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Abstract: Spectrally resolved interferometry utilizing a femtosecond laser is widely employed for
absolute distance measurement. However, deviations in the output time pulse of the conventional
algorithm through inverse Fourier transform are inevitable. Herein, an improved data processing
algorithm employing a time-shifting parameter is proposed to improve the accuracy of spectrally re-
solved interferometry. The principle of the proposed time-shifting algorithm is analyzed theoretically
after clarifying the deviation source of the conventional algorithm. Simulation and experimental
work were conducted to indicate the improvement in the accuracy of the output absolute distance.
The results demonstrated that the proposed algorithm could reduce the deviation of output distances
towards the reference values, reaching 0.58 µm by half compared to the conventional algorithm. Further-
more, the measurement uncertainty was evaluated using the Guide to the Expression of Uncertainty in
Measurement (GUM), resulting in an expanded uncertainty of 0.71 µm with a 95% confidence.

Keywords: absolute distance measurement; spectrally resolved interferometry; inverse Fourier transform

1. Introduction

With the development of science and technology, absolute distance measurement is
widely utilized in semiconductor manufacturing, electromechanical systems, and satellite
formation flying [1–5]. Benefiting from the properties of non-contact and high-resolution,
absolute distance measurements based on optical methods were generally researched [6–8].
Time-of-flight is a typical optical method that determines the target distance by measuring
the time interval between the emission of an optical pulse and the reception of the reflec-
tive pulse [9]. However, the resolution of this approach is limited to several millimeters,
due to constraints such as the response time of photodetectors and the time width of the
laser pulse. On the other hand, multi-wavelength interferometry for absolute distance
measurement was developed by Wyant et al. [10–12]. This proposal significantly extends
the unambiguous range compared to the conventional Michelson interferometer using only
one wavelength, which is operated by utilizing a virtual synthetic wavelength generated
from the beat signal of two wavelengths [13]. Nevertheless, multiple different wavelength
laser sources and their alignment make this absolute distance measurement system com-
plicated and expensive. Since the optical frequency comb (OFC) was incepted at the end
of the 20th century, absolute distance measurement with high-resolution was further de-
veloped [14–16]. An optical frequency comb is composed of numerous narrow linewidth
wavelengths over a broad optical spectral range in the frequency domain, and a femtosec-
ond pulse sequence in the time domain [17,18]. Each frequency component of the OFC
can be precisely indicated once the repetition frequency and carrier-envelope frequency
are locked to the radio frequency standards [19,20]. The gap between optical frequency
and radio frequency is bridged by the OFC, resulting in the promotion of optical frequency
measurement [19,21], ultra-precision spectroscopy [22,23], absolute distance [24,25], angle
measurement [26–28], etc. Moreover, numerous absolute distance measurement techniques
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have been developed based on the OFC, including synthetic wavelength interferometry
(SWI) [29–32], multiwavelength interferometry (MWI) [33–35], dual-comb interferome-
try [36–38], and spectrally resolved interferometry (SRI) [39–42]. Benefiting from a compact
optical configuration with high-resolution, spectrally resolved interferometry, which oper-
ates based on interferograms over a broad spectrum, has been widely researched over the
past two decades.

However, some shortcomings still afflict SRI, such as dead zone and intermediate
accuracy. The authors previously proposed a spectral fringe algorithm to reduce the
dead zone to its theoretical minimum working distance by removing the influence of
the source spectrum and subsequently proposed a high-order-angle algorithm to further
breakthrough the dead zone over the theoretical limitation to near zero [43,44]. On the
other hand, many researchers also made great contributions to increasing the accuracy
of the time pulse position of SRI. The time pulse is obtained by a direct inverse Fourier
transform of the interference signal, and its peak position should be equal to the time delay
caused by the target distance. In the first stage, the obtained time pulse is a broad one
due to the limited time resolution, which is determined by the frequency width. Many
researchers tried to increase the accuracy of the time pulse by increasing the employed
spectral width or locating the precise peak position by curve fitting. For instance, Jang
et al. developed a spectrally resolved interferometer powered by a soliton microcomb,
and a polynomial fitting method was employed to extract the time delay of the inverse
Fourier transform more accurately to output a target distance with higher accuracy [45,46].
Similarly, Wang et al. proposed a chip-scaled soliton microcomb, a three-point fitting
method was required in locating the time-domain peak precisely [47]. However, these
authors ignored the necessity of truncating the interference signal into integer periods
before performing the inverse Fourier transform, which is an indispensable operation for
generating the time pulse accurately, making the time pulse not an ideal sharp shape and
limited by the employed frequency width. In the second stage, a truncation to make the
interference signal into integer periods is conducted before the inverse Fourier transform
as the authors previously proposed and named the truncated-spectrum algorithm [43]. A
sharper time pulse can be obtained, and its position is not limited by the frequency width,
because the time pulse must be located at integer times of the time resolution for a truncated
period signal based on the principle of Fourier transform [48,49]. However, the accuracy of
the truncated-spectrum algorithm suffers from the limited spectral resolution, resulting
in the truncation points, i.e., the minimum and maximum frequencies of the truncated
interference signal are not the ideal ones. The spectral resolution is determined by the used
spectrometer and cannot be improved to zero, refrained from the modern instrumentation
technology. Hence, an improved algorithm is required to further enhance the accuracy of
spectrally resolved interferometry.

