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Abstract: One of the crucial factors in grain storage is appropriate moisture content, which plays
a significant role in reducing storage losses and ensuring quality. However, currently available
humidity sensors on the market fail to meet the demands of modern large-scale grain storage in
China in terms of price, size, and ease of implementation. Therefore, this study aims to develop
an economical, efficient, and easily deployable grain humidity sensor suitable for large-scale grain
storage environments. Simultaneously, it constructs humidity calibration models applicable to three
major grain crops: millet, rice, and wheat. Starting with the probe structure, this study analyzes
the ideal probe structure for grain humidity sensors. Experimental validations are conducted using
millet, rice, and wheat as experimental subjects to verify the accuracy of the sensor and humidity
calibration models. The experimental results indicate that the optimal length of the probe under
ideal conditions is 0.67 m. Humidity calibration models for millet, rice, and wheat are constructed
using SVM models, with all three models achieving a correlation coefficient R2 greater than 0.9. The
measured data and model-calculated data show a linear relationship, closely approximating y = x,
with R2 values of all three fitted models above 0.9. In conclusion, this study provides reliable sensor
technological support for humidity monitoring in large-scale grain storage and processing, with
extensive applications in grain storage and grain safety management.

Keywords: humidity sensor; grain moisture; standing wave ratio (SWR) method; moisture calibration
models

1. Introduction

The advancement of modern information technology, particularly sensor technology,
has presented significant opportunities for the progression of traditional agriculture. The
adoption and widespread use of modern agricultural equipment [1–10] have not only
transformed the production management and operational methods of traditional agricul-
ture but have also increased the efficiency and yield of high-quality agricultural products.
Grain storage, as an essential component of food security, holds immense importance
for strategic commodity reserves and ensuring food security. However, statistical data
from 2020 indicate that the private grain storage loss rate in China reached as high as 8%.
Therefore, achieving modernized management of grain storage, particularly by enhancing
the accuracy of perception and management of the internal storage environment, is crucial
for extending the storage lifespan of grains and mitigating issues such as mold growth,
fermentation, and shrinkage.

The humidity level in grain storage plays a crucial role in maintaining the quality
of stored grain, which impacts factors such as grain nutrition, grading quality, and the
prevention of mold growth and fermentation [11–14]. Excessive humidity will create
a damp environment conducive to mold growth, leading to grain spoilage. However,
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excessively low humidity will cause grains to crack and dry out. Both scenarios adversely
affect grain reserves and impeding national food security efforts. Therefore, humidity levels
in grain storage environments, particularly in large-scale facilities, must be maintained
within an appropriate range [15]. This is essential for prolonging effective storage duration
and preserving grain quality. Although safe storage humidity may vary for different grains,
it typically falls within the range of 10% to 14% [12,16]. Addressing these challenges
requires the development of an economical, highly accurate, and easily scalable grain
humidity monitoring sensor device suitable for large-scale grain storage. This device
would facilitate real-time acquisition of humidity information in various grain storage
environments. The paper proposes the development of a grain humidity sensor capable
of real-time perception of grain moisture content. It needs to provide fundamental data
for environmental control systems within storage facilities. Additionally, employees can
analyze the quality status of stored grain based on historical humidity information.

The monitoring of grain humidity demands sensors with high standards in sensing
accuracy, effective monitoring range, durability, stability, anti-interference capability, and
cost-effectiveness. Currently, humidity monitoring technologies commonly fall into two
categories: contact and non-contact. Non-contact technologies, such as those utilizing
microwave [17–20], infrared [21,22], or ultrasonic waves, enable moisture measurement
without direct contact with the medium. While these methods avoid damaging the medium,
their sensing accuracy typically lags behind that of contact methods, and they often involve
higher costs. Contact humidity sensing devices [23–27] are better suited to fulfilling the
requirements of the domestic large-scale grain storage industry concerning humidity
monitoring accuracy, equipment maintenance, and system scalability.

Researchers have developed various types of contact humidity sensors. They can
accurately collect humidity information from different mediums such as soil [21–23],
grains [24–27], plants [28], and chemical materials [29]. Contact humidity sensors are
categorized into different types based on their principles, including capacitance principle,
resistance principle, time-domain reflectometry (TDR), frequency domain reflectometry
(FDR), and standing wave ratio (SWR) [30].

Capacitive humidity sensors [31,32] on the market are predominantly of the insertion
type. They acquire analog information about moisture by embedding probes into the
medium. Then, specific humidity calibration models are employed to convert the perceived
analog information into actual moisture data. For example, a capacitive humidity sensor
applies square wave excitation signals to a first-order RC circuit composed of resistors,
probes, and the medium under test. Then it measures the periodic fluctuations on the probe
to obtain humidity information about the medium [30].

A resistive humidity sensor treats the medium under test as a humidity-dependent
variable resistor. Humidity information about the medium is obtained by measuring the
voltage across the probe terminals [30].

