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Abstract: To address the various challenges in aluminum surface defect detection, such as multiscale
intricacies, sensitivity to lighting variations, occlusion, and noise, this study proposes the AluDef-
ClassNet model. Firstly, a Gaussian difference pyramid is utilized to capture multiscale image features.
Secondly, a self-attention mechanism is introduced to enhance feature representation. Additionally,
an improved residual network structure incorporating dilated convolutions is adopted to increase the
receptive field, thereby enhancing the network’s ability to learn from extensive information. A small-
scale dataset of high-quality aluminum surface defect images is acquired using a CCD camera. To
better tackle the challenges in surface defect detection, advanced deep learning techniques and data
augmentation strategies are employed. To address the difficulty of data labeling, a transfer learning
approach based on fine-tuning is utilized, leveraging prior knowledge to enhance the efficiency and
accuracy of model training. In dataset testing, our model achieved a classification accuracy of 97.6%,
demonstrating significant advantages over other classification models.

Keywords: aluminum profile defect detection; gaussian difference pyramid; self-attention mechanism;
transfer learning; residual network; dilated convolution

1. Introduction

The aluminum profile manufacturing industry is a cornerstone sector in the Nanhai
district of Foshan, playing a critically important role in fostering the healthy development
of the local economy. However, with the continual elevation of quality standards for
aluminum profiles on the market, surface defects on aluminum profiles have emerged
as a pressing challenge requiring urgent attention from manufacturers and regulatory
authorities. The surface defects on aluminum profiles not only impact the aesthetic appeal
of the products but also have the potential to lead to performance degradation and even
pose safety hazards [1]. Therefore, quality control and defect detection are of paramount
importance in ensuring product quality and market competitiveness.

Defect detection is a crucial step in ensuring the quality of industrial production [2].
In the evolution of surface defect detection technologies for metals, there has been a pro-
gression from manual inspection to automated detection based on traditional machine
learning algorithms, and further to automated detection based on deep learning algo-
rithms [3]. In many cases, defect detection on product surfaces heavily relies on manual
visual inspection [4]. This method is time-consuming, labor-intensive, and susceptible to
subjective interference. Specifically, the surfaces of aluminum profiles often exhibit textures
similar to defects, making it challenging for the human eye to make accurate judgments.
This not only results in lower detection efficiency but also higher rates of false positives
and false negatives. Moreover, the high-speed production lines in large-scale industrial
manufacturing further complicate defect detection, rendering this method increasingly
inadequate [5].
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Defect classification is a fundamental task in industrial inspection, aiming to identify
the category of defect images [6]. With the advancement of computer vision, defect detec-
tion methods for aluminum profiles have primarily relied on traditional image processing
techniques, such as edge detection [7], texture analysis [8], and shape recognition [9]. The
development of automatic surface defect detection technology [10] has garnered attention
from the academic community as image technology has progressed. In comparison to
manual inspection, automated defect detection systems offer numerous advantages, in-
cluding prolonged continuous operation, consistent detection results, and functionality
in harsh environments involving high temperatures and dust [11]. While these methods
can detect some common surface defects to a certain extent, their effectiveness is limited
when it comes to detecting complex and variable defect types with irregular shapes. Defect
detection based on traditional methods has inherent limitations; for instance, variations in
image illumination, brightness, and quality can significantly impact the results [12].

In recent years, with the continuous development of deep learning technology, image
classification methods based on deep learning have achieved notable success, exemplified
by architectures such as AlexNet [13], VGGNet [14], ResNet [15], DenseNett [16], and others.
Convolutional neural networks (CNNs) have demonstrated remarkable achievements in
image recognition tasks, inspiring considerable exploration of their potential in defect
detection. Numerous scholars have begun to investigate the application of deep learning to
defect detection.

Shakeel et al. [17] introduced an adaptive multiscale attention module for effectively
aligning feature maps. Zhang et al. [18] proposed MCNet, a model employing pyramid
pooling to capture multiscale contextual information. Baffour et al. [19] introduced a
self-attention module focusing on handling spatial positional information in feature maps.
Yang et al. [20] proposed an end-to-end detection method for aluminum profile surface
defects based on ResNet and attention mechanisms. Kou et al. [21] developed an end-
to-end defect detection model based on YOLO-V3, incorporating an anchor-free feature
selection mechanism to choose the most suitable feature scale for model training. They also
introduced specially designed dense convolution blocks to enhance feature information and
reduce computation time. In [22], an algorithm based on Faster R-CNN [23] was proposed,
aiming to achieve the detection of surface defects on aluminum profiles at different scales.

Despite significant advancements being made in deep learning methods for surface
defect detection on aluminum, several challenges persist. For instance, the high cost of
data annotation poses a challenge, as deep learning models require a substantial amount of
labeled training data [24]. Aluminum surface defects are predominantly small targets, with
some being extremely diminutive and closely resembling the background color, making
it challenging for detection models to extract key features [25]. The irregular and highly
variable shapes of aluminum surface defects make it difficult to acquire fundamental
information using traditional convolutional kernels. Disparities in the quantity of different
types of defect images can introduce errors in the training set, subsequently interfering with
model performance. Sparse defect samples in industrial settings make it challenging to
adequately and effectively train the model, resulting in overfitting and poor generalization
performance, ultimately impacting detection accuracy [26].

