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Abstract: Robot-Assisted Minimally Invasive Surgery (RAMIS) marks a paradigm shift in surgical
procedures, enhancing precision and ergonomics. Concurrently it introduces complex stress dynamics
and ergonomic challenges regarding the human–robot interface and interaction. This study explores
the stress-related aspects of RAMIS, using the da Vinci XI Surgical System and the Sea Spikes model as
a standard skill training phantom to establish a link between technological advancement and human
factors in RAMIS environments. By employing different physiological and kinematic sensors for
heart rate variability, hand movement tracking, and posture analysis, this research aims to develop a
framework for quantifying the stress and ergonomic loads applied to surgeons. Preliminary findings
reveal significant correlations between stress levels and several of the skill-related metrics measured
by external sensors or the SURG-TLX questionnaire. Furthermore, early analysis of this preliminary
dataset suggests the potential benefits of applying machine learning for surgeon skill classification
and stress analysis. This paper presents the initial findings, identified correlations, and the lessons
learned from the clinical setup, aiming to lay down the cornerstones for wider studies in the fields of
clinical situation awareness and attention computing.

Keywords: robot-assisted minimally invasive surgery; human–robot cooperation; stress analysis;
non-technical surgical skills; clinical situation awareness

1. Background
1.1. Robot-Assisted Surgery

Robotic assistance may provide healthcare support to both patients and caregivers
at various levels. Robotic surgery represents a significant advancement in the field of
Minimally Invasive Surgery (MIS), with the da Vinci surgical robot being the prime exam-
ple [1], having seen five generations of evolving telerobotic platforms. While the principle
of Robot-Assisted Minimally Invasive Surgery (RAMIS) relies on tele-operation, these
complex systems are considered to be efficient clinical robots [2]. Human–robot interac-
tion technology allows surgeons to perform complex procedures with increased precision,
flexibility, and control compared to traditional techniques, while new devices such as
autonomous surgical systems [3,4], technologies such as medical 3D printing [5], and
supporting systems such as robot assistance [6] are being continuously developed by the
research community. Today, Artificial Intelligence (AI) and Machine Learning (ML) meth-
ods are opening up new frontiers in robotic surgery [1], while regulatory bodies are barely
able to keep pace [7].
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Human–robot cooperation is primarily maintained by the da Vinci surgical system
through a console where the surgeon operates by applying controls and a robotic platform
executes the motions with high precision [8,9]. While RAMIS is sometimes considered to
be a costly technological add-on to surgery, although one preferred by patients [10], it has
also been seen as an initial component in the move towards sustainable and accessible
healthcare [9]. More recently, RAMIS has been presented as a general means to support
ethically aligned design in digital health devices [11].

Despite advancements, the Operating Room (OR) remains a high-stress environment,
characterized by tasks requiring precise and coordinated actions [12]. In RAMIS, the
surgeon has no direct physical interaction with the patient, allowing them to focus on the
ergonomic and psychological aspects of surgery instead of on hygiene, as the surgeon’s
close environment is less regulated in this new scenario. However, because full control
of the surgical procedure and all decision-making remains the surgeon’s burden, the
effect of human error remains one of the biggest concerns in RAMIS. Errors can originate
from a variety of factors, including stress, fatigue, and the complexity of the procedures
themselves [13,14]. Recognizing and addressing these errors is crucial, as they can lead to
complications, extended recovery times, and in some cases even irreversible damage.

Computer-integrated surgery has seen significant technical challenges on the top of
the clinical complications [15,16]. Recognizing adverse events in a sufficient time remains
key to preventing any negative patient outcome, which requires the maintenance of focus
and situational awareness on the part of both the surgeon and the OR team [17,18].

1.2. Ergonomics and Stress in Surgery

While assistive systems such as the da Vinci robot primarily reduce physical strain
through enhanced ergonomics, cognitive and emotional stress remains significant. This is
further emphasized by the unconventional setup by which surgeons indirectly control a
whole robotic system.

Nonetheless, a notable advantage of RAMIS over traditional open (or laparoscopic)
surgery is the improved ergonomics. Unlike laparoscopic surgery, which requires surgeons
to maintain unnatural and uncomfortable positions, robotic surgery consoles generally
allow better posture and arm support while enabling surgeons to stand up and stretch, as
the robot can keep the tools in a stable position for an unlimited time. This ergonomic setup
reduces physical fatigue, potentially enhances performance, and reduces the probability of
long-term musculoskeletal disorders [19].

Understanding stress patterns and ergonomic challenges allows surgeons to modify
techniques, take breaks, and adjust the OR setup, thereby optimizing their performance.
Real-time stress monitoring can prompt breaks in the process or allow for modifications and
adjustments, thereby improving decision-making and surgical precision, while ergonomic
feedback can guide adjustments in console settings or posture, preventing long-term
physical strain.

