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Abstract: Remote passive sonar detection with low-frequency band spectral lines has attracted much
attention, while complex low-frequency non-Gaussian impulsive noisy environments would strongly
affect the detection performance. This is a challenging problem in weak signal detection, especially
for the high false alarm rate caused by heavy-tailed impulsive noise. In this paper, a novel matched
stochastic resonance (MSR)-based weak signal detection model is established, and two MSR-based
detectors named MSR-PED and MSR-PSNR are proposed based on a theoretical analysis of the
MSR output response. Comprehensive detection performance analyses in both Gasussian and non-
Gaussian impulsive noise conditions are presented, which revealed the superior performance of
our proposed detector under non-Gasussian impulsive noise. Numerical analysis and application
verification have revealed the superior detection performance with the proposed MSR-PSNR detector
compared with energy-based detection methods, which can break through the high false alarm
rate problem caused by heavy-tailed impulsive noise. For a typical non-Gasussian impulsive noise
assumption with α = 1.5, the proposed MSR-PED and MSR-PSNR can achieve approximately
16 dB and 22 dB improvements, respectively, in the detection performance compared to the classical
PED method. For stronger, non-Gaussian impulsive noise conditions corresponding to α = 1, the
improvement in detection performance can be more significant. Our proposed MSR-PSNR methods
can overcome the challenging problem of a high false alarm rate caused by heavy-tailed impulsive
noise. This work can lay a solid foundation for breaking through the challenges of underwater
passive sonar detection under non-Gaussian impulsive background noise, and can provide important
guidance for future research work.

Keywords: matched stochastic resonance (MSR); passive sonar detection; weak signal detection;
non-Gaussian impulsive noise

1. Introduction

Weak signal detection is a long-term, important technology for underwater passive
sonar systems for port and coastal security [1–4]. Through experiments and modeling, an
excellent description of ship-radiated noise as a combination of broadband noise and line
spectral signatures has been provided [5–7]. These line spectral signatures, related to the
rotation of engines, shaft-line dynamics, and propeller cavitations, are mostly adopted
by various algorithms for passive sonar detection, tracking, and classification. In recent
years, the development trend of low-frequency sonar is becoming increasingly apparent.
Theoretical and experimental results have proven that there are abundant low-frequency
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periodic components that are related to the engine and propeller. Therefore, remote passive
sonar detection with very-low-frequency ( f ≤ 100 Hz) signatures has attracts lots of
attention [8–11].

A variety of detection approaches to weak spectral lines have been proposed, such
as statistical energy detectors [12,13], adaptive line enhancers [14,15], and neural net-
works [16,17]. Most studies adopted the Gaussian assumption to describe the marine
ambient noise in theoretical applications due to its simplicity. However, this is not always
appropriate to match real noisy processes, as it can lead to a worse detection performance in
practice. Much of the experimental and modeling research has shown that the underwater
acoustic noise environment is non-Gaussian and impulsive in nature [18–21]. In fact, the
source distribution range and quantity of low-frequency marine environmental noise fields
is complex, including industrial noise, distant ship-radiated noise, broadband explosion
noise, and marine biological noise. In the past 30 years, more and more researchers ad-
dressed the issue of complex marine noise analyses and modelings. Typical modeling
methods include Gaussian Mixture (GM) [22], Generalized Gaussian Distribution (GG) [12],
α stable distribution model (SαS) [23], and Generalized Autoregressive Conditional Het-
eroscedasticity (GARCH) [24]. The SαS model is a generalized noise distribution model that
has good adaptability to spike state noise with significant pulses. It has been applied by
many scholars in the statistical modeling of complex marine environmental noise, especially
in the very-low-frequency band of marine environmental noise. Figure 1 shows a set of
50-min time–frequency maps of typical measured marine ambient noise in the South China
Sea. It can be seen that there is a large amount of strong random impulsive interference,
mainly energy distributed in the lower frequency, below 150 Hz. Therefore, in the scenario
of very-low-frequency remote passive detection, the detection problem is challenging and
should not simply assume an ideal Gaussian noise environment.

Figure 1. Time–frequency map of typical ocean ambient noise measured in the South China Sea (50 min).