This study aims to leverage deep learning technology to extract multiscale features
of surface defects on aluminum profiles using a Gaussian difference pyramid architecture.
An adaptive learning module is incorporated to better capture crucial information in
images, enhancing the perception of key areas and thereby improving the accuracy and
generalization capability of aluminum profile defect detection. The ResNet50 model is
employed in transfer learning, capitalizing on its pre-trained feature extraction capabilities
on large-scale image data to expedite the training process on new tasks and enhance model
generalization performance.

Our main contributions can be summarized as follows:

(1) We made a small-scale dataset of surface defects on aluminum profiles using a CCD
camera, which provides high-quality digital image data.
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(2) The model accepts input images through a Gaussian difference pyramid, generating
multiple difference images at different scales. These difference images reflect details
and features of the original image at various spatial scales. Through Gaussian blur-
ring and differencing operations, the extraction and representation of the multiscale
features of the image are facilitated.

(3) The introduction of a self-attention mechanism enables the model to better compre-
hend crucial information in the images. By learning and applying attention weights,
the model can emphasize key features, thereby enhancing detection performance.

(4) The incorporation of a residual network with dilated convolutions, coupled with
transfer learning based on fine-tuning, enhances neural network training efficiency,
addresses the issue of vanishing gradients, and achieves the efficient classification of
aluminum profile defect images in small-scale and imbalanced datasets.

(5) Experimental validation on the task of surface defect detection in aluminum profiles
demonstrates the outstanding performance of the model in terms of accuracy and effi-
ciency. Relative to traditional methods and other deep learning models, it significantly
improves classification accuracy, providing a more reliable solution for industrial
quality control.

The structure of this paper is as follows: Section 1 introduces the theme of aluminum
profile surface defect classification, outlines the current challenges, and proposes the
AluDef-ClassNet model. Section 2 provides an overview of the relevant principles and
methods of the model. Section 3 describes the process of data collection. Section 4 provides
a detailed description of the experimental setup and results analysis. Finally, Section 5
concludes the paper.

2. Principles and Methods Related to the Study

Surface defect detection in aluminum profiles faces multiple challenges in practical
applications. These challenges include variations in the sizes of different aluminum profiles
and defect magnitudes, making it difficult for traditional neural networks to handle such
multiscale scenarios. Additionally, diverse lighting conditions contribute to variations
in the appearance of aluminum profile surfaces, rendering traditional models sensitive
to lighting changes. Environmental noise and device-related noise during the image
acquisition process can impact image quality, with traditional methods being susceptible
to such influences. Therefore, advanced deep learning techniques are required for surface
defect detection in aluminum profiles to address these complexities and diversities. To this
end, we propose a network model called AluDef-ClassNet to improve detection accuracy.
This model integrates Gaussian difference pyramids, self-attention mechanisms, and dilated
convolutions to enhance the capture and representation of image features. This section will
introduce the construction principles and methods of the AluDef-ClassNet model, as well
as its application in aluminum extrusion defect detection.

2.1. Construction of Gaussian Difference Pyramid

The Gaussian difference pyramid, as an effective method, finds widespread applica-
tions in image processing, particularly demonstrating outstanding performance in captur-
ing image features in a multiscale manner. When addressing real-world image problems,
objects often appear at different scales, and the utilization of the Gaussian difference pyra-
mid allows for a more comprehensive identification and analysis of these features [27]. By
applying Gaussian blurring and downsampling operations to the image, it constructs an
image pyramid at different scales, effectively capturing and representing information about
the image across multiple scales. This proves instrumental in addressing practical problems
involving scale variations, such as target detection and image segmentation. The multiscale
feature extraction approach exhibits significant advantages in dealing with complex scenes
and multiscale objects, providing a powerful tool for the successful implementation of
image processing tasks.
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The Gaussian difference pyramid is constructed by computing the difference between
adjacent levels of images in the Gaussian pyramid, as illustrated in Figure 1. It is an
image processing technique that initially involves the application of Gaussian blur filters
at each level, creating a set of images with varying degrees of blurring [28]. These images
constitute the Gaussian pyramid. Subsequently, the difference between adjacent scale-level
images is computed to form difference images, containing detailed information about the
image at different scales. These difference images collectively constitute the Gaussian
difference pyramid.
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Figure 1. Structure diagram of the Gaussian difference pyramid.

By using the Gaussian difference pyramid to decompose the image, multiple images
with different resolutions can be generated. The Gaussian difference pyramid comprises
multiple pyramids, each containing several layers. Each pyramid is built on the foundation
of a Gaussian pyramid, with its levels composed of a series of Gaussian pyramid layers [29].
The decomposition process of the Gaussian difference pyramid is outlined as follows:

Step 1: Initialize a = 0.
Step 2: Upsample the standard image A(x, y) to obtain the first layer image g0,0 of the

Gaussian pyramid.
Step 3: Initialize b = 0 and x = 0.
Step 4: Convolve the Gaussian kernel Gx with the image ga,0 [30]:

Gx(x, y, σx) =
1

2πσ2
x

e
(x−x0)

2+(y−y0)
2

2σ2
x (1)

ga,b+1(x, y) = ga,b(x, y)⊗ Gx(x, y, σx) (2)

where σx is the smoothing parameter.
Step 5: Obtain the Gaussian difference image by subtracting Gaussian image ga,b(x, y)

from Gaussian image ga,b+1(x, y) [31]:

da,x(x, y) = ga,b(x, y)− ga,b+1(x, y) (3)

Step 6: b = b + 1, x = x + 1, repeat Steps 4 and 5 iteratively. When b > n − 1 and
x > n − 2, proceed to Step 7.