In this paper an innovative approach for a novel OR stress and ergonomics inspection
framework is proposed. Although each sensor component of the system (hand and posture
tracking, electrocardiography, SURG-TLX, skill level classification, etc.) has already been
introduced to RAMIS, the novelty of this research lies in the interconnection of these
methods. The authors believe that the presented correlations and lack of correlations in the
recorded dataset along with the identified gaps and corresponding future plans for this
experiment will offer a valuable basis for research activities related to non-technical skills
in RAMIS, thereby improving circumstances in the OR in the long term.

We present the design, implemented setup, and first stage of the in vitro experiment in
Section 2 (Methods), the preliminary results in Section 3 (Results), and our conclusions and
lessons learned in Section 4 (Conclusions).



Sensors 2024, 24, 2915 3 of 12

2. Methods

Measuring stress levels and OR ergonomics is vital for understanding their impact on
surgeons’ mental and physical well-being. Current stress estimation methods vary from
physiological measures such as Heart Rate Variability (HRV), eye movements, and cortisol
levels to psychological means such as self-reported stress-measuring questionnaires. Recent
technologies, including wearable sensors and machine learning algorithms, offer even more
advanced stress assessment based on numerous different data inputs [20].

Ergonomics in RAMIS can be evaluated using biomechanical analysis, motion capture,
and pressure mapping. These methods help to identify factors related to ergonomics in the
OR contributing to physical strain and inefficiency on the part of surgeons, both of which
can negatively impact surgical outcomes [19,21]. Figure 1 shows the chosen equipment and
the experimental setup of this study.

(a) (b)

(c) (d) (e)
Figure 1. Experimental setup. The subject is sitting at the master console of the da Vinci XI robot
while her/his posture is recorded by an external camera from the side (a). The sea spikes model (d) is
placed in a box trainer onto force sensors (a). The positions of the MTMs are recorded by tracking the
attached ArUco markers (c) using a RealSense D455 RGB-D camera (b). The simulated sea spikes
model (e) was used in the da Vinci Skill Simulator as well.

2.1. Sensors and Measurements

The main goal of our experiment was to assess and quantify surgeons’ workload
and stress levels when using RAMIS and to examine any correlations between these and
other more commonly measured metrics. The recorded data were used for skill level
distinction as well. The most important tool for stress assessment was a Polar H10 heart
rate sensor band (Polar Electro OY, headquarters: Kempele, Finland) with the Polar Android
application. In addition, the hand movements and posture of the subjects were recorded
and self-assessment questionnaires were filled out before and after the trials.

2.1.1. Heart Rate Measurement

The stress level of the subjects was estimated using the Baevsky Stress Index (BSI),
proposed by Baevsky in [22]. The BSI can be calculated from a time series of RR-intervals
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(the time elapsed in ms between two successive R-waves on the electrocardiogram, i.e.,
the reciprocate of the heart rate) recorded by any heart rate measuring device with the
following formula:

SI =
AMo × 100%

2Mo × MxDMn
. (1)

Equation (1) uses the RR interval data rounded to 50 ms for noise reduction; M0
denotes the mode and AM0 is the amplitude of the mode, i.e., the frequency of occurrence
of the mode in the whole dataset in percentage, while MxDMn denotes the difference
between the longest and the shortest RR-interval values. This formula utilizes Heart Rate
Variability (HRV) analysis to estimate the stress level, which is a widely used approach in
many fields of medicine [22,23].

2.1.2. Posture Detection

Posture detection involved the utilization of a custom Python code designed to identify
33 specific points within the human body, represented as red circles in Figure 2.The code
execution was not performed in real-time; instead, an external camera on the participants’
right side was used for recording the trials. In this way, the recorded videos enabled
synchronization between heart rate measurements, hand movements, and posture data.
Due to the position of the external camera, not all of the 33 landmarks can be seen in the
recorded videos. The camera was positioned to only capture the participants’ bodies from
the knees to the head. Therefore, the points that could have been detected in the lower
leg parts and the points that were covered by the machine were missing. This camera
configuration was a consequence of the fact that the posture detection algorithm was
narrowed down to the identification of key points, denoted by green circles in Figure 2.

(a) (b) (c)
Figure 2. Posture detection visualization in different arm positions. The red circles denote the
anatomical landmarks within the human body that are identifiable through the Python code, while
the green circles specifically represent the tracked points corresponding to the right shoulder and right
elbow. Figures (a–c) exhibit three posture of the same participant in one trial, as typical examples.

2.1.3. Hand Movement Tracking

Hand movements, i.e., the movements of the master tool manipulators (MTMs), were
tracked using an external RealSense D455 camera (Intel Co., Santa Clara, CA, USA) and
ArUco markers (Figure 1). It was important that the clinical da Vinci remain completely
intact; thus, the markers were merely glued onto the MTMs with 3D printed holders, and
an additional marker was affixed to the bottom of the armrest to provide a stable reference.
Thanks to the mechanical design of the MTMs, the markers can be attached at the position
shown in Figure 1 for position tracking, as the rest of the joints (the three joints between
the marker and the hand) only control the orientation. In this way, the position of the
MTMs could be tracked with one common camera and one marker each, and would not be
covered by the hands or parts of the MTMs; on the other hand, the orientation information
is lost [24].