In this paper, an improved data processing algorithm for spectrally resolved interfer-
ometry is proposed after clarifying the deviation source of the time delay pulse, which can
achieve the time delay pulse with a higher accuracy. This proposed algorithm is named the
time-shifting algorithm because a time shift parameter ts is utilized in it. The effectiveness
of this algorithm is verified by the simulation and experimental results. The absolute dis-
tance measurement deviation of the proposed algorithm is compared with the conventional
algorithm. In addition, the uncertainty of the distance measurements is estimated based on
the “Guide to the expression of Uncertainty in Measurement” (GUM) [50].

2. Principles

Figure 1 shows the optical setup of a Michelson-type spectrally resolved interferometer
irradiated by a femtosecond laser. The spectral interference signal can be detected by a
spectrometer and its intensity can be simply described as follows:

I( fk) = S( fk)·[1 + A· cos(2π fkτ)] (1)



Sensors 2024, 24, 2869 3 of 15

where S(fk) is the spectral intensity of the femtosecond laser source and A is a parameter
representing the spectral intensity difference of the reference and measurement beam.
τ is the time delay caused by the optical path difference L between the reference and
measurement paths, and it can be calculated by:

τ =
2nL

c
(2)

in which n is the refractive index of air, and c represents the speed of light.
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Figure 1. The schematic of a spectrally resolved interferometer using a femtosecond laser source.

In the conventional data processing algorithm of the spectrally resolved interferometry,
the spectral interference signal is directly inverse Fourier transformed into a time-domain
function i(ti) as follows:

i(ti) =
1
N

N−1

∑
k=0

I( fk)·e
j2πki

N = s(ti)⊗
[

δ(ti) +
A
2

δ(ti − τ) +
A
2

δ(ti + τ)

]
= s(ti) +

A
2
·s(ti − τ) +

A
2
·s(ti + τ) (3)

where N is the sampling number, δ(ti) represents a unit impulse function, and s(ti) is
the inverse Fourier transform of the source spectrum S(fk). Three time pulses can be
observed in the results of the inverse Fourier transform, with their peaks located at −τ,
0, and τ, respectively. The coincidence of two pulses located at 0 and τ with extremely
small τ can remarkably worsen the minimum working distance of the spectrally resolved
interferometry, which can be solved by removing the central time pulse and sharping the
width of the time pulses. The authors previously proposed a spectral fringe algorithm to
achieve it, specifically, removing the upper and lower envelopes of the detected spectral
interference signal in Equation (1), followed by normalization [44]. A modified spectral
interference signal Im(fk) can subsequently be generated and described as:

Im( fk) = cos(2π fkτ) =

(
I( fk)

S( fk)
− 1

)
· 1
A

(4)

Hence, the inverse Fourier transform of this modified interference signal can be
expressed as the modified time function im(ti):

im(ti) =
1
N

N−1

∑
k=0

Im( fk)·e
j2πki

N =
1
2
·δ(ti + τ) +

1
2
·δ(ti − τ) (5)

A time pulse τ1 is then extracted using a time window centered at τ, and the target
distance can be directly calculated using the formula L = τ1 · n · c/2, where τ1 is the
position value of this selected time pulse in the horizontal axis. The parameter τ1 is referred
to as the measured time delay, which is determined by the inverse Fourier transform
results. Furthermore, the parameter τ is regarded as the real-time delay caused by a target
distance. To distinguish the measured time delay and the real-time delay, two different
parameters of τ and τ1 are utilized in this paper. It is evident that the accuracy of the
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final calculated distance strongly relies on that of the selected time pulse τ1. Ideally, the
selected time pulse τ1 should be equal to the real-time delay τ. However, there is always
some deviation between the selected time pulse τ1 and the real-time delay τ owing to
the necessary operation of the inverse Fourier transform in the conventional algorithm.
Therefore, eliminating the deviation between τ1 and τ is a crucial strategy for achieving high
precision in the measurement of the target distance using spectrally resolved interferometry.