Step 7: Downsample image ga,0 to obtain the Gaussian image of the a + 1 layer. If
a = a + 1, return to Step 3. The decomposition process concludes when condition a > m − 1
is satisfied.
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For the Gaussian difference pyramid, the parameters are set as follows: the input
image size is 224 × 224, the number of Gaussian kernels is three, each Gaussian kernel size is
3 × 3, and the number of pyramid layers is three. At each level of the pyramid, the original
image is first subjected to Gaussian blurring to reduce noise and details. Subsequently, the
smoothed image is downsampled with a downsampling stride of two. For the i-th level of
the pyramid, the output size can be calculated using the following Formula (4):

Hi =
H
si , Wi =

W
si (4)

where Hi and Wi are, respectively, the height and width of the i-th layer of the pyramid
image, s is the downsampling stride, and H × W is the size of the input image. Thus, the
resulting downsampling image sizes are 112 × 112, 56 × 56, and 28 × 28, respectively.
Through the difference calculation, the local features of the image at different scales can
be obtained, resulting in images of sizes 112 × 112 and 56 × 56. In the fusion module, the
56 × 56 images are enlarged to 112 × 112 using bilinear interpolation and then concatenated
horizontally with the 112 × 112 images to obtain a 224 × 112 image. Subsequently, the
obtained 224 × 112 image is concatenated vertically with another 224 × 112 image to obtain
a 224 × 224 image. Finally, the difference images are pixel-wise weighted and summed
with the original images to obtain the fused feature map.

2.2. Self-Attention Mechanism Module

The self-attention mechanism [32] is a critical technique in deep learning for handling
image data. It allows the model to dynamically allocate attention weights to different
positions during the learning process. By computing the relevance of each position in
the input image with other positions, the self-attention mechanism enables the model to
flexibly capture spatial relationships in the input image, enhancing the modeling capability
for complex image features. This technique has been widely applied in areas such as image
classification and object detection.

Here, initially, the feature map is fed into a small convolutional layer, resulting in a
feature map with the same size as the original one but with more channels. Subsequently, a
Sigmoid activation function is applied to map the values of each channel in this feature
map to the range of 0 to 1, forming a weight map. This map informs the model about which
channels or features are more important in subsequent computations. Finally, this weight
map is applied to the original feature map by adjusting the weight of the features through
the multiplication of each channel’s feature values with the corresponding attention weight
at that position. The definition is provided by Formula (5).

Z = So f tmax(
CM · Wq · (CM · Wk)

T

√
dk

) · (CM · Wν) (5)

where CM is the input feature map, and Wq, Wk, and Wv are the learnable weight matrices
used for linearly transforming the input features to compute queries, keys, and values.

√
dk

is the scaling factor, where dk represents the dimension of the keys. The Softmax function
normalizes the computed attention weights to ensure that the sum of the weights is one.
“·” denotes matrix multiplication. The entire process is illustrated in Figure 2.

This is akin to allowing the model to automatically determine which features are more
conducive to the current task, thereby enhancing the model’s performance, especially when
dealing with complex tasks and images with diverse features. In our aluminum profile
defect detection model, the self-attention mechanism aids in better understanding the
correlation of different regions in the image, improving the accuracy of defect detection.
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2.3. Residual Network Module

In the residual block, initially proposed by Kaiming He et al. [15], two types of residual
blocks are usually included, as shown in Figure 3, which introduces the concept of skipping
connections. The key idea of the residual block is to allow for the direct transmission of
information between different layers in a neural network, rather than passing through
multiple non-linear layers as in traditional neural networks. This means that during the
backpropagation process, gradients can more easily propagate back through the network,
alleviating the vanishing gradient problem and enabling the training of very deep networks.
This innovation has had a significant impact on the field of deep learning, making it easier
to train and optimize deeper and more complex neural network models, thereby improving
the performance of tasks such as image recognition and other computer vision tasks.
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2.3.1. Transfer Learning Based on Fine-Tuning

In the field of deep learning, constructing a well-performing neural network model
typically requires a significant amount of training data. However, not all tasks have access
to a sufficient quantity of labeled data, and data acquisition often comes with high costs.
To address the challenge of difficult data labeling, both semi-supervised learning [29,30]
and transfer learning have been proposed as effective solutions. In transfer learning, this
approach involves loading pre-trained model parameters from a similar task into a new
task, achieving parameter initialization. This reduces the reliance on training data, allowing
satisfactory model performance to be achieved with less data and training iterations.
Common datasets used for pre-training models include ImageNet, which comprises over
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1.2 million images. Various widely used models have been trained on this dataset, making
it suitable for transfer learning and facilitating more efficient model training.

This study aims to classify images of defects in aluminum profiles. The data used
are sourced from the actual production process of the aluminum profile manufacturing
industry. However, the dataset is relatively small and exhibits class imbalance. Given
these characteristics of the dataset, to enhance training accuracy and speed, we employed
a transfer learning approach based on fine-tuning to train the proposed model. This
strategy helps leverage existing knowledge under limited data conditions, enabling rapid
and efficient model training to better adapt to the task of classifying images of defects in
aluminum profiles.

In classifying images of defects on aluminum profiles, we chose to improve upon the
ResNet network, which has outstanding classification performance. Specifically, ResNet50
was selected as the base network. This network comprises four major convolutional blocks,
each containing three, four, six, and three small residual modules, respectively. Each
residual module contains three layers, and when the input size is a 224 × 224 image, the
output sizes of the convolutional blocks are 56 × 56, 28 × 28, 14 × 14, and 7 × 7, as detailed
in Table 1, which describes the structure of the ResNet50 network.