The spatial positions of the markers were tracked and saved in semi-real-time at
10 Hz using a Python script (with the ArUco library of OpenCV) running on a standard
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Windows PC (code developed by the authors in Python v3.8). The ArUco library provided
a list of the detected markers on the video frames, each marker was represented by its
rotation(rvec) and translation (tvec) vectors. To obtain an absolute position for the markers
attached to the MTMs, their positions needed to be transformed into the coordinate system
of the fixed marker, as the camera might have been only loosely attached to the console
(see Figure 1).

First, the z component (i.e., distance from the camera, calculated by the ArUco library
using the known size of the marker) for each marker’s position vector was replaced with
the more accurate depth value of the RGB-D camera. Then, the rvec and tvec vectors were
transformed into homogeneous matrices using the Rodrigues formula [25]. Using the
homogeneous matrix representations of the ArUco markers, the spatial positions of the
two moving markers (H2 and H3) were transformed into the fixed marker’s coordinate
system (H1):

H2 =

[
Rodriguez(rvec2) tvec2

0 1

]
, H3 =

[
Rodriguez(rvec3) tvec3,

0 1

]
H2→1 = H−1

1 · H2, H3→1 = H−1
1 · H3.

(2)

2.2. Tasks and Subjects

The tasks were based on the “Sea Spikes Model”, which is available in the da Vinci
Skill Simulator and as a real model (see Figure 1) [26]. It offers an easy entry-level task with
the da Vinci, yet still requires (and develops) various important skills such as precision,
concentration, ambidexterity, and force modulation.

For the whole experiment, a da Vinci XI with two large needle drivers was used. The
same master console with the da Vinci Skill Simulator was employed for the simulated tasks.
In the first trial, there were three groups of subjects: medical students, resident surgeons,
and laparoscopic surgeons before their board certification, with five subjects in each group.
Before the sessions, various potentially relevant metrics were recorded by questionnaires,
such as number of completed laparoscopic surgeries, initial fatigue, initial pulse, sports
habits, etc.

The sea spike tasks included the multicolored sea spikes model (about 10 cm diameter),
which is made of soft silicon, and rubber rings (about 5 mm diameter) placed close to it
with the same set of colors. The rings should be placed on the spikes with matching colors
one by one using two forceps, with a maximum of ten rings on the ten spikes. Dropping
rings, missing colors, and instrument collision are the most common errors; however, the
simulator measures movement effectiveness as well. The exact tasks of this experiment
were as follows:

1. Place all ten rings on the spikes*
2. Place as many rings on the spikes as possible within 2 min
3. Place as many rings on the spikes as possible within 2 min under disturbance
4. Simulator: Place as many rings on the spikes as possible within 2 min**

* During task one, subjects had a 20-minute free practice session after the first exercise.
** An extra task for novices was an additional simulator exercise: “Place all rings on the
spikes”. The fifth task for novices was the same as the fourth task for the surgeons the
residents; later, this extra task was excluded from the study.

2.3. Classification and Parameter Tuning

Most recent research activities have employed artificial intelligence-based methods
for surgical skill assessment and classification; thus, machine learning algorithms were
utilized in this part of the study [12,27]. The dataset (HR, hand movements, posture) was
collected with different devices and comprised eleven features: one from HR, six from
hand movements (right- and left-hand x, y, z coordinates), and four from posture (right
shoulder and elbow x, y coordinates). After each trial, the participants filled out the Surgical
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Task Load Index (SURG-TLX) [28] questionnaire about the mental, physical, and temporal
demands, task complexity, situational stress, and distractions. The participants answered
each question using scores from 1 to 20. For instance, the scores for mental demand, 1
indicated minimal mental demand while 20 denoted a high level of mental demand. The
target variables for classification were derived from these responses.

In order to use the given target variables for binary classification to classify the
surgeons into novice and expert groups, it was imperative to transform the scale of the
results from a range of 1 to 20 into a binary format. This transformation was accomplished
by applying a simple condition to each of the six responses. When the response was lower
than the mean value of the responses, the variable was transformed into a 0, representing
the expert class. Conversely, when the response exceeded the mean value it was assigned a
value of 1, indicating the novice class.

For the purpose of classification, Decision Tree (DT), k-Nearest Neighbors (k-NN),
Support Vector Machine (SVM), and Logistic Regression (LR) were used as non-time series
classifiers [29,30]. These classifiers are unsuitable for the direct utilization of time series data
as input. To convert the kinematic features, which inherently exhibit a time series structure,
into a format that was suitable for the classifiers, the Approximate Entropy (ApEn) was
employed from the entropy library [31].

To achieve greater accuracy, the method of parameter tuning was implemented
through GridSearchCV in order to fine-tune the classifier parameters and identify the best
training and test sets using various cross-validation methods. The results were achieved
using two different validation methods. The first method involved Leave-One-Out Cross-
Validation (LOOCV), wherein a single trial was separated for testing during each iteration,
with the remaining trials were used for training. The second approach was k-fold cross-
validation, where k ranged from 2 to the maximum possible fold number. This method first
separates the input data into a specified number (k) of folds. One trial from each fold was
used for testing and the rest for training.