Based on the theory of discrete Fourier transform, the equivalence of discrete and
continuous Fourier transform requires that the periodic function must be truncated over
exactly one period (or integer multiple periods) [48]. The authors previously implemented
the truncation process based on the local maximum of the interference signal. This approach
was chosen because the phase value is consistently either 0 or 2π for a cosine function
at local maxima. As a result, integer periods of the interference signal can be truncated,
making it suitable for a subsequent inverse Fourier transform. When the interference
signal reaches its local maximum, constructive interference is conducted, resulting in the
minimum f 1 and maximum truncated frequency f 2 satisfying the following equation:

L =
1
2
·p· c

f1
=

1
2
·(p + q)· c

f2
(6)

in which p represents a random positive integer determined by the target distance L, and q
represents the period number of the truncated spectrum. The integer p can be calculated
as follows:

p = q· λ2

λ1 − λ2
(7)

in which λ1 and λ2 represent the corresponding wavelength of truncated frequencies f 1
and f 2, calculated by λ = c/f.

Based on the principle of inverse Fourier transform, the time resolution ∆t of an ideally
truncated spectrum can be calculated by the reciprocal of frequency width as follows:

∆t =
1

f2 − f1
(8)

The resolution of the output distance, i.e., the distance resolution ∆L, can be easily
deduced by the formula of ∆L = ∆t · c/2 as follows:

∆L =
c
2
·∆t =

c
2
· 1

f2 − f1
=

1
2
·λ1 × λ2

λ1 − λ2
(9)

It is worth noting that both the time resolution ∆t and distance resolution ∆L are
not fixed by the employed frequency width and vary with the target distance, benefitting
from the truncated spectrum. Based on Equations (6)–(9), the target distance L can be
re-calculated as follows:

L =
1
2
·p· c

f1
=

1
2
·q·λ1 × λ2

λ1 − λ2
= q·∆L =

c
2
·q·∆t (10)

It can be easily found that the target distance L must be c
2 ·q times of the time resolution

∆t. As a result, any error in the time resolution can be amplified by c
2 ·q times in the final

output distance. For instance, a deviation of 0.15 µm can be found in the final output
distance even if there is only a deviation of 1 ps in the time resolution, assuming q = 1.
Therefore, it is necessary to obtain the time resolution with high accuracy by truncating the
spectrum precisely.

However, due to the limited spectral resolution of spectrometers, it is impossible to
truncate the interference signal into integer periods without any error, as illustrated in
Figure 2b. A comparison between the ideally truncated and non-ideally truncated spectrum
is shown in Figure 2, in which f 1 and f 2 in Figure 2a represent the minimum and maximum
frequency of the ideally truncated spectrum. Meanwhile, f 1

′ and f 2
′ in Figure 2b represent
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the minimum and maximum frequency of the non-ideally truncated spectrum. It is worth
noting that any inaccuracies in the minimum and maximum frequency of the truncated
interference signal can introduce errors in the time resolution ∆t of the inverse Fourier
transform results. This ultimately yields a deterioration in the accuracy of the output
distance results.
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Figure 2. The ideally and non-ideally truncated results of a modified interference spectrum. (a) An ideally
truncated spectrum and (b) a non-ideally truncated spectrum due to the limited spectral resolution.

The time resolution ∆t′ of a non-ideally truncated spectrum can be calculated as follows:

∆t′ =
1

f ′2 − f ′1
(11)

Deviations between the ideally and non-ideally truncated frequencies result in errors
occurring in the time resolution in the inverse Fourier transform. In other words, the
value of ∆t′ is not equal ∆t, which is the time resolution of an ideally truncated spectrum.
Meanwhile, the selected time pulse τ1 is located at integer periods of the time resolution,
i.e., τ1 = q × ∆t′, in which q is an arbitrary integer, and its value is equal to the integer period
number of the cosine item in the modified interference signal. Generally, more than one
integer period is employed in the spectrally resolved interferometry, making the deviation
of the selected time pulse τ1 towards the real-time delay τ be magnified several times for
the final output distance. Eliminating the deviation between the selected time pulse τ1 and
the real-time delay τ or just directly positioning the value of real-time delay τ is a crucial
approach to precisely achieve the target distance using spectrally resolved interferometry.