Table 1. The structure of the ResNet50 network.

Model Output Size Specific Layer

Convolutional block 1 56 × 56
1 × 1, 64

3 × 3, 64
1 × 1, 256

× 3

Convolutional block 2 28 × 28
1 × 1, 128

3 × 3, 128
1 × 1, 512

× 4

Convolutional block 3 14 × 14
1 × 1, 256

3 × 3, 256
1 × 1, 1024

× 6

Convolutional block 4 7 × 7
1 × 1, 512

3 × 3, 512
1 × 1, 2048

× 3

2.3.2. Dilated Convolution

Dilated convolution [33], compared to regular convolution, introduces an additional
hyperparameter called dilation rate. The size of the dilation rate affects the receptive field
of the convolution. The calculation formula for dilated convolution is as follows:

m = k + (k − 1)× (v − 1) (6)

o =
i − 2p − m

l
+ 1 (7)

In the equation, k represents the size of the convolution kernel in the original con-
volution, v is the dilation rate, m is the effective size of the dilated convolution kernel, p
is the padding during convolution, l is the stride, i is the input size, and o is the output
size. Considering the potential issues of local information loss or weak correlation when
selecting information over long distances, in this study, the original convolution kernel size
for dilated convolution is set to three, as illustrated in Figure 4.
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2.4. Construction of the AluDef-ClassNet model 
Based on Sections 2.1–2.3, we propose the AluDef-ClassNet network. The overall ar-

chitecture of this network is illustrated in Figure 6. 
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For the three convolutional blocks in the ResNet50 structure with output sizes of
56 × 56, 28 × 28, and 14 × 14, the output of each block is fed into an dilated convolutional
layer to enhance the model’s feature extraction capability, as illustrated in Figure 5.
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2.4. Construction of the AluDef-ClassNet Model

Based on Sections 2.1–2.3, we propose the AluDef-ClassNet network. The overall
architecture of this network is illustrated in Figure 6.
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For the acquisition of the surface defect images of the aluminum profiles, We use a 
Basler ace acA1300-30gm camera from BASLER in Aachen, Germany, as illustrated in Fig-
ure 7. The Basler ace acA1300-30gm utilizes the Sony ICX445 CCD sensor, which is a com-
monly used imaging sensor technology in digital cameras and machine vision systems, 
providing high-quality images [34]. The CCD sensor is composed of an array of tiny pho-
tosensitive units (pixels). Each pixel contains a photodiode that converts incident light into 
electric charge. When light strikes the photodiode, it generates electrons proportional to 
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3. Dataset
3.1. Composition of the Hardware

For the acquisition of the surface defect images of the aluminum profiles, We use
a Basler ace acA1300-30gm camera from BASLER in Aachen, Germany, as illustrated in
Figure 7. The Basler ace acA1300-30gm utilizes the Sony ICX445 CCD sensor, which is a
commonly used imaging sensor technology in digital cameras and machine vision systems,
providing high-quality images [34]. The CCD sensor is composed of an array of tiny photo-
sensitive units (pixels). Each pixel contains a photodiode that converts incident light into
electric charge. When light strikes the photodiode, it generates electrons proportional to the
intensity of the light. These charges are then moved via charge transfer and ultimately read
out and converted into digital signals, forming an image. The image data are transmitted
to the connected computer through its GigE interface.
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The Basler ace acA1300-30gm camera has a resolution of 1280 × 1024 pixels. It can
capture images in real-time continuous mode or through trigger mode. In this study, we
utilized real-time continuous image acquisition, continuously capturing images at fixed
time intervals. This continuous mode is suitable for applications requiring continuous
monitoring and detection, such as online quality inspection, surveillance, and real-time
image processing.

Image acquisition primarily consists of a light source and an industrial camera. These
complementary hardware components significantly influence imaging quality, which di-
rectly impacts the efficiency of machine vision-based defect recognition systems when
running online. In our setup, we employed “cold light” sources using LED light-emitting
diodes (LEDs). The role of the light source in the acquisition system is to enhance the
detectable features of surface defects on aluminum profiles while suppressing irrelevant in-
formation in the surface images, thereby minimizing noise and environmental interference
in the captured images to ensure image quality and stability.

During the acquisition process, the camera is vertically mounted at a fixed position
at an appropriate distance from the object being inspected, allowing it to capture images
of the entire object surface. We continuously monitor the image quality and visibility of
defects in real-time, adjusting the position and angle of the light source as needed to ensure
continuous high-quality image capture. The angles and directions of the light source are
carefully adjusted to highlight the details and features of the aluminum profile surface to
the fullest extent possible. The specific setup is illustrated in Figure 8.
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3.2. Construction of the Dataset

After obtaining registration parameters, image data of the target are collected without
changing the camera position. In this study, we utilized a sliding window of 224 × 224 pixels
to extract the portions of the entire surface defect images captured by the CCD camera. The
selection of complete defect images was performed to establish a standardized dataset of
small aluminum profile surface defect images. Additionally, techniques such as image flip-
ping, rotation, scaling, and translation were employed to augment the standardized image
dataset, resulting in a total of 1380 standard sample images. These images were mainly
categorized into seven classes, including non-conductive defects, scratches, transverse
concave layer cracks, pinholes, indentations, and defect-free (as shown in Figure 9).

The dataset is divided into training, validation, and testing sets. The training set
consists of 800 images, the validation set contains 180 images, and the testing set comprises
400 images, as detailed in Table 2.

Table 2. Data distribution.