The tuned DT parameters were the criterion, the function employed to quantify the
quality of a split (‘gini’, ‘entropy’); max_depth, the maximum depth of the tree (None,
range from 1 to 10); max_features, the maximum number of features considered for each
split (None, ‘sqrt’, ‘log2’, ranging from 0.1 to 1); and the splitter, the strategy employed
for partitioning each node (‘best’, ‘random’). For k-NN and SVM, only three parameters
were tuned. The k-NN parameters were: n_neighbors, the maximum number of neighbors
(ranging from 1 to the maximum possible neighbors); weights, the process of assigning
weights to neighboring data points (‘uniform’, ‘distance’); and metrics, the metric used
for distance computation (‘euclidean’, ‘manhattan’, ‘minkowski’). For SVM, we tuned the
following parameters: C, the regularization parameter, which is a trade-off between the
maximization of the margin and the minimization of the misclassifications (1000, 500, 100,
50, 10, 5, 1, 0.5, 0.1); kernel (‘poly’, ‘rbf’, ‘sigmoid’, ’linear’); and gamma, the influence of a
single training example (‘auto’, ‘scale’, 1, 0.5, 0.1, 0.05, 0.01, 0.005, 0.001, 0.0005, 0.0001).

LR was different from the other classifiers, as tuning the values of the three parameters
can only be employed if the solver can use the penalty. Notably, not all solvers can use all
of the penalty types; consequently, the Python code used for classification paired only the
usable penalties for a specified solver. The solver parameter was tuned using ‘newton-cg’,
‘lbfgs’, ‘liblinear’, ‘sag’, and ‘saga’, and the values for the penalties were ‘l1’ and ‘l2’. The
third parameter (C, the inverse of the regularization strength) involved testing different
values such as 0.1, 0.5, 1, 5, 10, 50, 100, 500, 1000.

3. Results

The most important outcome of the presented initial experiment was to set up a
complete methodology (tasks, measured metrics, measurement methods, etc.) and a
practical pipeline for data collection that can be used in the long term for stress and
ergonomics analysis in robot-assisted surgery. In this section, we present our findings
based on the analysis of the collected initial dataset regarding stress-related metrics and
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skill level classification. The experience gained, lessons learned, and planned modifications
for future measurements are presented in Section 4.

The first step of data analysis was synchronizing measurement data from the different
sensors. First, the HR data (recorded directly into Polar’s cloud storage) was synchronized
with the MTM tracking data, as both were recorded with UNIX timestamps. Posture
detection was performed offline on the recorded videos; thus, those datasets were syn-
chronized to the others manually based on the videos. Figure 3 shows some typical
synchronized graphs.

Figure 3. Synchronized posture, MTM-tracking, and HR data of a typical subject. It can be seen that
the subject barely used his left hand and that his heart rate relaxed during the trial.

3.1. Correlations

The main goal of the analysis of the initial measurement data was to determine and
validate applicable methods for estimating stress level and to find other correlated metrics.
The stress level of the subjects was estimated using the Baevsky Stress Index, calculated
from the RR-intervals output of the Polar H5 heart rate monitor for each task of each subject.

The calculated Pearson Correlation Coefficients (PCC) are shown in Table 1 along with
the p-values indicating the significance of the hypothesized correlations (either negative
or positive). The examined data included kinematic metrics derived from hand position
tracking (e.g., the bounding box of hand movements, average speed, jerk, etc.), the ratios of
these metrics between the two hands, posture metrics (vertical displacement of the arms),
the SURG-TLX questionnaire answers, and manually recorded scores such as the number of
collisions (either between the two forceps or between the forceps and the sea spikes model),
ring drops, and successful ring placements. Strong statistically significant correlation was
concluded where the p-value was below 0.05, while weak or possible correlation can be
assumed where the p-value is between 0.05 and 0.08.
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Table 1. Pearson correlations between the Baevsky Stress Index values and other measured and
calculated metrics. Correlations with p-values < 0.05 are considered to be strong and significant
(bold rows), while those with 0.08 < p < 0.05 show possible correlations worth examining with larger
datasets. The ‘+’ and ’−’ signs indicate positive and negative correlations.

Metric Group Metric Pearson
Correlation p-Value Significance

Hand movement
metrics

Lefthand_std 0.370 0.006 strong +
Lefthand_range 0.288 0.037 strong +

Lefthand_total_dist 0.062 0.658 -
Lefthand_avg_speed 0.173 0.216 -

Left_jerk 0.065 0.641 -
Righthand_std 0.164 0.242 -

Righthand_range 0.042 0.767 -
Righthand_total_dist −0.364 0.007 strong −
Righthand_avg_speed −0.135 0.335 -