The theoretical foundation of the TDR moisture sensor draws from research conducted
by Fellner-Feldegg [33] et al. The signal generator of the TDR humidity sensor emits a
pulse signal. As this signal travels through the coaxial cable to the probe, an impedance
mismatch occurs. A portion of the signal reflects back along the original path, while the
rest continues to propagate along with the probe. The detection device measures the time
difference between these two reflected signals, which corresponds to the time it takes for
the signal to travel twice along with the probe [30].

The FDR humidity sensor utilizes the medium as a dielectric, with the sensor’s probe
acting as a capacitor alongside an external oscillator. This setup forms a tuning circuit
during the measurement process. The capacitance of the sensor is directly related to the
dielectric constant of the medium being measured between the two levels. As moisture
levels rise, the equivalent capacitance of the sensor also increases, thereby affecting the
sensor’s operating frequency (resonant frequency) [30,34].

An SWR humidity sensor’s signal generator produces pulses. When the signal is
transmitted to the probe, some parts continue along with the probe while others return
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along the original path. At this point, the incident and reflected signals superimpose,
forming standing waves. It retrieves humidity information by measuring the standing
wave ratio between two reflected signals [35]. The voltage difference of this sensor varies
with changes in the probe’s impedance, which is determined by the medium’s dielectric
constant [36].

In real life, the humidity sensors are widely applied in various mediums, such as rice,
maize, corn, black beans, etc. However, the calibration models provided by manufacturers
are typically fixed to one or a few types. Due to variations in the volume and shape of
different grain mediums, their moisture absorption capacities differ. (The cross-sectional
structure of grains in storage is shown in Figure 1. We placed the grains into a transparent
square container and captured images from the side of the container. Through image
processing techniques, binary images were obtained to highlight the gaps between the
grains in the medium, allowing Figure 1 to be ultimately obtained. And the installation
diagram of the sensor is shown in Figure 2.) Relying on a single humidity calibration model
may lead to inaccuracies in capturing humidity data across different grains. Moreover, there
are subtle variations in the ideal storage humidity levels for various grains. For instance,
millet, wheat, rice, and corn exhibit optimal storage humidity levels of approximately
12%, 12–14%, around 14%, and 13–14%, respectively. Consequently, using a singular
humidity calibration model cannot effectively cater to the precise monitoring of storage
humidity for multiple grains, even impeding the meticulous management of diverse
grain storage environments. To tackle this challenge, this study conducts an analysis of
the distinct characteristics of various grains and proposes tailored humidity calibration
models specifically designed for three common major grains: millet, rice, and wheat.
These customized models significantly enhance the versatility and precision of humidity
sensors. Leveraging the SWR principle, the developed sensors dynamically adjust the
humidity calibration model based on the grain type, thereby ensuring the accuracy of the
final computation results. Furthermore, upon detecting that the humidity of the grain
medium has reached the storage humidity warning threshold, the system initiates an alert,
prompting users to adjust the ventilation equipment in the storage facility accordingly.
Additionally, the system can collaborate with ventilation equipment controllers to achieve
automated and intelligent management of storage facilities.
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Figure 1. The longitudinal profile of grain storage.

In this study, we have developed a grain moisture monitoring humidity sensor utiliz-
ing the SWR principle to fulfill the need for precise humidity monitoring across various
grain types. We conducted both theoretical analysis and experimental validation of humid-
ity calibration models specific to different grain varieties. Subsequently, we put forward
three tailored humidity calibration models for millet, wheat, and rice, respectively. These
models successfully enabled accurate monitoring of storage humidity levels for these key
grain types. This approach effectively resolves the practical challenge of inadequate grain
storage practices stemming from the limitations of applying a single humidity calibration
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model to detect humidity across diverse grain types. The structure of this paper is as
follows: Part II provides an overview of current research on relevant moisture sensors.
Part III outlines the principles underlying the sensors and associated models. Part IV
presents the design and simulation experiments of the sensors. Part V details the validation
experiments and analysis of results. Part VI summarizes the advantages and limitations of
the developed sensing and moisture calibration model, while also suggesting avenues for
future improvements.
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2. Related Work

Humidity monitoring technology can be categorized into two types based on the oper-
ation: contact and non-contact. Non-contact techniques primarily utilize microwave [17,18],
infrared [19,20], or ultrasonic technologies, enabling moisture measurement without di-
rectly contacting the medium. Although non-contact methods do not damage the medium,
their sensing accuracy is lower compared to contact methods, and they generally incur
higher costs. Contact humidity sensing devices [21–27] offer lower costs and higher sens-
ing accuracy. Therefore, they are better suited to meet the demand for grain humidity
monitoring in the domestic large-scale grain storage industry.

The non-contact humidity sensor acquires moisture information from the medium by
receiving and transmitting antenna-specific wavelength information. It is typically used
for humidity monitoring of small-scale, high-precision products. For instance, Jiarasuwan
S. et al. [37] developed a microwave moisture sensor suitable for small irregular containers
for grains. Experiments were conducted with various grains such as rice, red beans, black
beans, and containers of different shapes, verifying the accuracy of moisture monitoring by
the sensor. Additionally, Singh D.K. et al. [38] proposed a microstrip-coupled line humidity
sensor. It utilizes a vector network analyzer to measure reflection coefficients, thereby
improving the detection accuracy of broken rice humidity.