Data
Distribution

Non-
Conductive Scratches Orange Peel Stains Pinholes Dents Defect-Free Total

Training set 40 136 90 209 248 77 100 900
Validation set 10 30 20 50 50 20 20 200

Test set 25 77 54 96 105 43 50 450
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4.1. Setup Details 

The experiments in this study were conducted on the Ubuntu 20.04.2 LTS operating 
system using the PyTorch deep learning framework and Python3.10 as the programming 
language. The CPU employed was the Intel Core i5-12490F, and the GPU utilized was the 
NVIDIA GeForce RTX3080. 

During the training process, the model employed a transfer learning approach. Spe-
cifically, the model loaded the pre-trained parameters of the ResNet50 network on the 
ImageNet dataset, excluding the parameters of the fully connected layers used for classi-
fication in the ResNet50 network. For these unloaded fully connected layer parameters, 
the model utilized normal initialization for parameter initialization. This approach aims 
to leverage the universally learned features on the large-scale ImageNet dataset to expe-
dite the model’s learning process for aluminum profile surface defect images. Simultane-
ously, normal initialization is applied to adapt to the specific requirements of the new 
task. 

4.2. Algorithm Evaluation Indicators 
When dealing with a six-classification problem, we can use the concepts of true pos-
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4. Experimental Section
4.1. Setup Details

The experiments in this study were conducted on the Ubuntu 20.04.2 LTS operating
system using the PyTorch deep learning framework and Python3.10 as the programming
language. The CPU employed was the Intel Core i5-12490F, and the GPU utilized was the
NVIDIA GeForce RTX3080.

During the training process, the model employed a transfer learning approach. Specif-
ically, the model loaded the pre-trained parameters of the ResNet50 network on the Ima-
geNet dataset, excluding the parameters of the fully connected layers used for classification
in the ResNet50 network. For these unloaded fully connected layer parameters, the model
utilized normal initialization for parameter initialization. This approach aims to leverage
the universally learned features on the large-scale ImageNet dataset to expedite the model’s
learning process for aluminum profile surface defect images. Simultaneously, normal
initialization is applied to adapt to the specific requirements of the new task.

4.2. Algorithm Evaluation Indicators

When dealing with a six-classification problem, we can use the concepts of true posi-
tives (TPs), true negatives (TNs), false positives (FPs), and false negatives (FNs) to calculate
various performance metrics. TPs and FPs represent true positives and false positives,
respectively, while TNs and FNs represent true negatives and false negatives, respectively.

Accuracy (ACC) refers to the proportion of correctly classified samples by the model
out of the total number of samples. It is calculated as the sum of all the TPs for each class
divided by the total number of samples. The accuracy indicates the overall performance of
the classification.

Recall measures the proportion of correctly predicted positives out of all the true
positives. For each class, recall is calculated as the TPs for that class divided by the sum
of the TPs and FNs for that class. Recall can be calculated for each class, and then the
macro-average (simple average) or micro-average (global statistics) can be applied.

Precision gauges the proportion of true positives out of all the samples predicted as
positive by the model. For each class, precision is calculated as TPs divided by the sum of
the TPs and FPs for that class. Average precision (AP) is a metric mainly used for tasks like
object detection. In multi-class problems, mean average precision (mAP) can be calculated
using the area under the precision–recall curve (AUC-PR). For each class, we calculate the
area under the precision–recall curve and then take the average.

The F1 score is the harmonic mean of the precision and recall. For each class, the F1
score can be calculated using Formula (8). The macro-average or micro-average of the F1
score provides an overall assessment of the model’s performance.

F1 =
2 × Precision × Recall

Precision + Recall
(8)
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4.3. Analysis of Experimental Results

In this experiment, to obtain the optimal hyperparameters for the model, we explored
different learning rates, as shown in Figure 10a. To achieve higher accuracy, we compared
three optimization algorithms: AdamW [35], Adam [36], and SGD [37], as illustrated in
Figure 10b.
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We utilized the AdamW [35] optimization algorithm to update the model’s weights 
and minimize the loss function. Each batch consisted of 128 images. The weight decay was 
set to 0.001, the momentum factor to 0.9, the learning rate to 0.001, and the learning strat-
egy was set to STEP. In GPU mode, a normalization factor was used to accelerate the train-
ing process, and the maximum number of training iterations was set to 100. 

The accuracy curve, training loss curve, and validation loss curve of the AluDef-
ClassNet model during the training process are shown in Figure 11. From the graph, it 
can be observed that with an increase in the number of iterations, the model’s accuracy on 
the validation set continuously improves, and the loss consistently decreases. The model 
reaches a satisfactory convergence, achieving 90% accuracy at 12 iterations. 

Figure 10. Comparison of different learning rates and optimization methods. (a) Comparison of
different learning rates. (b) Comparison of different optimization methods.

We utilized the AdamW [35] optimization algorithm to update the model’s weights
and minimize the loss function. Each batch consisted of 128 images. The weight decay
was set to 0.001, the momentum factor to 0.9, the learning rate to 0.001, and the learning
strategy was set to STEP. In GPU mode, a normalization factor was used to accelerate the
training process, and the maximum number of training iterations was set to 100.

The accuracy curve, training loss curve, and validation loss curve of the AluDef-
ClassNet model during the training process are shown in Figure 11. From the graph, it
can be observed that with an increase in the number of iterations, the model’s accuracy on
the validation set continuously improves, and the loss consistently decreases. The model
reaches a satisfactory convergence, achieving 90% accuracy at 12 iterations.
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The confusion matrix obtained by the model on the test set is presented in Table 3, 
serving as a crucial tool for evaluating prediction accuracy. The confusion matrix is a 
square matrix representing the relationship between actual and predicted categories. 
Rows of the matrix correspond to true categories, while columns represent predicted cat-
egories. Each element in the matrix indicates the number of instances classified into com-
binations of true and predicted categories. 