Right_jerk 0.001 0.993 -
Total_dist_rate −0.251 0.069 weak −

Range_rate −0.256 0.064 weak −

Posture metrics Elbow_vy 0.062 0.661 -
Shoulder_vy −0.014 0.921 -

SURG-TLX metrics

Mental_fatigue 0.198 0.172 -
Physical_fatigue 0.380 0.007 strong +

Temporal_demands 0.084 0.567 -
Complexity 0.223 0.124 -

Situational_stress 0.082 0.577 -
Distractions 0.284 0.048 strong +

Manually recorded
metrics

Collisions_phantom −0.124 0.396 -
Collision_robot_arms −0.205 0.158 -

Rings_placed 0.194 0.182 -
Ring_drops −0.269 0.061 weak −

Spike_color_missed −0.054 0.714 -

Strong positive correlation was observable between BSI and two left-hand movement
metrics, namely, the 3D spatial standard deviation and the range, i.e., the size of the
bounding box of the left-hand movements. These two metrics have similar meanings, with
both being related to the spatial extent of the hand movements, which is often correlated
with the level of experience [32,33]. On the other hand, the total path covered, average speed
of the left hand, and hand usage rate metrics did not show any correlation, leading to the
assumption that increased stress levels result in wider movements with the non-dominant
hand (all subjects were right-handed) but not better bimanuality. Furthermore, the total
distance covered with the right (dominant) hand showed a strong negative correlation with
the stress level, indicating that the subjects tended to be more effective under this amount
of stress. The bimanuality-related metrics (distance covered and movement range ratios)
showed weak negative correlations, indicating that increased stress worsened bimanuality
even further (the average ratio for the whole dataset between dominant and non-dominant
hand usage was 1.7, and the ratio of bounding box sizes was 6.2).

Among the self-assessed SURG-TLX metrics, two significant correlations were found.
The data shows that BSI was correlated with self-reported physical fatigue, but not with
mental fatigue. This could be caused by different interpretations of the two metrics, as
subjects tended to give much higher values for mental fatigue (avg. 6.6/10) than for physical
fatigue (avg. 2.8/10), meaning that increase can be detected more easily for the latter. The
fact that the “Situational Stress” metric showed no correlation indicates that the stress
estimation method was unreliable or that the subjects did not understand the question or
scale. Distraction, on the other hand, produced the expected correlation, meaning that the
distractions used during the third task delivered their anticipated stress-increasing effect.
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Among the manually recorded scores and mistakes, only one weak negative correlation
was observable, which was between the number of ring drops and BSI; thus, this level of
stress did not have a direct influence on performance.

3.2. Classification by Supervised Learning

The results of the classification, including parameter tuning, are presented in Table 2.
Each row in the table represents the accuracy for one of the six questions from the SURG-
TLX questionnaire. The best accuracy scores are highlighted in bold. Notably, the table
also shows the employed cross-validation type. It is not uncommon for a classification
algorithm to have the same accuracy across different validation methods; there was one
case for situational stress in this dataset in which the k-NN algorithm had the same result
with both 13-fold and 15-fold cross-validation. Among the six target variables, the temporal
demand (the amount of time pressure associated with completing the trials) yielded the
highest result with the Decision Tree algorithm and nine-fold cross-validation. Therefore,
using this target variable for classification proved to be the most effective way to separate
the surgeons into novice and expert groups.

Table 2. Accuracy achieved for the different target variables. The highest accuracy for each variable is
represented in bold. By tuning its parameters, the Decision Tree classifier reached the highest accuracy
when using temporal demand as the predictive variable for binary classification. Abbreviations: DT:
Decision Tree, k-NN: k-Nearest Neighbors, SVM: Support Vector Machines, LR: Logistic Regression,
MF: Mental Fatigue of the task, PF: Physical Fatigue of the task, TD: Temporal Demand, C: Complexity
of the task, SS: Situational Stress, D: Distractions, cv: number of cross-validation folds, LOOCV:
Leave-One-Out Cross-Validation.

Target Variable DT k-NN SVM LR

MF
cv = 11:
0.781818

cv = 18:
0.712963

cv = 7:
0.734694

cv = 15:
0.638889

PF
cv = 20:
0.758333

LOOCV:
0.693878

cv = 9:
0.807407

cv = 17:
0.754902

TD
cv = 9:

0.818519
cv = 8:

0.758929
cv = 8:

0.693452
cv = 15:
0.733333

C
LOOCV:
0.734694

cv = 13:
0.621795

cv = 23:
0.688406

cv = 20:
0.583333

SS
cv = 21:
0.761905

cv = 13, 15:
0.666667

cv = 17:
0.784314

cv = 6:
0.574074

D
LOOCV:
0.734694

cv = 17:
0.676471

cv = 6:
0.712963

cv = 16:
0.697917

4. Conclusions

This study was driven by the aim of establishing a methodology for assessing stress
and ergonomics in RAMIS, paving the way for further research in the field of clinical
situational awareness and attention computing. The correlations that we found between
stress levels and kinematic metrics along with the potential of machine learning for skill
level classification offer a valuable base for further wider-ranging research activities with
the potential to optimize surgical training and potentially improve patient outcomes.
Future research should focus on expanding the dataset, refining measurement methods,
and exploring the implications of these findings for RAMIS practice and training.