Compared to non-contact humidity sensors, contact humidity sensors offer the ad-
vantages of high precision and low cost, making them more suitable for large-scale grain
storage applications. Common detection principles include resistive, capacitive, thermo-
electric, and surface acoustic wave principles. Resistive sensors have lower sensitivity and
larger dimensions. Thermoelectric and surface acoustic wave sensors offer high accuracy
but are more costly and susceptible to interference from other factors, making them unsuit-
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able for use in large grain storage facilities. Additionally, vendors typically provide only
one humidity calibration model [39–43], which requires users to independently conduct
experiments to adjust the humidity calibration model when encountering different medi-
ums. This imposes higher demands on cost and time. For example, Thakur R. et al. [25]
developed a capacitive sensor and a corresponding moisture calibration model for multiple
grains by optimizing sensor circuits. This enables efficient monitoring of mustard, chickpea,
wheat, and other grain moisture levels. Lei X. et al. [21] conducted calibration experiments
on capacitive humidity sensors with different bulk densities of soil and optimized the
calibration model, improving the correlation between sensor readings and soil moisture
content. This allows the sensor to more directly reflect specific values of water content and
humidity trends in soil columns. Bogena H.R. et al. [43] proposed a dedicated calibration
method for the smt100 sensor, which improves calibration accuracy while simplifying
calibration time.

This paper aims to design a cost-effective contact-type grain moisture sensor while con-
structing humidity calibration models based on the major domestically stored grains such
as millet, rice and wheat. To achieve this goal, the paper provides a detailed explanation of
the design principles and experimental processes of both the sensor and the models. Addi-
tionally, validation experiments for the developed sensor’s humidity calibration models
are designed, and the advantages of developing the sensor are analyzed.

Table 1 presents the principles and models of some humidity sensors.

Table 1. Research results of humidity sensors (Undivided).

Devices Target Media Sensor Principle Model Improvement Advantages Ref.

New Fringe Field
Capacitive

(FFC) Sensor
Wheat. Capacitance

method

Evaluating Potential
Best-Fit Polynomial
Models with Linear

Coefficients Using the
GLM Procedure

of SAS

Suitable for bulk
containers;

high precision;
[24]

Multi-Grain Moisture
Measurement Sensor
Based on Capacitive
Sensing Technology

Mustard, Chickpea,
Urad and Wheat

Capacitance
method

Determination of
Grain Moisture Using
Empirical Calibration

Equations

Introduction of
thermistor improves

accuracy and stability
of oscillation unit

[25]

Grain Equilibrium
Moisture Content
(EMC) Measuring

Instruments

Corn

Measurement of
equilibrium water
content based on

air humidity

/
Portable; high
accuracy; low

cost ($85)
[26]

Capacitive Corn
Moisture Sensor Corn Capacitance

method

Series capacitance
calculation method;

correlation of
capacitance

measurement circuit
resolution with
moisture sensor

resolution;

Considers the effect of
porosity change on

water content
measurement; can be

applied to
large storage

[27]

Microwave Moisture
Sensing System for

Granular Materials in
Arbitrarily Shaped

Containers Based on
Wet Box Scanning

Red bean, Black bean,
Mung bean, rice,

Peanut and Soybean

Microwave
technology

Optimization of
moisture models
using microwave
attenuation and
thickness of the

measured medium

Higher accuracy; high
efficiency; can be

applied to humidity
detection of containers

of arbitrary shapes

[37]

Microstrip Coupled
Line Sensor Rice

Microstrip
transmission
line sensors

/ Relatively low cost [38]
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Table 1. Cont.

Devices Target Media Sensor Principle Model Improvement Advantages Ref.

Potato Peel-based
Humidity Sensor

(PPHS)

Noncontact screen
panel, Respiratory rate,

Sensing humidity
content of real

environment, and for
Skin care

Electrical resistance Boltzman
curve fitting

High precision; low
cost; pollution-free;
simple and efficient

[44]

Triboelectric
nanogenerator (TENG)

Generating point,
Sensing mechanical

movement
and Humidity

Capacitive or
piezoresistive
technologies

/ Easy; low-power
consumption [45]

Fully biocompatible
gelatin-based

moisture sensor

Environmental
monitoring,

Health monitoring,
Food storage,

Touchless sensing

Electrical resistance /

It offers potential for
addressing

environmental
concerns associated
with toxic materials

and versatile humidity
sensing capabilities.