As is known for non-Gaussian signal detection, an optimal receiver for signal detection
under non-Gaussian noise is made by constructing nonlinear filters to approximate the
optimal nonlinear transfer function [25]. Based on this, nonlinear preprocessing methods
were generally adopted, such as soft limiters [26] and infinite filter banks [27]. These
indicate that detection theories and methods under non-Gaussian noise should be nonlinear.
However, the optimized nonlinear systems often have complex structures. Stochastic
resonance (SR) is a nonlinear phenomenon that has the distinct merit of enhancing the signal
energy by exploiting the noise energy, and therefore increasing the signal-to-noise ratio
(SNR). Studies have shown that using SR in weak signal detection is effective, especially
under low-SNR conditions [28–32]. From the comprehensive perspective of performance
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and cost, the suboptimal stochastic resonance method has more potential for application
due to its simple and efficient design [33–36], and by utilizing the SR, the proposed method
can achieve a better performance in comparison to matched filter [37,38]. Nevertheless,
these work mainly realized SR by adding an appropriate noise level to maximize the output
SNR. Adding appropriate noise with a low noise intensity might be a suitable option, but
this has restrictions regarding how to remove a high level of noise, especially in a low-SNR
region. Therefore, rather than adjusting the input noise level, tuning the signal structure and
(or) system parameters might be more suitable for practical signal processing applications.
Xu et al. [39] extended the concept of SR and proposed a parameter-induced stochastic
resonance (PSR) by tuning system parameters, which greatly promoted the development
of stochastic resonance for practical applications. Theoretical analyses have shown that
the optimal SR effect will always be obtained by only changing the system parameters,
which indicates the superiority and feasibility of parameter tuning [13,40]. This can be
regarded as a special nonlinear filter, which has the distinct advantage of enhancing weak
signals compared to traditional filters [41–43]. To date, there have been many theoretical
investigations into non-Gaussian-noise-influenced SR phenomena, which have shown
the effectiveness of SR in dealing with non-Gaussian and impulsive noise [44–47]. These
indicate the potential of SR in breaking through the challenge of weak signal detection
under non-Gaussian noise.

Motivated by the aforementioned analyses, a matched stochastic resonance (MSR)
method is proposed to address the challenging problem of underwater passive sonar
detection under non-Gaussian impulsive background noise. Focusing on this problem, a
brief conference report on an MSR-based weak signal detection scheme was investigated
in the previous study, which preliminarily demonstrated the effectiveness of SR for ship-
radiated line spectrals detection under heavy-tailed Lévy background noise [48]. However,
it was simply realized, and was not sufficient in theory. In view of this, in this paper, MSR-
based weak signal detectors named MSR-PED and MSR-PSNR are proposed on the basis of
a theoretical analysis of the matched-output response. Numerical analyses and application
verifications have revealed that the proposed methods are superior, especially for the
proposed MSR-PSNR under low-false-alarm-rate conditions. The main contributions of
this work can be summarized as follows:

(1) A novel MSR-based weak signal detection model is established, and an opti-
mized MSR-PSNR detector is proposed on the basis of a theoretical analysis of MSR
output response.

(2) Comprehensive detection performance analyses of both Gasussian and non-Gasussian
impulsive noise conditions are conducted, which revealed the superior performance of the
proposed detector under non-Gasussian impulsive noise.

(3) A superior detection performance can be achieved with the proposed MSR-PSNR
detector in comparison with energy-based detection methods, which can break through the
high false alarm rate problem caused by heavy-tailed impulsive noise.

(4) This work can lay a solid foundation for breaking through the challenges and
problems faced in underwater passive sonar detection under a low SNR and complex
non-Gaussian and impulsive ambient noise, and can provide important guidance for future
research work.

The rest of the paper is organized as follows. In Section 2, the signal model for
passive sonar detection is presented with the non-Gaussian impulsive noise assumption. In
Section 3, the weak signal detectors using the matched stochastic resonance (MSR) method
were proposed. The simulation outcomes of both Gasussian and non-Gasussian impulsive
noise conditions are evaluated in Section 4, and experimental verification is further given
in Section 5. Finally, concluding remarks are drawn in Section 6.



Sensors 2024, 24, 2943 4 of 25

2. Signal Model
2.1. Periodogram-Based Energy Detector (PED) for Passive Sonars

Ship-radiated noise can generally be modeled as a combination of broadband noise and
sinusoidal tonal signals, of which the sinusoidal tonal signals, the so-called line spectrums,
have the merits of high stability and intensity, meaning that they are widely used for target
detection, orientation, location, tracking, and recognition. The line spectral signatures could
be adopted as the periodical signals. In the actual work process, the received ship-radiated
signal can be written as follows:

r(t) = s(t) + n(t)

=
M

∑
i=1

Aicos(2π fit + φi) + n(t)
(1)

where M is the number of line spectral signatures; fi represents the line spectral frequencies;
Ai and φi are the corresponding amplitudes and phases, respectively. n(t) represents the
combination of radiated broadband noise and ocean ambient noise.