Although there is a deviation between the selected time pulse τ1 and the real-time
delay τ, this deviation is further smaller than the time resolution. Specifically, the real-
time delay τ is always located in the vicinity of the selected time pulse τ1. Therefore, it is
feasible to determine the real-time delay τ by comparing the inverse Fourier transform
results of all available time points near the selected time pulse τ1 within the interval
[τ1 − ∆t′, τ1 + ∆t′]. Based on the theory of Fourier transform, the absolute value of the
inverse Fourier transform results should reach its maximum of 0.5 at the real-time delay
point τ. Meanwhile, the absolute value of the inverse Fourier transform for other time
points, especially the selected time pulse τ1, should be smaller than that of the real-time
delay τ. The inverse Fourier transform of other time points near τ1 can be generated by
utilizing a time-shifting parameter ts, which can be calculated by:

im(ti + ts) =
1
N

N−1

∑
k=0

Im( fk)·e
j2π·( i

f ′2− f ′1
+ts)·[

k·( f ′2− f ′1)
N ]

=
1
2
·δ(t + τ1 + ts) +

1
2
·δ(t − τ1 + ts) (12)

Time points near the selected time pulse τ1 can be obtained by dividing the interval of
[τ1 − ∆t′, τ1 + ∆t′] into 2M pieces, in which M is the segmentation number as shown in
Figure 3. The time-shifting parameter ts is a sequence of time points within the interval
and can be expressed as follows:

ts = τ1 + s·∆t′

M
s = 0,±1, . . . ,±M (13)
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where s is an arbitrary integer and ∆t′ is the time resolution in the inverse Fourier transform
results. The segmentation number M needs to be large enough to ensure that the real-time
delay can be found during this operation.

Sensors 2024, 24, x FOR PEER REVIEW 6 of 16 
 

 

The inverse Fourier transform of other time points near τ1 can be generated by utilizing a 
time-shifting parameter ts, which can be calculated by: 

( ) ( ) ( )

2 1

2 1

2
1

1 1
0

1 1 1( )
2 2

s

k f f
ij t

NN f f

m i s m k s s
k

i t t I f e t t t t
N

π

δ τ δ τ

′ ′

′ ′

  ⋅ −        ⋅ + ⋅    − −    

=

+ = ⋅ = ⋅ + + + ⋅ − +  
(12)

Time points near the selected time pulse τ1 can be obtained by dividing the interval 
of [τ1 − ∆t′, τ1 + ∆t′] into 2M pieces, in which M is the segmentation number as shown in 
Figure 3. The time-shifting parameter ts is a sequence of time points within the interval 
and can be expressed as follows: 

1           0, 1, ,s stt Ms
M

τ = ±
′

= ⋅ …+ ±Δ  (13)

where s is an arbitrary integer and ∆t′ is the time resolution in the inverse Fourier trans-
form results. The segmentation number M needs to be large enough to ensure that the 
real-time delay can be found during this operation. 

 
Figure 3. An explanation of the definition of the time-shifting parameter ts within the time interval 
of [τ1 − ∆t′, τ1 + ∆t′]. (a) A non-ideally truncated interference spectrum; (b) inverse Fourier transform 
results of the spectrum in (a); and (c) dividing the time interval into 2M pieces to generate the time 
sequence of ts. The parameter tm represents the gap between the divided time points and can be 
calculated by tm = ∆t′/M. Hence, the time shift parameter ts can be determined by ts = τ1 + s · tm, in 
which s is an arbitrary integer number no more than M. 

Finally, the optimum value of the time-shifting parameter ts0 can be determined by 
searching for the maximum absolute value of the inverse Fourier transform among all 
available time points. The optimum time-shifting parameter ts0 satisfies τ = τ1 + ts0, and an 
improved output distance can be calculated by: 

( )1 02 s
cL t
n

τ= ⋅ +  (14)

3. Simulation and Experiment Results 
3.1. Simulation Results 

A modified interference spectrum Im(fk) defined in Equation (4) with a target distance 
of 1 mm, and a spectral frequency ranging from 191.7 THz to 195.2 THz with a sampling 
frequency of 10 GHz was exploited in a simulation to illustrate the advantages of the pro-
posed time-shifting algorithm on increasing the accuracy of spectrally resolved interfer-
ometry. The segmentation number M for the time-shifting algorithm was set as 400. Figure 
4 illustrates the data processing procedure of the proposed time-shifting algorithm and a 
comparison of the inverse Fourier transform results between the time-shifting algorithm 
and the conventional one. 