[46]

High-sensitivity
moisture sensor based

on natural
hydroxyapatite

Environmental
monitoring,

Pharmaceutical
industry,

Agricultural sector

Capacitance
method /

High sensitivity; fast
response with a short

recovery time;
excellent

reproducibility;
high selectivity

[47]

High-Performance
Triboelectric

Nanogenerators

Create
energy-harvesting,
Health-monitoring
devices and Tactile,

Humidity-
sensing applications

Voltage method /

Sustainable solution
for energy generation

and sensing
applications

[48]

3. Sensor Principles and Model Analysis
3.1. Moisture Measurement Principle Based on SWR

Grains in storage can be considered as a mixture of grain, air, and water. The dielectric
constants of grain and air are relatively low (approximately 4 for grain and about 1 for air),
while water has a dielectric constant of approximately 80. Therefore, the comprehensive
dielectric constant of grains varies with the moisture content of the grains. Thus, we can
utilize the dielectric constant of grains to infer their moisture content. Detection methods
of this kind can be categorized into various types based on principles, such as capacitive
method, resistive method, and SWR method, among others [36]. After comprehensive
consideration of the technical difficulty, accuracy, and economic cost of sensor information
acquisition, we ultimately chose SWR as the principle.

Research has shown that the accuracy of measuring the dielectric constant of grains
is sensitive to the measurement frequency. When the measurement frequency is below
100 MHz, the presence of salts in the grain medium can significantly interfere with the
measurement results of the dielectric constant. However, when the measurement frequency
ranges between 100 to 500 MHz, factors such as salts have minimal interference with
the measurement results of the dielectric constant [49,50]. Based on a comprehensive
consideration of sensor power consumption and data processing capabilities, this study
ultimately adopted 100 MHz as the measurement frequency for the sensor. The sensor
structure is illustrated in Figure 3. As depicted in the figure, the measurement circuit
primarily consists of a crystal oscillator, fixed resistors, and a probe. The dielectric constant
εm of the sensor probe is a fixed value. The dielectric constant εi of the grains varies with
the moisture content. Therefore, the relative equivalent dielectric constant εx of the probe
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is jointly determined by εm and εi. The theoretical design calculation formula for the
equivalent medium is as follows:

εx = εm ∗ (1 + φ ∗ (εi − εm)/(εm + 2 ∗ φ(εi − εm))) (1)
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In the equation, φ represents the filling factor, indicating the proportion of material
occupied in the probe. It can be obtained through experimental or simulated calculations.
Additionally, there exists the following relationship between the equivalent dielectric
constant and impedance:

R = 1/(jωC) (2)

R represents impedance, ω is the angular frequency, j is the imaginary unit, and C
represents the capacitance of the grain. The capacitance value of the grain can be expressed
by the dielectric constant ε and geometric data, such as electrode spacing and electrode area.

C = εx ∗ A/d (3)

Here, A represents the area of the probe, and d represents the separation of the probe.
If the sum of the fixed-value resistor and the circuit impedance in the circuit is denoted as
R0(Ω) and the equivalent input impedance of the probe after inserting the grain is denoted
as Rx(Ω). The relationship between voltage and impedance can be expressed as:

Ux = K f (UA − UB) (4)

Rx = (R0 ∗ UB)/(UA − UB) (5)

Ux = (K f ∗ UB ∗ R0)/Rx (6)

In Formula (4), K f represents the amplification factor of the amplification circuit. In
Formula (6), it can be observed that when the moisture content of the granular medium
changes. In addition, the output voltage Ux of the sensor will correspondingly change.
Therefore, the numerical value of the output voltage can be utilized to deduce information
about the humidity of the grain medium.

3.2. Humidity Calibration Model

The measured voltage output of the sensor is theoretically correlated with the humidity
level of the grain medium. Consequently, given the recorded sensor voltage, the humidity
level of the grain medium can be ascertained. By embedding the sensor within the grain
medium (Z) of known humidity (W), the voltage (UX) across the sensor probe can be
measured, as illustrated in Figure 4. Utilizing the acquired data, a mathematical model
for monitoring voltage variations corresponding to changes in grain moisture content is
established. Figure 5 shows four commonly representative mathematical models (linear,
exponential, quadratic polynomial, and Gaussian regression). As seen from Figure 4, the
voltage sensed by the sensor is monotonically negatively correlated with the humidity of
the medium. Furthermore, as the humidity of the medium increases, the rate of voltage
change captured by the sensor gradually decreases. Therefore, through comparison, the
quadratic polynomial function exhibits the most similar pattern to the sample curve in



Sensors 2024, 24, 2854 8 of 22

Figure 4. Consequently, the quadratic polynomial equation is chosen as the fitting model,
and the specific formula is provided below:

W = a(UX + b)2 + c = a[(K f ∗ UB ∗ R0)/Rx + b]2 + c (7)
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In this context, a represents the coefficient, b signifies the offset of x, and c denotes the
offset of the vertical coordinate. Consequently, in order to resolve the humidity calibration
model, the parameters a, b, and c must be determined initially.

Using red beans as a case study, the raw data and the corresponding fitted model are
illustrated in Figures 6a and 6b respectively. The ultimate outcome of the fitting function is
presented in Figure 6c.
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Due to variations in grain mediums, the specific parameters of the calibration fitting
model for different grain moisture levels also differ. Solely employing the aforementioned
method to acquire calibration models results in high costs, extensive workload, and low
efficiency. To address this issue, this study proposes the utilization of support vector
machine (SVM) models to process experimental data. This approach is employed to obtain
humidity calibration models for different grain mediums.