Usually, the detection problem can be regarded as a binary hypothesis testing problem,
as follows: {

H0 : r(t) = n(t)
H1 : r(t) = s(t) + n(t)

(2)

where H0 is the null hypothesis that refers to noise without signal, and H1 is the alternative
hypothesis referring to the periodic signal and additive noise.

According to the Parseval theorem:

N−1

∑
l=0

| r[l] |2= 1
N

N−1

∑
k=0

| Y[k] |2 (3)

where r[l] = r(lTs) is the sample of r(t), N is the sample number, and Y[k] is the Fourier
transform of sample sequence r[l], which can also be represented as follows:

Y[k] = Y[ f ]δ( f − k
N

fs) = Y[ f ] | f= k
N fs

(4)

in which fs = 1/Ts is the sampling frequency and Y[ f ] is the discrete Fourier transformation
(DFT) of r(t). Based on the definition of the periodogram:

P̂[k] =
1
N

|
N−1

∑
n=0

r[l]exp(−2π jkn/N) |2= 1
N

| Y[ f ] f= k
N fs

|2 (5)

Then, the test statistic can be given as follows:

T(r) =
N−1

∑
k=0

P̂[k]
H1

⋛
H0

γPED (6)

in which γPED is the decision threshold that is chosen to satisfy PFA = α under the Neyman–
Pearson (N-P) criterion [49].

2.2. Non-Gaussian Impulsive Noise Assumption

For weak signal detection, in theoretical applications, the Gaussian assumption is
widely used to describe background noise for simplicity in, while this not always appro-
priate to describe real noisy processes. As mentioned previously, the VLF ocean ambient
noise is non-Gaussian and impulsive in nature. The stable Lévy distribution provides
an excellent way to model complicated noise process, and was therefore employed and
analyzed in this paper.
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Assume that ζ(t) obeys Lévy distribution Lα,β(ζ;σ,µ); its characteristic function can be
given as follows [50]:

Φ(k)=


exp

{
−σα|k|α[1−iβsgn(k) tan

(απ

2

)
]+ikµ

}
α ̸= 1

exp
{
−σα|k|[1−iβ

π

2
sgn(k) log10(|k|)]+ikµ

}
α = 1

(7)

where α ∈ (0, 2] denotes the stability index that describes an asymptotic power law of the
Lévy distribution: the smaller the α, the stronger the impulsive characteristics. β ∈ [−1, 1]
is the asymmetry parameter, which represents the distributed left deviation, right deviation,
and symmetry for positive, negative, and zero, respectively. Moreover, µ ∈ R is the mean
parameter that represents the center of distribution; η ∈ (0,+∞) is the scale parameter
used to measure the degree of deviation from the mean. α = 2 represents the Gaussian
distribution and α = 1 represents the well-known Cauchy distribution. The probability
density functions for Lévy distribution Lα,β(ζ; σ, µ) with different stability indexes and
asymmetry parameters are shown in Figure 2, which can be considered a generalized noise
model for real ocean ambient noise. In this paper, the Janicki–Weron algorithm is employed
to generate the Lévy distribution sequence [48]. Since, for α < 2, there is no finite variance
in thhe noise, the noise power S0 can be obtained by the following:

S0 = (Cgη)1/α/Cg (8)

where Cg ≈ 1.78 is the exponential form of Euler’s constant. The noise intensity D̂ can be
estimated as D̂ = (η)α. To ensure that the definition of SNR is in accordance with the white
Gaussian noise, the input SNR can be expressed by normalizing 2Cg, as presented below:

SNRin = 10 log10
1

2Cg
(

√
E

S0
)2 (9)

in which E represents the signal energy.