Table 3. Confusion matrix. 
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The present study employed a progressive ablation experiment to further validate 
the effectiveness of the proposed model. Initially, a ResNet50 model with dilated convo-
lutions was utilized as the baseline model. Subsequently, the Gaussian difference pyramid 
structure, self-attention mechanism, and dilated convolutions were progressively added, 
and ablation experiments were conducted accordingly. The results are summarized in Ta-
ble 4. 
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subtle and inconspicuous defects. The results in the third row indicate that embedding 
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The confusion matrix obtained by the model on the test set is presented in Table 3,
serving as a crucial tool for evaluating prediction accuracy. The confusion matrix is a square
matrix representing the relationship between actual and predicted categories. Rows of the
matrix correspond to true categories, while columns represent predicted categories. Each
element in the matrix indicates the number of instances classified into combinations of true
and predicted categories.
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Table 3. Confusion matrix.

Predicted to Be
Non-Conductive

Predicted to
Be Scratches

Predicted to Be
Orange Peel

Predicted to
Be Stains

Predicted to
Be Pinholes

Predicted to
Be Dents

Predicted to
Be Defect-Free

Non-conductive 24 1 0 0 0 0 0
Scratches 1 76 0 0 0 0 1

Orange peel 0 0 52 1 1 0 1
Stains 0 1 0 94 0 1 0

Pinholes 1 1 0 0 103 0 1
Dents 0 0 0 1 0 42 0

Defect-free 0 0 1 0 0 0 49

The present study employed a progressive ablation experiment to further validate the
effectiveness of the proposed model. Initially, a ResNet50 model with dilated convolutions
was utilized as the baseline model. Subsequently, the Gaussian difference pyramid structure,
self-attention mechanism, and dilated convolutions were progressively added, and ablation
experiments were conducted accordingly. The results are summarized in Table 4.

Table 4. Ablation experiment.

Method F1/% Recall/% Precision/%

Baseline 92.2 90.2 94.3
Baseline + Gaussian difference pyramid 86.27 83.76 94.79

Baseline + Gaussian difference pyramid + self-attention 88.06 86.07 95.93
Baseline + dilated convolution 87.26 85.97 94.43

AluDef-ClassNet 89.26 88.69 97.6

Table 2’s second row demonstrates that the proposed Gaussian difference pyramid
module effectively enhances the model’s performance. This is attributed to its capability to
capture multiscale image features, thereby improving the model’s ability to discern subtle
and inconspicuous defects. The results in the third row indicate that embedding the self-
attention mechanism during feature extraction significantly boosts the defect recognition
performance. Additionally, the fourth row reveals a slight improvement in accuracy by
incorporating a dilated convolution within the residual block. The integration of the
Gaussian difference pyramid, self-attention mechanism, and enhanced residual networks
has collectively resulted in performance enhancement.

We compared the accuracy of our model with other models, as shown in Figure 12.
After 100 iterations, AlexNet [13], VGG [14], ResNet-18 [15], ResNet-50 [38], ResNet-101 [39],
YOLOV5 [40], and AluDef-ClassNet achieved classification accuracies of 87.5%, 86.6%,
91.8%, 94.3%, 93.7% 94.1%, and 97.6%, respectively. Therefore, this model can effectively
identify and classify different types of defects on the aluminum surface, demonstrating
high performance and reliability.

To investigate the impact of different modules on network performance, five evaluation
metrics were introduced in this study: feature memory, computational capability (number
of floating-point operations per second (FLOPs)), recall rate, F1 score, and mAP accuracy.
AluDef-ClassNet was compared with six popular classical networks. Table 5 presents
detailed comparison results.

The results above fully demonstrate that this model improves the effectiveness and
robustness of defect detection. The Gaussian difference pyramid and self-attention mech-
anism contribute to a better understanding of the correlation in different regions of the
image. The improved residual network can capture broader contextual information, aiding
in handling global features in the image, and enhance the accuracy of defect detection.
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Table 5. Comparison of the comprehensive performance of different networks.

Model Feature Memory Number of Floating-Point
Operations (FLOPs) Recall F1 mAP

AlexNet 96 MB 0.72 GFLOPs 82.3% 84.8% 87.2%
VGG 95 MB 15.5 GFLOPs 81.9% 84.2% 85.2%

Resnet-18 11 MB 1.8 GFLOPs 87.6% 89.7% 92.1%
Resnet-50 155 MB 10 GFLOPs 90.2% 92.2% 95.2%

ResNet-101 305 MB 19.6 GFLOPs 89.8% 91.7% 93.6%
YOLOV5 217 MB 11.2 GFLOPs 90.5% 92.2% 95.7%

AluDef-ClassNet 235 MB 15.2 GFLOPs 94.2% 95.4% 98.6%

5. Conclusions

This study focuses on the classification of surface defects in aluminum profiles, propos-
ing the AluDef-ClassNet model. Through using the Gaussian difference pyramid, the self-
attention mechanism, and the improved residual network, the model effectively addresses
challenges such as multiscale variations, lighting changes, occlusions, and noise encoun-
tered in aluminum profile surface defect detection. The experimental results demonstrate
that the model significantly surpasses classical models in various performance metrics,
exhibiting high classification accuracy and robustness. However, it is noted that insufficient
sample quantities may impact the detection performance for specific defect categories,
despite the application of data augmentation. Therefore, while AluDef-ClassNet brings a
notable breakthrough to surface defect detection in aluminum profiles, attention to sample
distribution and data scale effects on model performance remains essential in practical
applications. Future research could focus on further optimizing model structures, exploring
larger datasets, and addressing extreme sample distributions to enhance the model’s robust-
ness and generalization performance. This study provides valuable empirical insights for
the application of deep learning in aluminum profile surface defect detection and outlines
directions for future research.