4.1. Lessons Learned

Although the presented first set of measurements was completed mostly successfully,
some important flaws, smaller mistakes, and unnecessary steps were clearly identified.
In general, the selection and design of the tasks are the most important part of such
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experiments; they have to be practically aimed at the exact research question(s) while
being reproducible, and should require skills with as many objectively measurable met-
rics and outcomes as possible while also not being too difficult. It was useful to offer a
20–30 min uncontrolled practice session during which learning curves were not examined,
which allowed inexperienced participants to grow accustomed to the new environment
and controls.

In the case of posture detection, the attire worn by the participants holds significance,
as the presence of a striped t-shirt or sweater in the video introduces limitations in accurately
identifying the body landmarks with the used Python code. Another critical concern
involves the participants’ head position at the beginning of the video. The subjects should
directly look into the camera positioned on their right sides, otherwise the code will fail to
recognize the human body, leading to the absence of all points.

In light of the inherent subjectivity of SURG-TLX metrics, the risk of participants
underestimating their stress levels is present. Subjects might either consciously or subcon-
sciously try to present themselves in a better light, or may lack self-awareness regarding
their own mental fatigue level. This phenomenon, known as “response bias”, further under-
scores the importance of integrating objective measures for estimating stress. Furthermore,
the lack of the expected correlation between “situational stress” and BSI indicates that
more detailed explanation of the SURG-TLX metrics is needed. To tackle the undesired
effect of response bias, there was agreement that the scale of the SURG-TLX questionnaire
should be explained by separate phrases for each question, allowing the participants to
interpret the scales similarly. To obtain more reliable stress level estimations, it would be
possible employ eye-tracking glasses in future measurements, as they offer stress level
estimation calculated from pupil tracking metrics [34]. These findings might be beneficial
for similar future works by contributing to the mitigation of inaccuracies in measurements
and data generation.

4.2. Future Work

The created dataset contained a relatively small amount of data (58 trials), and data
from professional RAMIS surgeons have not yet been recorded and included in the analyses.
Including such data would enhance the skill level classification and make the stress-related
data more diverse.

To make the training dataset more efficient and suitable for classification, more data are
required from more surgeons with varying levels of surgical experience. Several methods
can be employed to increase the best possible accuracy, such as the standardization method,
as some of the non-time series algorithms (especially the k-NN classifier) could achieve
higher results with a standardized dataset. Beyond these methods, other types of classifier
implementations, particularly time series classifiers such as Neural Network or Dynamic
Time Warping, could enhance the achieved results. These implementations could even
provide a comparative analysis between the two classifier types.

A new data collection system consisting of a head-mounted eye tracking device could
be introduced to enhance the stress level estimation based on pupil metrics as additional
input data. In addition, the resting heart rate should be recorded (including retrospectively
for the first group as well).

It is believed that the recognition and maintenance of clinical situational awareness
will lead to the earlier discovery and alleviation of clinical adverse events.
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Adelina Misi, András Fülöp. T. Haidegger is a Consolidator Researcher supported by the Distin-
guished Researcher program of Óbuda University. K. Takács is supported through the New National
Excellence Program of the Ministry of Human Capacities.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Haidegger, T.; Speidel, S.; Stoyanov, D.; Satava, R.M. Robot-assisted minimally invasive surgery—Surgical robotics in the data

age. Proc. IEEE 2022, 110, 835–846. [CrossRef]
2. Haidegger, T. Taxonomy and Standards in Robotics. In Encyclopedia of Robotics; Marcelo H., Ang, O.K., Siciliano, B., Eds.; Springer:

Berlin/Heidelberg, Germany, 2022; pp. 1–10. [CrossRef]
3. Fichtinger, G.; Troccaz, J.; Haidegger, T. Image-guided interventional robotics: Lost in translation? Proc. IEEE 2022, 110, 932–950.

[CrossRef]
4. Nagy, T.D.; Haidegger, T. Performance and capability assessment in surgical subtask automation. Sensors 2022, 22, 2501.

[CrossRef]
5. Jaksa, L.; Azamatov, B.; Nazenova, G.; Alontseva, D.; Tamas, H. State of the art in Medical Additive Manufacturing. Acta

Polytecrh. Hung. 2023, 20.
6. Orosz, G.; Szabó, R.Z.; Ungi, T.; Barr, C.; Yeung, C.; Fichtinger, G.; Gál, J.; Haidegger, T. Lung Ultrasound Imaging and Image

Processing with Artificial Intelligence Methods for Bedside Diagnostic Examinations. Acta Polytech. Hung. 2023, 20, 69–87.
[CrossRef]

7. Pentek, M.; Zrubka, Z.; Gulacsi, L.; Weszl, M.; Czere, J. T.; Tamas, H. 10 pragmatic points to consider when performing a
systematic literature review of clinical evidence on digital medical devices. Acta Polytech. Hung. 2023, 20, 110–128.