Figure 2. Probability density functions for Lévy distribution Lα,β(ζ; σ, µ) with different stability
indexes and asymmetry parameters

3. Matched Stochastic Resonance-Based Weak Signal Detector
3.1. Classical Bistable Stochastic Resonance (CBSR)

Stochastic resonance is a nonlinear phenomenon, of which the most significant charac-
teristic is that a certain relationship between signal, noise, and system parameter can cause
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a transfer of energy from a random process (noise) to a periodic process (signal). Such a
phenomenon is commonly described by the Brownian motion:

mẍ + γẋ = −V̇(x) + s(t) + n(t) (10)

in which m is the mass of the Brownian particle, and x is the displacement trajectory of
the Brownian particle; γ is the coefficient of friction. s(t) = A0cos(ω0t + φ0) represents a
periodic signal with A0, ω0, and φ0 as the amplitude, driving frequency, and the initial
phase, respectively. n(t) =

√
2Dη(t) represents the noise item, where D is the noise

intensity and η(t) represents an additive noise. V(x) is the quartic double well (QDW)
potential function, as presented below:

V(x) = −1
2

ax2 +
1
4

bx4 (11)

where a and b denote the barrier potential parameters with a positive real value. One
maximum and two minimum values of potential V(x) can be found at x0 = 0 and
±xm = ±

√
a/b, respectively, and the difference between the maximum and minimum rep-

resents the threshold of the system or the energy barrier with the amplitude ∆V = a2/4b.
For a deterministic, static, nonlinear system with fixed potential parameters, there are

two situations in which it is driven by external forces:
(1) In the situation of a nonlinear system that is only subjected to a stochastic forcing

signal (referred to as the H0 assumption), the statistical properties of noise-induced particle
transition between two potential wells can be characterized by the famous Kramers rate
as follows:

rK =
ω0ωb√

2πγ
exp(−∆V

D
) (12)

where ω0 = [V′′(±xm)]1/2 = (2a)1/2 and ωb = [V′′(x0)]
1/2 = (a)1/2 represent the charac-

teristic frequencies of the system with the potential minimum and maximum value.
(2) When the system is simultaneously excited by noise and weak external periodic

signals (refer to the assumption of H1), the bistable potential will be periodically modulated,
and the left and right potential wells will alternately rise or decrease over the period of
T = 1/ f0. When the amplitude of the weak periodic signal A0 is greater than the system
critical threshold Ac (Ac =

√
4a3/(27b)), with the assistance of a certain amount of noise

energy, even in the situation of A1 ≪ Ac, it can induce a periodic well-to-well particle
transition, triggering a synergistic matching mechanism between the nonlinear system,
noise, and external periodic excitation. At this time, the Brownian particle undergoes
periodic back and forth transitions, resulting in a modified form of the Kramers rate r′K,
as follows:

r′K =
ω0ωb
2πγ

exp
(
−∆V ± A0 cos(ω0t + φ0)

D

)
(13)

where the frequency of the periodic signal input to the system is much smaller than the
rate at which the system tends to equilibrium at each potential well: ω0 ≪ 2a.

To better characterize the performance of SR, the power spectra G(ω) of the system
response is usually analyzed via SNRI measurements. For the nonlinear SR system, the
output power spectra can be expressed as follows [51]:

G(ω) = Gs(ω) + Gn(ω) (14)

in which Gs(ω) and Gn(ω) represent the output power spectra of signal and noise, respectively:

Gs(ω) =
π

2
(

Axm

D
)2 4r2

K
4r2

K + ω2
0
[δ(ω − ω0) + δ(ω + ω0)] (15)
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and

Gn(ω) = [1 − 1
2
(

Axm

D
)2 4r2

K
4r2

K + ω2
0
]

4rKx2
m

4r2
K + ω2

0
(16)

where
[

1 − 1
2

(
A0xm

D

)2 4r2
K

4r2
K+Ω2

]
represents the correction coefficients for the noise power

spectrum. Under the assumption of adiabatic approximation, the following could also
be assumed:

(1) When the amplitude of the input periodic signal is small enough or there is
no periodic signal (refer to the H0 assumption), the value of the correction coefficient
approaches 1. At this time, noise has no effect on the output signal, and SR can not occur.
The frequency response of the system output follows a Lorentz distribution.

(2) As the amplitude of the periodic signal gradually increases (refer to H1 assumption),
the correction coefficient gradually decreases, and the energy transferred from noise to the
signal gradually increases. According to the characteristics of the Lorentz distribution, the
energy transfer from noise to the signal tends to be at its maximum when the following the
time-scale matching conditions for generating the random resonance effect are met [28].

rK =
ω0

π
(17)

where ω0 = 2π f0.
It can be seen that the Kramers rate rK is related to the output power spectra G(ω),

as well as the system’s potential parameters, noise intensity D, and driving frequency f0
described in Equation (13). Through combining Equations (15) and (16), the output SNR
can finally be obtained and approximated as follows [51]:

SNRoutput =
π

2
(

Axm

D
)2rK × [1 − 1

2
(

Axm

D
)2 4rk

2

4rk
2 + 2π f 2

0
]−1

≈
√

2∆V(
A
D
)2 exp−∆V/D

(18)

Consequently, the SNRI of the bistable SR system can be obtained in theory:

SNRI =
SNRoutput

SNRinput
≈ 4

√
2∆V
D

exp−∆V/D (19)

in which the output performance is determined by the noise intensity D, the damping
factor γ, and the barrier height of the nonlinear system ∆V.