Author Contributions: Conceptualization, Y.S.; methodology, Y.S., S.F. and H.S.; software, Y.S., S.F.
and Q.Z.; validation, S.F. and L.Z.; formal analysis, H.S. and L.Z.; investigation, L.Z.; resources, Q.Z.;
data curation, S.F.; writing—original draft, H.S., S.F. and L.Z. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was funded by the Basic Research Project of Liaoning Provincial Department
of Education “Training and Application of Multimodal Deep Neural Network Models for Vertical
Fields”, grant number JYTMS20231160, and Research on the Construction of a New Artificial Intelli-



Sensors 2024, 24, 2914 15 of 16

gence Technology and High Quality Education Service Supply System in the 14th Five Year Plan for
Education Science in Liaoning Province, 2023–2025, grant number JG22DB488.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data are contained within the article.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Duan, C.; Zhang, T. Two-Stream Convolutional Neural Network Based on Gradient Image for Aluminum Profile Surface Defects

Classification and Recognition. IEEE Access 2020, 8, 172152–172165. [CrossRef]
2. He, Y.; Song, K.; Meng, Q.; Yan, Y. An End-to-End Steel Surface Defect Detection Approach via Fusing Multiple Hierarchical

Features. IEEE Trans. Instrum. Meas. 2020, 69, 1493–1504. [CrossRef]
3. Choi, E.; Schuetz, A.; Stewart, W.F.; Sun, J. Using recurrent neural network models for early detection of heart failure onset. J. Am.

Med. Inform. Assoc. 2017, 24, 361–370. [CrossRef]
4. Wei, X.; Yang, Z.; Liu, Y.; Wei, D.; Jia, L.; Li, Y. Railway track fastener defect detection based on image processing and deep

learning techniques: A comparative study. Eng. Appl. Artif. Intell. 2019, 80, 66–81. [CrossRef]
5. He, H.; Yuan, M.; Liu, X. Research on Surface Defect Detection Method of Metal Workpiece Based on Machine Learning. In

Proceedings of the 2021 6th International Conference on Intelligent Computing and Signal Processing (ICSP), Xi’an, China, 9–11
April 2021; pp. 881–884.

6. He, Y.; Wen, X.; Xu, J. A Semi-Supervised Inspection Approach of Textured Surface Defects under Limited Labeled Samples.
Coatings 2022, 12, 1707. [CrossRef]

7. Sun, R.; Lei, T.; Chen, Q.; Wang, Z.; Du, X.; Zhao, W.; Nandi, A.K. Survey of Image Edge Detection. Front. Signal Process. 2022, 2,
826967. [CrossRef]

8. Ramola, A.; Shakya, A.K.; Van Pham, D. Study of statistical methods for texture analysis and their modern evolutions. Eng. Rep.
2020, 2, e12149. [CrossRef]

9. Kumar, V.; Pandey, S.; Pal, A.; Sharma, S. Edge Detection Based Shape Identification. arXiv 2016, arXiv:1604.02030.
10. Tian, S.; Huang, P.; Ma, H.; Wang, J.; Zhou, X.; Zhang, S.; Zhou, J.; Huang, R.; Li, Y. CASDD: Automatic Surface Defect Detection

Using a Complementary Adversarial Network. IEEE Sens. J. 2022, 22, 19583–19595. [CrossRef]
11. Yun, J.P.; Shin, W.C.; Koo, G.; Kim, M.S.; Lee, C.; Lee, S.J. Automated defect inspection system for metal surfaces based on deep

learning and data augmentation. J. Manuf. Syst. 2020, 55, 317–324. [CrossRef]
12. Wang, Y.; Wei, Y.-S.; Wu, Z.-Z.; He, Z.-H.; Wang, K.; Ding, Z.-S.; Zou, L. Adaptive convolutional neural network for aluminum

surface defect detection. Comput. Mater. Sci. 2023, 227, 112262. [CrossRef]
13. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet classification with deep convolutional neural networks. Commun. ACM 2017,

60, 84–90. [CrossRef]
14. Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv 2015, arXiv:1409.1556.
15. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the 2016 IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.
16. Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. Densely Connected Convolutional Networks. In Proceedings of the

2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 2261–2269.
17. Shakeel, M.S.; Zhang, Y.; Wang, X.; Kang, W.; Mahmood, A. Multi-scale attention guided network for end-to-end face alignment

and recognition. J. Vis. Commun. Image Represent. 2022, 88, 103628. [CrossRef]
18. Zhang, D.; Song, K.; Xu, J.; He, Y.; Niu, M.; Yan, Y. MCnet: Multiple Context Information Segmentation Network of No-Service

Rail Surface Defects. IEEE Trans. Instrum. Meas. 2021, 70, 5004309. [CrossRef]
19. Baffour, A.A.; Qin, Z.; Wang, Y.; Qin, Z.; Choo, K.-K.R. Spatial self-attention network with self-attention distillation for fine-grained

image recognition. J. Vis. Commun. Image Represent. 2021, 81, 103368. [CrossRef]
20. Yang, L.; Gao, G.; Wu, M.; Li, J. Automatic Defect Recognition Method of Aluminium Profile Surface Defects. In Proceedings of

the 7th International Conference on Robotics and Artificial Intelligence, Guangzhou, China, 19–22 November 2021; pp. 21–25.
[CrossRef]