8. Pugin, F.; Bucher, P.; Morel, P. History of robotic surgery: From AESOP® and ZEUS® to da Vinci®. J. Visc. Surg. 2011, 148, e3–e8.
[CrossRef]

9. Haidegger, T.; Mai, V.; Mörch, C.; Boesl, D.; Jacobs, A.; Khamis, A.; Lach, L.; Vanderborght, B.; Rao, B.R. Robotics: Enabler and
inhibitor of the sustainable development goals. Sustain. Prod. Consum. 2023, 43, 422–434. [CrossRef]

10. Hölgyesi, Á.; Zrubka, Z.; Gulácsi, L.; Baji, P.; Peter, T.; Kozlovszky, M.; Weszl, M.; Kovács, L.; Péntek, M. Robot-assisted surgery
and artificial intelligence-based tumour diagnostics: Social preferences with a representative cross-sectional survey. BMC Med.
Inform. Decis. Mak. 2024, 24, 87. [CrossRef] [PubMed]

11. Houghtaling, M.A.; Fiorini, S.R.; Fabiano, N.; Gonçalves, P.J.; Ulgen, O.; Haidegger, T.; Carbonera, J.L.; Olszewska, J.I.; Murahwi,
Z.; Prestes, E. Standardizing an ontology for ethically aligned robotic and autonomous systems. IEEE Trans. Syst. Man Cybern.
Syst. 2024, 54, 1791–1804. [CrossRef]

12. Nagyné Elek, R.; Haidegger, T. Non-technical skill assessment and mental load evaluation in robot-assisted minimally invasive
surgery. Sensors 2021, 21, 2666. [CrossRef]

13. Catchpole, K.; Cohen, T.; Alfred, M.; Lawton, S.; Kanji, F.; Shouhed, D.; Nemeth, L.; Anger, J. Human factors integration in robotic
surgery. Hum. Factors 2024, 66, 683–700. [CrossRef]

14. Nagyné Elek, R.; Haidegger, T. Next in Surgical Data Science: Autonomous Non-Technical Skill Assessment in Minimally
Invasive Surgery Training. J. Clin. Med. 2022, 11, 7533. [CrossRef]

15. Alemzadeh, H.; Raman, J.; Leveson, N.; Kalbarczyk, Z.; Iyer, R.K. Adverse events in robotic surgery: A retrospective study of 14
years of FDA data. PLoS ONE 2016, 11, e0151470. [CrossRef] [PubMed]

16. Cooper, M.A.; Ibrahim, A.; Lyu, H.; Makary, M.A. Underreporting of robotic surgery complications. J. Healthc. Qual. (JHQ) 2015,
37, 133–138. [CrossRef] [PubMed]

17. Lechappe, A.; Chollet, M.; Rigaud, J.; Cao, C.G. Assessment of situation awareness during robotic surgery using multimodal data.
In Proceedings of the Companion Publication of the 2020 International Conference on Multimodal Interaction, Virtual Event,
25–29 October 2020; pp. 412–416.

18. Lechappe, A.; Chollet, M.; Rigaud, J.; Cao, C.G. Using Multimodal Data to Predict Surgeon Situation Awareness. In Proceedings
of the 21st Congress of the International Ergonomics Association (IEA 2021) Volume V: Methods & Approaches 21, Virtual Event,
13–18 June 2021; Springer: Berlin/Heidelberg, Germany, 2022; pp. 308–316.

19. van’t Hullenaar, C.D.; Hermans, B.; Broeders, I.A. Ergonomic assessment of the da Vinci console in robot-assisted surgery. Innov.
Surg. Sci. 2017, 2, 97–104. [CrossRef] [PubMed]

http://doi.org/10.1109/JPROC.2022.3180350
http://dx.doi.org/10.1007/978-3-642-41610-1_190-1
http://dx.doi.org/10.1109/JPROC.2022.3166253
http://dx.doi.org/10.3390/s22072501
http://dx.doi.org/10.12700/APH.20.8.2023.8.5
http://dx.doi.org/10.1016/j.jviscsurg.2011.04.007
http://dx.doi.org/10.1016/j.spc.2023.11.011
http://dx.doi.org/10.1186/s12911-024-02470-x
http://www.ncbi.nlm.nih.gov/pubmed/38553703
http://dx.doi.org/10.1109/TSMC.2023.3330981
http://dx.doi.org/10.3390/s21082666
http://dx.doi.org/10.1177/00187208211068946
http://dx.doi.org/10.3390/jcm11247533
http://dx.doi.org/10.1371/journal.pone.0151470
http://www.ncbi.nlm.nih.gov/pubmed/27097160
http://dx.doi.org/10.1111/jhq.12036
http://www.ncbi.nlm.nih.gov/pubmed/23980819
http://dx.doi.org/10.1515/iss-2017-0007
http://www.ncbi.nlm.nih.gov/pubmed/31579742


Sensors 2024, 24, 2915 12 of 12

20. Takacs, K.; Haidegger, T. Eye Gaze Tracking in Robot-Assisted Surgery: A Systematic Review of Recent Advances and
Applications. Acta Polytech. Hung. 2024, 21, 1–19. (in press)

21. Lux, M.M.; Marshall, M.; Erturk, E.; Joseph, J.V. Ergonomic evaluation and guidelines for use of the daVinci Robot system. J.
Endourol. 2010, 24, 371–375. [CrossRef]

22. Baevsky, R.M.; Chernikova, A.G. Heart rate variability analysis: Physiological foundations and main methods. Cardiometry 2017,
10, 66–76. [CrossRef]

23. Ali, M.K.; Liu, L.; Chen, J.H.; Huizinga, J.D. Optimizing autonomic function analysis via heart rate variability associated with
motor activity of the human colon. Front. Physiol. 2021, 12, 619722. [CrossRef]

24. Fontanelli, G.A.; Ficuciello, F.; Villani, L.; Siciliano, B. Da Vinci Research Kit: PSM and MTM Dynamic Modelling. 2017. Available
online: https://smarts.lcsr.jhu.edu/wp-content/uploads/2017/04/dvrk-identification.pdf (accessed on 29 April 2024 ).