SVM is a supervised learning model commonly utilized for pattern recognition, classi-
fication, and regression analysis. It can incorporate kernel functions to enable nonlinear
classification and regression. In regression tasks, the model endeavors to fit as many
data points as possible within a margin range while constraining margin violations. In
essence, it adjusts parameters to maximize the positioning of sample points within the
margin range. Addressing the specific characteristics of the data in this study, a polynomial
kernel function is introduced to map the original data into a higher-dimensional space. As
mentioned earlier, the humidity calibration fitting model is a quadratic equation, thus the
kernel function is a quadratic kernel. Given that K(x,z) is a function or positive definite
kernel, there exists a mapping Φ from the input space to the feature space such that for
any x, z:

K(x, z) = Φ(x)T•Φ(z) (8)

In the high-dimensional feature space, the inner product of x and z can be substituted
with the kernel function K(x,z). Accordingly, the solution is derived as a nonlinear support
vector machine for:

f (x) = sign(
n

∑
i=1

α∗i yiK(x, xi) + b∗) (9)

Here, f (x) represents the prediction outcome for sample x, the sign denotes the sign
function, αi is the Lagrange multiplier corresponding to the support vector, yi is the label
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associated with the support vector, K(x,xi) signifies the kernel function, and b represents
the model bias.

This method allows for the rapid determination of various parameters of the grain
moisture calibration model. It possesses advantages such as speed, efficiency, and precision.

According to Figure 2, a vertical cylindrical pillar is installed at the center of the grain
bin. Humidity sensors are uniformly mounted on this pillar. Taking a typical large-scale
storage bin as an example, with a height of 20 m, the sensors are installed in five layers.
The bottom layer is positioned 20 m away from the grain inlet. The distance between each
sensor within a layer is 4 m. Each layer contains eight humidity sensors, positioned at
angles of 45◦ from each other. If the height of the grain bin varies, the spacing between
sensors in each layer can be adjusted accordingly, or the number of sensing layers can
be reduced as needed. By processing the humidity information collected by the sensors,
various data such as the average humidity, maximum humidity, minimum humidity for
each layer, or humidity variation at different depths can be obtained, ultimately providing
comprehensive humidity information within the storage facility.

Wmax_i = max(Wi_1, Wi_2, Wi_3, . . . Wi_n) (10)

Wavg_i =

n
∑

j=1
Wij

n
(11)

Wavg_j =

m
∑

i=1
Wij

m
(12)

Wavg =

m
∑

i=1

n
∑

j=1
Wij

m ∗ n
(13)

Here, n represents the vertical layers of sensors, while m denotes the number of sensors
per layer; Wmax_i indicates the maximum humidity within the i layer, Wavg_i denotes the
average humidity among the n sensors within the i layer, Wavg_j represents the average
humidity vertically across the j sensor within each layer, and Wavg signifies the average
humidity across all sensors within the entire storage device.

4. Sensor Design and Simulation

To enhance the efficiency of sensor design, theoretical simulation analysis is conducted
on the material, length, and spacing of sensor probes. The material and structure of the
probes are crucial for the sensing accuracy and effective monitoring range of the sensor.

4.1. Materials Selection

Considering the application environment of the sensors, we have placed high demands
on the hardness, toughness, and corrosion resistance of the sensor probes. It is known that
the main materials for current humidity sensor probes include stainless steel, copper, and
polymers. Additionally, researchers often use ceramic materials to manufacture insulation
and protective layers for sensors to prolong the probe’s lifespan. Key attribute information
of some commonly used materials is provided in Table 2.

Humidity sensors are often subjected to complex environments characterized by
high humidity and temperature, placing high demands on both the sensor’s corrosion
resistance and material stability. Moreover, in large-scale grain bins, changes in grain
quantity exert force on the sensor probes, leading to probe deformation. Therefore, to
prolong the sensor’s lifespan, the probe material must possess high hardness and toughness.
After comprehensive comparison of various material properties, 316 stainless steel with a
resistivity of 0.81 × 10−6 was ultimately selected as the probe material for this study.
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Table 2. Probe material properties (Undivided).

Material Resistivity
(Ω·m) Conductivity Hardness Toughness Corrosion

Resistance Stable

Copper 1.68 × 10−8 Excellent Low High Excellent Very active
Iron 10–15 × 10−8 Good Higher Average Poor Generally active

Stainless steel 316 0.74–0.81 × 10−6 Poor Higher High Excellent Inactive

4.2. Simulation of Probe Length

The moisture information sensed by the sensor originates from the medium within
the probe. Therefore, the higher the proportion of the medium in the middle of the probe
to the total medium, the more representative the data information obtained by the sensor.
Extending the effective sensing range of the sensor is crucial for improving the accuracy
of equipment information acquisition without compromising the monitoring accuracy of
the circuit. In this study, Matlab 2016b was used to simulate the detection effects of sensor
probes of different lengths with fixed medium and probe spacing. This analysis aimed to
investigate the influence of sensor probe length on the sensing range and accuracy of the
sensor. The probes were made of 316 stainless steel, with a diameter of 2 mm and spaced
5 cm apart. The simulation results of the sensor are shown in Figure 7.
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In the absence of external force interference, the stable output voltage range of the
sensor is between 1.8 V and 2.3 V. As depicted in Figure 7, under these conditions, the
optimal length of the sensor probe is determined to be 0.8 m.