21. Kou, X.; Liu, S.; Cheng, K.; Qian, Y. Development of a YOLO-V3-based model for detecting defects on steel strip surface.
Measurement 2021, 182, 109454. [CrossRef]

22. Wei, R.; Bi, Y. Research on Recognition Technology of Aluminum Profile Surface Defects Based on Deep Learning. Materials 2019,
12, 1681. [CrossRef]

23. Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. IEEE
Trans. Pattern Anal. Mach. Intell. 2017, 39, 1137–1149. [CrossRef] [PubMed]

24. Yu, F.; Seff, A.; Zhang, Y.; Song, S.; Funkhouser, T.; Xiao, J. LSUN: Construction of a Large-scale Image Dataset using Deep
Learning with Humans in the Loop. arXiv 2016, arXiv:1506.03365.

https://doi.org/10.1109/ACCESS.2020.3025165
https://doi.org/10.1109/TIM.2019.2915404
https://doi.org/10.1093/jamia/ocw112
https://doi.org/10.1016/j.engappai.2019.01.008
https://doi.org/10.3390/coatings12111707
https://doi.org/10.3389/frsip.2022.826967
https://doi.org/10.1002/eng2.12149
https://doi.org/10.1109/JSEN.2022.3202179
https://doi.org/10.1016/j.jmsy.2020.03.009
https://doi.org/10.1016/j.commatsci.2023.112262
https://doi.org/10.1145/3065386
https://doi.org/10.1016/j.jvcir.2022.103628
https://doi.org/10.1109/TIM.2020.3040890
https://doi.org/10.1016/j.jvcir.2021.103368
https://doi.org/10.1145/3505688.3505692
https://doi.org/10.1016/j.measurement.2021.109454
https://doi.org/10.3390/ma12101681
https://doi.org/10.1109/TPAMI.2016.2577031
https://www.ncbi.nlm.nih.gov/pubmed/27295650


Sensors 2024, 24, 2914 16 of 16

25. Chen, K.; Zeng, Z.; Yang, J. A deep region-based pyramid neural network for automatic detection and multi-classification of
various surface defects of aluminum alloys. J. Build. Eng. 2021, 43, 102523. [CrossRef]

26. Zhang, Y.; Liu, X.; Wa, S.; Chen, S.; Ma, Q. GANsformer: A Detection Network for Aerial Images with High Performance
Combining Convolutional Network and Transformer. Remote Sens. 2022, 14, 923. [CrossRef]

27. Shao, Y.; Fan, S.; Sun, H.; Tan, Z.; Cai, Y.; Zhang, C.; Zhang, L. Multi-Scale Lightweight Neural Network for Steel Surface Defect
Detection. Coatings 2023, 13, 1202. [CrossRef]

28. Bergstrom, A.C.; Conran, D.; Messinger, D.W. Gaussian Blur and Relative Edge Response. arXiv 2023, arXiv:2301.00856.
29. Lowe, D.G. Object recognition from local scale-invariant features. In Proceedings of the Seventh IEEE International Conference

on Computer Vision, Kerkyra, Greece, 20–27 September 1999; Volume 2, pp. 1150–1157.
30. Simoncelli, E.P.; Freeman, W.T. The steerable pyramid: A flexible architecture for multi-scale derivative computation. In

Proceedings of the International Conference on Image Processing, Washington, DC, USA, 23–26 October 1995; Volume 3,
pp. 444–447.

31. El-Sennary, H.A.E.-F.; Hussien, M.E.; Ali, A.E.-M.A. Edge Detection of an Image Based on Extended Difference of Gaussian. Am.
J. Comput. Sci. Technol. 2019, 2, 35–47. [CrossRef]

32. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.; Polosukhin, I. Attention Is All You Need.
arXiv 2023, arXiv:1706.03762.

33. Yu, F.; Koltun, V.; Funkhouser, T. Dilated Residual Networks. In Proceedings of the 2017 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 636–644.

34. Mehta, S.; Patel, A.; Mehta, J. CCD or CMOS Image sensor for photography. In Proceedings of the 2015 International Conference
on Communications and Signal Processing (ICCSP), Melmaruvathur, India, 2–4 April 2015; pp. 291–294.

35. Loshchilov, I.; Hutter, F. Fixing Weight Decay Regularization in Adam. arXiv 2019, arXiv:1711.05101.
36. Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. arXiv 2017, arXiv:1412.6980.
37. Ruder, S. An overview of gradient descent optimization algorithms. arXiv 2017, arXiv:1609.04747.
38. Reddy, A.S.B.; Juliet, D.S. Transfer Learning with ResNet-50 for Malaria Cell-Image Classification. In Proceedings of the 2019

International Conference on Communication and Signal Processing (ICCSP), Chennai, India, 4–6 April 2019; pp. 945–949.
39. Soumya, D.R.; Reddy, D.L.K.; Nagar, A.; Rajpoot, A.K. Enhancing Brain Tumor Diagnosis: Utilizing ResNet-101 on MRI Images

for Detection. In Proceedings of the 2023 2nd International Conference on Vision Towards Emerging Trends in Communication
and Networking Technologies (ViTECoN), Vellore, India, 5–6 May 2023; pp. 1–5.
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