−τ1
Frequency (THz)

195190 192.5

−1In
te

ns
ity

 (
a.

u.
)

0

1

(a)

f′1 f′2
A

m
pl

itu
de

Time
τ10

(b)

τ1−∆t′

A
m

pl
itu

de

(c)

τ1+∆t′
Time
τ1

tm

ts

∆t′

Figure 3. An explanation of the definition of the time-shifting parameter ts within the time interval of
[τ1 − ∆t′, τ1 + ∆t′]. (a) A non-ideally truncated interference spectrum; (b) inverse Fourier transform
results of the spectrum in (a); and (c) dividing the time interval into 2M pieces to generate the time
sequence of ts. The parameter tm represents the gap between the divided time points and can be
calculated by tm = ∆t′/M. Hence, the time shift parameter ts can be determined by ts = τ1 + s · tm, in
which s is an arbitrary integer number no more than M.

Finally, the optimum value of the time-shifting parameter ts0 can be determined by
searching for the maximum absolute value of the inverse Fourier transform among all
available time points. The optimum time-shifting parameter ts0 satisfies τ = τ1 + ts0, and
an improved output distance can be calculated by:

L =
c

2n
·(τ1 + ts0) (14)

3. Simulation and Experiment Results
3.1. Simulation Results

A modified interference spectrum Im(fk) defined in Equation (4) with a target distance
of 1 mm, and a spectral frequency ranging from 191.7 THz to 195.2 THz with a sampling fre-
quency of 10 GHz was exploited in a simulation to illustrate the advantages of the proposed
time-shifting algorithm on increasing the accuracy of spectrally resolved interferometry.
The segmentation number M for the time-shifting algorithm was set as 400. Figure 4
illustrates the data processing procedure of the proposed time-shifting algorithm and a
comparison of the inverse Fourier transform results between the time-shifting algorithm
and the conventional one.

For the conventional algorithm, a time pulse τ1 can be selected from the inverse
Fourier transform results using a time window and the target distance can be determined
by L = 0.5 · c · τ1, as shown in Figure 4c. The accuracy of the selected time pulse τ1 is
influenced by the truncating operation and can be improved by implementing the proposed
time-shifting algorithm. Compared with the conventional algorithm, the proposed time-
shifting algorithm is capable of achieving the inverse Fourier transform results of more
time points near the selected time delay τ1 with the help of time-shifting sequence ts, as
illustrated in Figure 4e. Moreover, the real-time delay τ can be found by searching for
the optimum time-shifting parameter ts0, which can reach the maximum absolute value
of the inverse Fourier transform results, as shown in Figure 4f. The real-time delay τ
caused by a target distance of 1 mm can be ascertained as 6.671 ps, while the selected time
delay τ based on the conventional algorithm is 6.666 ps with an error of 5 fs towards the
real-time delay. However, employing the time-shifting algorithm can significantly diminish
this error, resulting in an improved time delay of 6.672 ps by determining the optimum
time-shifting parameter ts0. Finally, an improved distance result can be calculated using the
formula L = 0.5 · c · (τ1 + ts0). It is worth mentioning that there remains a minor deviation



Sensors 2024, 24, 2869 7 of 15

of 1 fs between the improved time delay and the real-time delay, primarily attributed to
the calculation errors during the inverse Fourier transform. Nonetheless, the proposed
time-shifting algorithm has been verified to be capable of effectively enhancing the accuracy
of the final output distance result.
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Figure 4. The data processing procedure of the time-shifting algorithm. (a) Original modified spectral
interference signal Im(fk) for a target distance of 1 mm, with the spectral frequency ranging from
191.7 THz to 195.2 THz, (b) truncating the interference signal within integer periods, (c) inverse
Fourier transform results of the truncated signal, and data points in the dot black frame contains the
selected time pulse τ1, and (d) magnification of the results in the black frame of (c) and the selected
time pulse τ1 value can be checked as 6.666 ps. This time pulse is picked up based on the maximum
absolute value of the inverse Fourier transform results among all the available points in the time axis.
Furthermore, the red frame highlights the selected time pulse τ1 and the two adjacent time points,
i.e., τ1 ± ∆t′, (e) inverse Fourier transform results of the time-shifting algorithm. Three black circles
represent the inverse Fourier transform results of the original three time points in the red frame of
(d), obtained by the conventional algorithm. The middle black circle is the selected time delay pulse
τ1. The red circles represent the inverse Fourier transform results of a sequence of time points near
the selected time pulse τ1, obtained by the time-shifting algorithm, (f) amplification of the central
region (e). The real-time delay τ, highlighted as the block red circle, is positioned by searching for the
maximum absolute value of the inverse Fourier transform results among the time-shifting sequence.