However, in practical applications, sensors installed in warehouses are subjected to
vertical forces from the grains. Therefore, further analysis of the force acting on the sensor
probe is necessary. The results are shown in Figure 8. Under ideal conditions, when the force
applied to the probe tip reaches 883.88 N, the probe shape undergoes deformation. With
wheat density typically ranging from 700 to 800 kg/m3, assuming an average density of
800 kg/m3, and considering the sensor positioned 20 m below the grain fill level, Newton’s
second law is used to calculate the force acting on the probe. At this point, the force acting
on the 0.8 m probe tip is approximately 1254.40 N, significantly exceeding the probe’s force
limit. Therefore, adjustments to the sensor probe length are necessary based on the force
acting on the sensor at the lowest point.
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Figure 8. The theoretical analysis of force on the probe.

To further clarify the optimal length results, theoretical maximum force and theoretical
bottom force for different probe lengths are calculated incrementally at 1 cm intervals.
Some of the calculated data are shown in Table 3. From the table, it is evident that the
theoretical maximum force for probes below 67 cm exceeds the theoretical bottom force.
However, when the length reaches 68 cm, the theoretical maximum force becomes less than
the theoretical bottom force. Therefore, the theoretically optimal probe length determined
through simulation is 67 cm.

Table 3. Maximum and bottom forces for different probe lengths.

No. Probe Lengths (m) MAX Stress (N) Stress (N)

1 0.41 1745.29 635.14
2 0.42 1703.28 651.02
3 0.43 1662.28 666.9
4 0.44 1624.27 682.77
5 0.45 1587.26 698.65
6 0.46 1551.26 714.53
7 0.47 1518.25 730.41
8 0.48 1485.25 746.29
9 0.49 1454.24 762.17
10 0.50 1425.24 778.05
11 0.51 1396.23 793.92
12 0.52 1369.23 809.8
13 0.53 1343.22 825.68
14 0.54 1317.22 841.56
15 0.55 1293.22 857.44
16 0.56 1269.21 873.32
17 0.57 1247.21 889.19
18 0.58 1225.20 905.07
19 0.59 1204.20 920.95
20 0.60 1183.20 936.83
21 0.61 1164.19 952.71
22 0.62 1145.19 968.59
23 0.63 1126.19 984.47
24 0.64 1108.18 1000.34
25 0.65 1091.18 1016.22
26 0.66 1074.18 1032.10
27 0.67 1058.18 1047.98
28 0.68 1042.17 1063.86
29 0.69 1027.17 1079.74
30 0.70 1012.17 1095.62



Sensors 2024, 24, 2854 13 of 22

To clarify the installation details of the sensor, the voltage distribution around the probe
in an ideal environment is constructed using Matlab 2016b, as depicted in Figure 9. The
voltage around the probe decreases with increasing distance, as depicted in the Figure 10.
As previously mentioned, the voltage influence range in the horizontal direction (X) of the
probe will be greater than in the vertical direction (Y). Therefore, to reduce interference
between sensors, it is recommended to install the sensors with the probe plane parallel to
the ground.

Figure 9. The magnetic field distribution around the probe.
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5. Experiments
5.1. Experimental Design

This paper presents a design method for a grain humidity sensor based on the standing
wave method. To enhance the monitoring performance of this sensor, we constructed
a prototype of a grain medium humidity monitoring system, as depicted in Figure 11.
Furthermore, to validate the accuracy of the moisture information obtained by the sensor, a
drying control experiment was designed as follows.

This study intends to monitor the RH (relative humidity) levels through experimental
data pairing. The specific method involves comparing and analyzing the data obtained
from the sensor with the real humidity data obtained through the drying and weighing
method. Utilizing SVM (support vector machine) model, a moisture calibration model is
constructed. As mentioned earlier, the optimal storage humidity for grains generally falls
between 10% and 15%. Additionally, during the experimental process, it was observed that
when the humidity of grains reaches 20%, it leads to water accumulation, subsequently
causing severe mold or decay of the grains. Therefore, a measurement range of 0% to
35% can meet the requirements for daily grain storage. Furthermore, while expanding
the detection range of the sensor to ensure accuracy, it necessitates the addition of circuit
components, which would increase the research and development costs. This contradicts
the aim of this paper to develop a simple, easy, and low-cost humidity sensor. So, the
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experiment is conducted within the range of grain moisture content from 0% to 35%, and
the specific experimental design is as follows:

1. Experimental materials;

To meet the requirements for establishing calibration models for different grain mois-
ture levels, common grains such as millet, rice, and wheat were specifically selected as
experimental materials.