25. OpenCV. ArUco Marker Detection—OpenCV Documentation. 2023. Available online: https://docs.opencv.org/3.4/d9/d6a/
group__aruco.html (accessed on 26 January 2024).

26. Zheng, B.; Fu, B.; Al-Tayeb, T.A.; Hao, Y.F.; Qayumi, A.K. Mastering instruments before operating on a patient: The role of
simulation training in tool use skills. Surg. Innov. 2014, 21, 637–642. [CrossRef]

27. Fathabadi, F.R.; Grantner, J.L.; Abdel-Qader, I.; Shebrain, S.A. Box-trainer assessment system with real-time multi-class detection
and tracking of laparoscopic instruments, using CNN. Acta Polytech. Hung. 2022, 19, 7–27. [CrossRef]

28. Wilson, M.R.; Poolton, J.M.; Malhotra, N.; Ngo, K.; Bright, E.; Masters, R.S. Development and validation of a surgical workload
measure: The surgery task load index (SURG-TLX). World J. Surg. 2011, 35, 1961–1969. [CrossRef] [PubMed]

29. Lee, D.; Yu, H.W.; Kwon, H.; Kong, H.J.; Lee, K.E.; Kim, H.C. Evaluation of surgical skills during robotic surgery by deep
learning-based multiple surgical instrument tracking in training and actual operations. J. Clin. Med. 2020, 9, 1964. [CrossRef]
[PubMed]

30. Soangra, R.; Sivakumar, R.; Anirudh, E.; Reddy Y, S.V.; John, E.B. Evaluation of surgical skill using machine learning with optimal
wearable sensor locations. PLoS ONE 2022, 17, e0267936. [CrossRef]

31. Vallat, R. Antropy: A Python Library for Entropy Estimation. 2021. Available online: https://github.com/raphaelvallat/antropy
(accessed on 26 January 2024).

32. D’Ettorre, C.; Mariani, A.; Stilli, A.; y Baena, F.R.; Valdastri, P.; Deguet, A.; Kazanzides, P.; Taylor, R.H.; Fischer, G.S.; DiMaio, S.P.;
et al. Accelerating surgical robotics research: A review of 10 years with the da vinci research kit. IEEE Robot. Autom. Mag. 2021,
28, 56–78. [CrossRef]

33. Nisky, I.; Okamura, A.M.; Hsieh, M.H. Effects of robotic manipulators on movements of novices and surgeons. Surg. Endosc.
2014, 28, 2145–2158. [CrossRef]

34. Tolvanen, O.; Elomaa, A.P.; Itkonen, M.; Vrzakova, H.; Bednarik, R.; Huotarinen, A. Eye-tracking indicators of workload in
surgery: A systematic review. J. Investig. Surg. 2022, 35, 1340–1349. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1089/end.2009.0197
http://dx.doi.org/10.12710/cardiometry.2017.10.6676
http://dx.doi.org/10.3389/fphys.2021.619722
https://smarts.lcsr.jhu.edu/wp-content/uploads/2017/04/dvrk-identification.pdf
https://docs.opencv.org/3.4/d9/d6a/group__aruco.html
https://docs.opencv.org/3.4/d9/d6a/group__aruco.html
http://dx.doi.org/10.1177/1553350614532533
http://dx.doi.org/10.12700/APH.19.2.2022.2.1
http://dx.doi.org/10.1007/s00268-011-1141-4
http://www.ncbi.nlm.nih.gov/pubmed/21597890
http://dx.doi.org/10.3390/jcm9061964
http://www.ncbi.nlm.nih.gov/pubmed/32585953
http://dx.doi.org/10.1371/journal.pone.0267936
https://github.com/raphaelvallat/antropy
http://dx.doi.org/10.1109/MRA.2021.3101646
http://dx.doi.org/10.1007/s00464-014-3446-5
http://dx.doi.org/10.1080/08941939.2021.2025282
http://www.ncbi.nlm.nih.gov/pubmed/35038963

	Background
	Robot-Assisted Surgery
	Ergonomics and Stress in Surgery

	Methods
	Sensors and Measurements
	Heart Rate Measurement
	Posture Detection
	Hand Movement Tracking

	Tasks and Subjects
	Classification and Parameter Tuning

	Results
	Correlations
	Classification by Supervised Learning 

	Conclusions
	Lessons Learned
	Future Work

	References