To further illustrate the benefits of the proposed time-shifting algorithm, a simulation
was conducted covering a distance range from 500 µm to 1500 µm, with a step size of 1 µm.
The spectral frequency is set from 191.7 THz to 195.2 THz, with a sampling frequency of
10 GHz. Figure 5 presents a comparison of simulation results obtained using the proposed
time-shifting algorithm and the conventional algorithm.
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Figure 5. A comparison of the deviation of simulation results from the reference distance of the
time-shifting and the conventional algorithm. The black and red points represent the simulated
deviations of the conventional and time-shifting algorithms, respectively.

As shown in Figure 5, compared to the conventional algorithm, the simulated deviation
from the reference distance shows an obvious decrease in the time-shifting one. Specifically,
the absolute average deviation of the conventional algorithm is 1.01 µm, whereas this
value from the time-shifting algorithm is reduced to 0.44 µm, more than two times smaller
than that of the conventional one. Meanwhile, the standard deviation of the conventional
algorithm decreases from 1.29 µm to 0.45 µm when using the time-shifting algorithm.
Therefore, the effectiveness of the proposed time-shifting algorithm can be verified by these
simulation results. It is worth noting that the deviation of the time-shifting algorithm can be
further decreased to zero theoretically by increasing the segmentation number M of the time
interval. However, an increasing segmentation number yields an increasing computation
time to operate the discrete inverse Fourier transform. This trade-off relationship cannot be
ignored, and a suitable value of the segmentation number should be chosen when utilizing
the proposed time-shifting algorithm. The computing time for one target distance using the
proposed time-shifting algorithm is approximately 80 s, in which 400 times of an inverse
Fourier transformation with different time shifts are conducted.

3.2. Experimental Setup

Figure 6 shows a schematic of the experimental setup for feasibility measurements
of the proposed time-shifting algorithm based on spectrally resolved interferometry. A
mode-locked femtosecond fiber laser source with a center frequency fc of 192.175 THz and
a repetition frequency f rep of 100 MHz, is projected into the beam splitter via a single-mode
fiber. The reflected and transmitted light of the beam splitter is then reflected by two square-
protected silver mirrors, employed as reference and measurement beams, respectively. The
reference mirror is kept stable, while the measurement mirror is translated linearly along
the measurement beam through a single-axis motorized stage (Suruga Seiki, KXC04015-CA,
Shizuoka, Japan). The minimum moving step of this stage is 0.1 µm. Moreover, the position
of the measurement mirror is monitored by a commercial laser encoder (Renishaw, RLD10-
3R, Wotton-under-Edge, UK), whose target retroreflector is mounted on the motorized stage.
The optical interference signal is analyzed by an optical spectrum analyzer (Yokogawa,
AQ6370D, Tokyo, Japan) connected by an optical fiber.
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Figure 6. A schematic of the experimental setup for absolute distance measurements based on
spectrally resolved interferometry. CL—collimating lens, BS—beam splitter, M1—reference mirror,
M2—measurement mirror, M3—retroreflector, and L—length difference between the measurement
beam and reference beam.

3.3. Experimental Results and Discussion

In the experiment, the optical interference signal within a range of 191.7 THz to
195.2 THz was recorded by an optical spectrum analyzer (OSA) with a resolution of 0.02 nm.
The laser encoder was set to zero at the real zero position to calibrate the moving distance
of the measurement mirror, whose output displacement is employed as the reference
displacement. However, this device can only determine the relative displacement from
position A to position B. In other words, the employed commercial laser encoder cannot
directly output the absolute displacement between the measured mirror and the real
zero position. If the output of the laser encoder is desired to be worked as the reference
displacement with an absolute type, the real zero position must be determined in advance
and set as the zero for the laser encoder. A precise determination of the real zero position
is the baseline to generate a reliable absolute type of reference distance. The real zero
position is defined as the length of the measurement and reference arms are equal to each
other in this position. In our experiment, the real zero position is determined by searching
for which step the motorized stage is at when the power summation of all available
wavelengths in the spectrum can reach the maximum. It operates based on the assumption
that the phase difference caused by the optical path difference is zero at this real zero
position and constructive interference can be generated for all the wavelengths because
the length of the measurement and reference arms are equal at this position. However,
the accuracy of the real zero position is limited by the minimum available moving step
of the motorized stage as ±0.2 µm (the displacement caused by the target mirror is twice
the movement of the target mirror). In other words, there is a deviation between the
ideal real zero position and the determined zero position. Due to the target mirror being
moved by the motorized stage with a minimum displacement of 0.1 µm and cannot be
further reduced to the infinite minimum, the real zero position is nearly impossible to
reach without any error. Therefore, a small deviation existed in the reference displacement
resulting in a small systematic measurement error. However, this error does not affect the
performance evaluation of the proposed time-shifting algorithm and reflects the advantage
of the spectrally resolved interferometer on the absolute distance measurement in contrast
to the commercial laser encoder.