2. Experimental apparatus;

The equipment used includes a high-temperature aging chamber, an electronic scale
with one-thousandth precision, standardized semi-transparent containers, a vernier caliper
(0.02 mm), developed sensors, and the MAS-1 humidity sensor.

3. Experimental procedure;

• Preparation of materials;

The experimental materials selected were millet, rice, and wheat. The original samples
were placed in a high-temperature aging chamber and baked for 8 h to remove excess
moisture from the samples. Subsequently, 5000.00 g of the dried samples were weighed
using an electronic scale and placed into uniformly sized cubic containers for experimen-
tation. Following the aforementioned procedure, three samples each of millet, rice, and
wheat were prepared. Controlling the surrounding environment ensured that the samples
remained in a stable environment at 25 ◦C.

• Data collection experiment;

Using an electronic scale, an appropriate amount of distilled water (25 ◦C) was mea-
sured. After recording the data, all the water was added to the dried samples. Following
thorough mixing of water with the grains, the sensor was vertically inserted into the central
position of the sample under test. We ensured that the sensor probe was fully immersed in
the grains without touching the edges of the container and maintained consistent depth
and position with each insertion. The output data of the sensor and the moisture data of
the grains were recorded. This experimental procedure was repeated to obtain sensor data
at different moisture levels.

• Comparative experiment;

Using the same method, data from the MAS-1 sensor were simultaneously collected,
and proper data recording was conducted. Subsequently, SVM was employed to construct
the humidity calibration model. The accuracy of the humidity calibration models for both
sensors was then verified.

• Validation experiment;

The theoretical data calculated by the model were compared and analyzed against the
actual moisture data to validate the authenticity and reliability of the model.
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5.2. Result and Analysis
5.2.1. Experiment Result

The moisture calibration models for the developed sensor and the MAS-1 sensor were
constructed using SVM. The results are depicted in Figures 12 and 13. The horizontal
axis represents the analog information collected by the sensors, while the vertical axis
represents the actual moisture content of the grain medium. The output signal of the
developed sensor is voltage (V), whereas the output information of the MAS-1 humidity
sensor is current (4–20 mA). As mentioned in Section 3.2, the humidity calibration model of
the developed sensor exhibits nonlinearity, thus necessitating the use of a kernel function
in the SVM model:

K(x, xi) = (γ × (x · · · xi) + r)d (14)
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In the equation provided, γ represents the scaling factor of the kernel function, r
stands for the constant bias, and d denotes the maximum number of iterations. Here, x and
xi represent the feature vectors of the samples. Initially, the kernel matrix K is computed
based on the features of the training data:

K(xi, yj) = (γ × (xi · · · xj) + r)d (15)
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Here, (xi · xj) denotes the inner product of samples xi and xj. The next step involves
constructing an m × m kernel matrix K by computing the kernel function values between
each pair of samples in the training set, where m represents the number of training samples.
Following this, the Lagrangian function of the original problem is:

L(w, b, α) = 1/2
∣∣∣∣w∣∣∣∣2 − ∑ (αi × (yi × (w · · · xi + b)− 1)) (16)

In the provided equation, w is the weight vector, representing the model coefficients,
b stands for the bias, α is the Lagrange multiplier, yi represents the label of the training
sample, and xi corresponds to the features of the training sample.

Subsequently, the Lagrangian dual problem is formulated, and a convex optimization
algorithm is employed to determine the Lagrangian multipliers, α. Each αi must adhere to
the following constraints: {

αi > 0
∑ (αi ∗ yi) = 0

(17)

Upon obtaining the solution to the optimization problem, the corresponding α values
associated with the support vectors are derived. Subsequently, the model’s bias, denoted as
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b, is computed. To calculate this, a subset of the support vectors is selected. For a specific
support vector (xi, yi), the bias b is computed as follows:

b = yi − ∑(αi × yi × K(xi, x)) (18)

Ultimately, the coefficients (w) of the model are computed to represent the normal
vector of the decision boundary.

w = ∑(αi × yi × φ(xi)) (19)

where αi represents the Lagrange multiplier corresponding to the support vector, yi denotes
the category label associated with the support vector, φ(xi) signifies the mapping function
of the sample features, and xi stands for the eigenvector of the support

Building upon the aforementioned procedures, distinct moisture calibration models
were established for millet, rice, and wheat, outlined as follows:

y1 = −0.1859x2 + 0.2905x + 0.1451
y2 = −0.1162x2 + 0.1108x + 0.2381
y3 = 0.0159x2 − 0.234x + 0.3948

(20)

Here, y1 represents the humidity calibration model for millet, y2 denotes the humidity
calibration model for rice, and y3 signifies the humidity calibration model for wheat. The
determination coefficients (R2) for the three calibration models are as follows: R1

2 = 0.9342
for millet, R2

2 = 0.9023 for rice, and R3
2 = 0.92621 for wheat. Notably, all of these values

exceed 0.9, indicating strong model performance.
From Figure 13, it can be observed that the analog information obtained by the MAS-

