomy), meaning no initial
calibration of the sensor orientation is required.

The study incorporated a diverse cohort of participants, spanning various ages, gen-
ders, and body dimensions, engaging in activities in natural, urban environments. While the
algorithm successfully classified a wide range of activities, a limitation emerged in differen-
tiating between sitting and standing, a challenge also observed in previous trunk-mounted
approaches [29]. Future enhancements could involve considering postural transitions,
potentially allowing for the distinction between these two activities. Additionally, the
current algorithm did not account for active (e.g., biking) or passive (e.g., riding a car,
subway) transportation, suggesting room for expansion to create a more comprehensive
activity monitor. Finally, further studies are necessary to assess the efficacy of our activ-
ity recognition algorithm in older individuals or clinical populations (e.g., patients with
musculoskeletal or neurological gait disorders), whose everyday movement patterns may
diverge considerably from those of the healthy population focused on in this study.

The integration of an ear-worn motion sensor with a vital sign monitor offers promis-
ing advantages (Figure 3). The parallel monitoring of bodily activity and vital signs,
including temperature, pulse rate, and oxygen saturation, allows a comprehensive view of
an individual’s health status. This approach is particularly beneficial in tele-monitoring
applications, where understanding the context and behavior is crucial for accurate feed-
back [30–32]. Correlating vital signs with specific activities aids in establishing individual
baselines and identifying anomalies that may indicate health issues [33–35]. Long-term anal-
ysis of these correlations could provide personalized health insights, identifying individual
behavioral patterns and habits that might impact health. For athletes, understanding how
vital signs respond to different exercise intensities can help to optimize training regimes
and prevent overtraining [36]. The motion sensor could finally contribute to improving the
accuracy of vital sign readings by automatically detecting and addressing motion artifacts
through algorithm tuning [19].
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Figure 3. Combined activity and vital sign monitoring. Exemplary activity classifier output (DeepCon-
vLSTM with window size of 2 s) alongside corresponding vital sign parameters (body temperature,
pulse rate, oxygen saturation) derived from a single ear-worn wearable.

5. Conclusions

This study demonstrates the effectiveness of an ear-worn motion sensor for highly
accurate classification of common sedative and ambulatory activities. When combined with
an in-ear vital sign monitor, this integrated system could enhance the accuracy of vital sign
readings and enable the study of correlations between vital signs and activities. Follow-up
studies are required to evaluate the reliability of the activity monitor in non-healthy clinical
populations. Future applications should further expand the activity monitor to include
activities like active and passive transportation, and efforts should be directed towards
training algorithms for more detailed activity classification, such as characterizing step-
to-step patterns during ambulatory activities [18]. This research lays the foundation for a
comprehensive and versatile ear-centered monitoring system with potential applications in
healthcare, sports, and beyond.
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