The detected interference spectrum was processed both by the conventional and
the proposed time-shifting algorithm, and the data processing procedure is explained in
Figure 7. The raw interference spectrum with a reference distance of 500.54 µm as well
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as the source spectrum are shown in Figure 7a. Preprocessing of the raw interference
spectrum is required to remove the noise and other disturbances. The preprocessing
procedures are constructed by the following three steps. First, remove the influence of
the source spectrum S(fk) by dividing the source spectrum directly. Then, performing a
normalization to eliminate the effect of the direct current term ‘1’ and parameter A in the
divided spectrum, which is obtained from the last step. Finally, a spline interpolation is
conducted to the normalized spectrum, and its spectral resolution can be increased based on
it. Although a smaller spectrum resolution can be achieved by using a smaller interpolation
frequency, the required computer memory and computing time for the following inverse
Fourier transformation are both dramatically increased. This trade-off relationship cannot
be ignored. Consequently, we employed a spline interpolation with an interpolation
frequency of 1 GHz to interpolate the interference spectrum, resulting in a deviation during
the following truncation that cannot be neglected. Figure 7b shows the spectrum after
truncating the preprocessed spectrum into integer periods.
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Figure 7. The data processing procedure of experimental data using the time-shifting algorithm.
(a) The black line represents the raw experimental interference spectrum and the blue line represents
the source spectrum, (b) the truncated interference signal after preprocessing, (c) inverse Fourier
transform results of the truncated signal of (b) and the dot black frame highlights the selected time
pulse τ1, (d) amplification of the results in the black frame of (c) and the red frame highlights the
selected time pulse τ1 and its two adjacent time points, i.e., τ1 ± ∆t′, (e) inverse Fourier transform
results of the time-shifting algorithm. Three black circles represent the inverse Fourier transform
results of the original three time points in the red frame of (d) obtained by the conventional algorithm.
The red circles represent the inverse Fourier transform results of a sequence of time points near the
selected time pulse τ1, obtained by the time-shifting algorithm, (f) amplification of the central region
of (e). The real-time delay τ, highlighted as the block red circle, is positioned by searching for the
maximum absolute value of the inverse Fourier transform results among the time-shifting sequence.
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Two pulses in the time domain were achieved after operating an inverse Fourier
transform on the truncated signal, in which the time delay can be selected by a time
window as τ1 = 3.344 ps. For the conventional algorithm, the measurement distance can be
directly calculated by L = 0.5 · c · τ1 = 501.25 µm with a deviation of 0.74 µm towards the
reference distance. However, employing the proposed time-shifting algorithm can improve
the result with higher accuracy by comparing the inverse Fourier transform results of all
available time points near the selected time pulse, which is operated by adding a time shift
parameter ts, as shown in Figure 7e. The three black points represent the original results
obtained by the conventional algorithm, while the red points represent the results of the
proposed time-shifting algorithm. Figure 7f illustrates that a more accurate time pulse can
be located by searching for the inverse Fourier transform that has the maximum absolute
value. The time delay determined by the time-shifting algorithm was τ = 3.340 ps, resulting
in a measurement distance of 500.65 µm with a reduced deviation of 0.11 µm.

To further verify the effectiveness of the proposed time-shifting algorithm, the mea-
surement mirror was moved continuously from 500 to 600 µm with a step of 10 µm. The
optical interference spectrum was recorded repeatedly ten times by the OSA at a certain
position. The measurement results of the conventional and the proposed time-shifting
algorithm were compared in Figure 8.
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Figure 8. A comparison of the experimentally measured displacement of the conventional and
time-shifting algorithm. The black and red lines represent the measured displacement and deviation
from the reference distance, respectively. (a) The measurement displacement and the deviation from
the reference distance of the conventional algorithm, and (b) the measurement displacement and the
deviation from the reference distance of the proposed time-shifting algorithm.

The measurement displacements obtained from both the conventional and the time-
shifting algorithms showed a strong agreement with the reference displacement, as depicted
in Figure 8. The deviation of each measured displacement from the reference value was
determined by averaging the results of ten repetitions of the experiment, and the corre-
sponding standard deviation was also calculated. These standard deviations are presented
as the error bars shown in Figure 8. The average deviation for the conventional algorithm
was 0.91 µm with a standard deviation of 0.46 µm. However, more accurate distance results
could be yielded by the proposed time-shifting algorithm. The average deviation and the
standard deviation of measurement results from the time-shifting algorithm were reduced
to 0.58 µm and 0.20 µm respectively, which was approximately two times smaller than
that of the conventional algorithm. Therefore, the proposed time-shifting algorithm was
verified to be capable of increasing the accuracy of spectrally resolved interferometry.