1 humidity sensor in the three types of grains, namely millet, rice, and wheat, exhibits
a monotonically positive correlation with moisture content. The moisture calibration
formula satisfies a linearly increasing relationship. At this point, the coefficient w of the
model satisfies:

w = ∑(αi × yi × xi) (21)

Therefore, the moisture calibration model is constructed as follows:

y′1 = 0.065x − 0.4814
y′2 = 0.0469x − 0.3174
y′3 = 0.0272x − 0.1424

(22)

Here, y1
′ represents the humidity calibration model for millet, y2

′ denotes the humidity
calibration model for rice, and y3

′ signifies the humidity calibration model for wheat. The
coefficients of determination (R2) for the three model sets are as follows: R1

2′ = 0.89897,
R2

2′ = 0.70336, and R3
2′ = 0.78696. It is observed that the fit is comparatively weaker than

that of the developed sensor.

5.2.2. Verification and Analysis

The calculated moisture information from both the developed sensor and the MAS-
1 sensor was compared with the measured moisture data for validation analysis. The
results are shown in Figure 14, where the horizontal axis represents the calculated moisture
information from the models, and the vertical axis represents the measured moisture
information. From the graph, it is evident that the moisture calibration model’s calculated
data for millet, rice, and wheat exhibit a good linear relationship with the measured data.
These can be fitted and validated using the equation y = kx + b, where y represents the
measured mass moisture content (%), x represents the moisture content of the medium
obtained from the model (%), k represents the regression coefficient, and b represents the
constant term. The parameters of the validation models for each sensor are presented
in Table 4.
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Table 4. Fits to calculate the true value of the data are fitted.

Sensors Grain k b R2

Developed sensors
Millet 0.9998 0.00005 0.9342
Rice 0.9998 0.00004 0.9023
Wheat 0.9995 0.00007 0.9261

MSA-1
Millet 0.9995 −0.0002 0.8992
Rice 0.9992 −0.0002 0.7244
Wheat 1.0436 −0.0082 0.7892

From Table 4, it is evident that the coefficient k of the fitting formulas for both sensors
is very close to 1, and the constant term b is extremely close to 0. However, the fitting
performance of the developed sensor (R2 > 0.9) surpasses that of the MSA-1 humidity
sensor (0.7 < R2 < 0.9). The experimental results indicate that the developed sensor exhibits
higher accuracy and is more suitable for measuring grain moisture.

The MAS-1 is an integrated sensor and 4 to 20-mA transmitter. The appearance of
the MAS-1 sensor is shown in Figure 15. When the MAS-1 is powered by the power
supply, it transmits a current though the loop that is proportional to the grain dielectric
permittivity and therefore the grain volumetric water content (VWC). First, the grain
adjacent to the sensor surface has the strongest influence on the sensor reading and that the
sensor measures the VWC. Therefore, any air gaps or excessive grain compaction around the
sensor can profoundly influence the readings. As shown in Figure 1, there are many voids
in the grain. This is especially true for grains with larger individual volumes, so voids of
wheat are larger than those in millet. Consequently, when the MAS-1 sensor measures grain
moisture information, the larger the grain particle volume, the greater the measurement
error. In contrast, the developed sensor utilizes SVM detection principles to obtain moisture
information from the medium, which is less affected by voids. Additionally, the probe
length and spacing of the MAS-1 sensor are much smaller than those of the developed
sensor (the probe length of the MAS-1 sensor is 5.5 cm, and the probe spacing is 0.5 cm).
This means that the effective sensing range perceived by the MAS-1 sensor is much smaller
than that of the developed sensor. To summarize, the developed sensor is more suitable for
humidity detection in grain media.
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6. Conclusions

The aim of this study is to develop a grain moisture sensor capable of meeting the
humidity monitoring requirements for large-scale, long-term grain storage. We propose
a method for developing a grain medium humidity monitoring sensor and construct
humidity calibration models for three main types of grains. These methods have been
applied and validated in grain media such as millet, rice, and wheat. To investigate this
device, we first analyze the physical structure of the probe under ideal conditions, including
the probe’s material, stress, and surrounding voltage changes. The results indicate that
the suitable material for the sensor probe is 316 stainless steel, and under ideal conditions,
the suitable length of the sensor probe with a spacing of 5 cm is 0.67 m. Secondly, SVM is
employed to construct humidity calibration models for millet, rice, and wheat. The test
results are satisfactory, with R2 values exceeding 0.9 for all three models, surpassing the
MAS-1 sensor in accuracy. Finally, we verified the accuracy of the model. The computational
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results of the three sensor models align well with the validation results from actual data
(all R2 > 0.9), outperforming the MAS-1 sensor.

The limitation of this study is that the developed sensor system only enables the
monitoring of grain humidity information, without involving the integrated control of
devices such as ventilation and heating within the storage unit. In future research, we
will focus on the control facilities within the storage unit to construct an optimal humidity
control model for grain storage. We aim to provide the optimal storage conditions for
target grain crops, thereby prolonging storage time while reducing nutrient loss. The grain
humidity sensor provided by this study can offer reliable data support for the intelligent
management of grain warehouse storage environments.
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