3.2. Framework of Matched Stochastic Resonance (MSR)

The definition of matched stochastic resonance can be described as follows: for a
dynamic nonlinear system, under the constraint of the stochastic resonance effect, the non-
linearity of the system can be parameterized and optimized to achieve the matched output
and maximize the signal-to-noise ratio improvement (SNRI). Its generalized mathematical
represention can be presented as follows: follows [13,31,32],

max
a,b,γ,...

SNRI

s.t. SR conditions
(20)

where SR conditions can be obtained by classical theories and methods, including time-
scale matching conditions [28,39], stability conditions [52,53], threshold conditions [54],
amplitude gain under weak noise limit conditions [55], etc.

Assume a periodic forcing signal with an amplitude A and a frequency f0 is applied to
the particle with an overdamped first-order bistable QDW potential. A matched relationship
between the signal frequency, noise intensity, and nonlinear system parameters can be
explored by maximizing system SNRI under the constraints of the SR conditions. Since A



Sensors 2024, 24, 2943 8 of 25

and D of the input noisy signal are generally deterministic in practice, maximizing system
SNRI requires that the noise is matched with system parameters. This can be formed using
the optimization problem presented below:

max
a,b

SNRI

s.t. rK = 2 f0
A < Ac <

√
2D

SNRI > 1

(21)

Note that the time-scale matching condition is generalized in terms of statistic meaning,
and the constraint of SNRI > 1 is to ensure the output SNR is increased using the SR
approach. Then, the optimization problem in Equation (21) can be rewritten with respect to
∆V, as follows:

∆Vopt = argmax
∆V

SNRI

The mathematical matched potential parameters’ relationship can be obtained to the
satisfaction of the SR matching principle, as presented below:{

aopt = 2
√

2π f̂0e
bopt = a2

opt/(4D̂)
(22)

where f̂0 and D̂ represent the estimation of the signal frequency f0 and the noise intensity
D, respectively. e is the natural logarithm.

Consequently, the SNRoutput in Equation (18) can be rewritten, as presented below:

SNRoutput =
16A2

0
a2

opt (2 + π2/2)
/

(
aopt

bopt
−

16A2
0

a2
opt (2 + π2/2)

)
(23)

Due to the constraint of SNRI > 1, the following relationship should be satisfied:
aopt

bopt
− 16A2

a2
opt(2 + π2/2)

> 0

16
bopt(2 + π2/2)

>
aopt

bopt
− 16A2

a2
opt(2 + π2/2)

(24)

This can be further simplified under the assumption of adiabatic approximation
as follows:  0 < A <

aopt

4

√
aopt

(
2 + π2/2

)
bopt

aopt ≪ 2
√

2πe

(25)

Consequently, the optimization problem in Equation (21) can be simplified, as pre-
sented below:

max
a,b

SNRI

s.t. a = 2
√

2π f̂0e
b = a2/(4D̂)

0 < A <
a
4

√
a
(
2 + π2/2

)
b

a ≪ 2
√

2πe

(26)

In this way, the weak signal that is hidden against the heavy background can be
enhanced and detected. A comparison of output SNR curves corresponding to different
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input noise intensities is given in Figure 3. For a deterministic, static, nonlinear system
of CBSR with fixed system parameters, the curve of the output SNR varied with noise
intensity D, forming a “resonance” curve, where there exists an optimal noise intensity
value Dopt that can achieve the maximum SNRoutput. For the curve corresponding to the
MSR, it can be seen that the system parameters can be optimized under any conditions.

According to the adiabatic approximation theorem, the MSR system is restricted by
the input signal with a low frequency f0, where f0 ≪ 1 Hz. For practical, large input signal
frequencies with tens to thousands of hertz, a frequency-rescaling preprocessing technique
can be utilized to satisfy the assumption. By introducing a scaling factor α in the process of
solving the Runge–Kutta algorithm, the signal frequency fc is equivalently converted to a
desirable value f0 = fc/α, as presented below:

s[k] = s(kTs) = Ac cos(2π
fc

α
(kαTs)) = Ac cos(2π f0kαTs) (27)

in which Ts is the sampling time. Generally, the f0 should be small enough, and in this
paper the empirical value is set to f0 = 0.005 Hz.