4. Uncertainty Analysis

The measurement results are also evaluated using measurement uncertainty analysis
based on guides to the expression of uncertainty in measurement (GUM) [50]. The uncer-
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tainty of the absolute distance measurement is mainly composed of the refractive index and
the uncertainty related to the time pulse locating. The standard uncertainty of the absolute
distance measurement can be evaluated by the following equation:

uL =
√
(cn·un)

2 + (cτ1 ·uτ1)
2 + (cts ·uts)

2 + 2·cτ1 ·cts ·cov(τ1, ts) (15)

cn =
−c·(τ1 + ts)

2n2 (16)

cτ1 = cts =
c

2n
(17)

where un, uτ1, and uts are standard uncertainties of n, τ1, and ts. cn, cτ1, and cts are sensitive
coefficients of un, uτ1, and uts. There is a correlation between the parameter τ1 and ts
because the time-shifting parameter ts is employed for compensating the deviation caused
by the selected time pulse τ1. The fourth item of cov(τ1, ts) in Equation (15) represents the
covariance of τ1 and ts.

According to the modified Edlén equation, the air refractive index is influenced by
temperature, air pressure, and relative humidity [51–53]. The combined uncertainty of un
can be calculated by:

un =

√
(ct·ut)

2 +
(
cp·up

)2
+ (ch·uh)

2 (18)

where ct, cp, and ch are sensitivity coefficients of temperature, pressure, and relative hu-
midity. ut, up, and uh are the uncertainty of experimental parameters. The laboratory
environment was controlled strictly, resulting in a fluctuation of 0.1 K, 0.2 hPa, and 1%,
separately. The uncertainty of the refractive index can be calculated to be 1.406 × 10−8, as
shown in Table 1.

Table 1. Summary of uncertainty sources for the refractive index.

Symbol Standard Uncertainty Sensitivity Coefficient |c| · |u|

ut 0.015 K 9.3 × 10−7 1.395 × 10−8

up 0.038 hPa 2.7 × 10−9 1.026 × 10−10

uh 0.204% 8.6 × 10−9 1.754 × 10−9

un 1.406 × 10−8

The standard uncertainties for the selected time pulse and time-shifting parameter
were evaluated based on the measurement results of the repetitive measurements. The
standard uncertainty and the combined uncertainty of the absolute distance measure-
ment are then summarized in Table 2. The expanded uncertainty was 0.71 µm (coverage
factor k = 2, 95% confidence). It can be easily found that the uncertainty of the distance
measurement is primarily attributed to the uncertainty of the selected time pulse and the
time-shifting parameter. It is worth noting that the standard deviation of the time-shifting
parameter is heavily influenced by that of the selected time pulse because the time-shifting
parameter is employed for compensating the deviation caused by the selected time pulse.
The correlation between these two parameters was considered in the uncertainty analysis,
as the covariance item in Equation (15). Therefore, to increase the accuracy of the absolute
distance measurement, the time pulse should be determined with high accuracy, which
can be performed by using a high-resolution spectrometer to truncate the interference
signal accurately.
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Table 2. Summary of uncertainty sources for the distance L.

Source of
Uncertainty Symbol Standard

Uncertainty
Sensitivity
Coefficient |c| · |u| [m]

n un 1.406 × 10−8 −5.013 × 10−4 m 7.048 × 10−12

τ1 uτ1 3.176 × 10−4 ps 1.498 × 108 m/s 4.756 × 10−8

ts uts 3.336 × 10−4 ps 1.498 × 108 m/s 4.997 × 10−8

cov(τ1,ts) −2.914 × 10−30 s2 2 · cτ1 · cts · cov(τ1, ts) −1.305 × 10−13

Combined uncertainty uL 3.550 × 10−7

5. Conclusions

In this paper, we propose a data processing algorithm to improve the accuracy of
spectrally resolved interferometry using a femtosecond laser. The principle of the proposed
time-shifting algorithm was analyzed theoretically, and simulation was operated to clarify
the advantage of this algorithm in increasing the output distance accuracy. A Michelson-
type interferometer setup was established to perform absolute distance measurements using
spectrally resolved interferometry, and the experimental results obtained from the proposed
algorithm and the conventional one were compared. It was verified that employing the
proposed algorithm could achieve more accurate measurement results with a lower average
deviation of 0.58 µm towards reference distance, which was approximately half smaller than
that of the conventional one. The expanded uncertainty of absolute distance measurement
was evaluated as 0.71 µm with a 95% confidence based on GUM.
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