Figure 3. A comparison MSR outputting SNR responses under different noise intensities D .

3.3. MSR-Based Passive Sonar Detection

The MSR-based detection framwork is illustrated in Figure 4. The matched parameters’
optimization is carried out according to Equation (26), and computed to obtain x[n] with
the classical Runge–Kutta algorithm. For the MSR-based detector, Equation (2) can be
rewritten as follows: {

H0 : x(t) = f (n(t))
H1 : x(t) = f (s(t) + n(t))

(28)

where f (·) is a nonlinear function that represents the SR effects. According to the output
characteristics of the MSR output, two detection methods are provided.
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Noise intensity estimation

Frequency rescaling

Matched parameters 
optimization

QDW system Detector
H1

H0

D̂

0f][nr ][nx
Received signal

MSR processing

Figure 4. The framework of the proposed MSR-based passive sonar detection.

3.3.1. Periodogram-Based Energy Detector (MSR-PED)

Generally, a periodogram-based energy detector subjected to the frequency domain is
superior to broadband energy detection methods in weak signal detection problems. In
this way, the test statistics of MSR-based PED can be given as follows:

T(x) =
1

2M

k0+M

∑
k=k0−M

| X[k] |2
H1

⋛
H0

γMSR−PED (29)

where X[k] is the discrete Fourier transform (DFT) to the MSR output x[n], k0 represents
the location corresponding to the signal frequency f0, 2M is the length number to bandpass
filter, and γMSR-PED is the decision threshold that is chosen to satisfy PFA = α under the
Neyman–Pearson criterion.

3.3.2. Peak SNR-Based Detector (MSR-PSNR)

According to the MSR optimization model in Equation (26), the MSR effect is achieved
with a maximized SNRI index. From the perspective of designing the test statistics, utilizing
the output SNR should be an intuitively better choice. In this way, a peak SNR-based
detector is designed with the MSR output, as presented below:

T(x) = 10 log10

(
N0 ∗ X[k0]

∑N0/2
k=1 X[k]− X[k0]

)
H1

⋛
H0

γMSR−PSNR (30)

where γMSR-PSNR is the corresponding decision threshold.

4. Numerical Analyses

To evaluate and verify the detection performance of the proposed methods, numerical
analyses are conducted in this section. According to the non-Gaussian impulsive noise
assumption given in Section 2, three typical types of noise—α = 2, α = 1.5, and α = 1—are
adopted to reveal the performance under different Gaussian and non-Gaussian impulsive
conditions. As is known, the smaller the stability index α, the stronger the impulsive
characteristics. α = 2 refers to the Gaussian noise, and α = 1.5 and α = 1 refer to
different degrees of impulsive noise. Note that in the real ocean ambient environment, the
stability index is generally larger than α ≥ 1.5, and in the case of an artificial interference
environment with air guns, the impulsive noise background can be modeled by α = 1.

A ship-radiated line spectral signature is simulated with a single 10 Hz periodic signal
for simplicity. The simulation parameters are given as follows to better reveal its output
performance: signal frequency f0 = 10 Hz, Gaussian noise variance σ2

n = 1, sampling
frequency fs = 2 kHz, and discrete signal sampling points N = 6000. For the low reference
frequency of f0 = 0.005 Hz, according to Equation (26), aopt = 0.12, bopt = 0.0072, and the
scale transformation factor is α = 2000. In view of the theoretical analysis of the signal-to-
noise ratio gain of a bistable system, it can be concluded that when the amplitude of the
input periodic signal satisfies A < 0.4217, the SNRI of the MSR system can be greater than
1. Therefore, a normalization preprocessing is performed of the received signal r[n].
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Generally, prior knowledge of passive sonar detection is lacking, so the matched
filtering (MF) method cannot be realized. However, this is known as the optimal detector
under Gaussian noise and is the upper bound of energy-based detectors. In the following
analyses, the MF and MSR-MF are utilized, aiming to provide a comprehensive under-
standing of the proposed MSR-PED and MSR-PSNR detection methods in both Gaussian
and non-Gaussian conditions.

4.1. Detection Performance Analysis under Gaussian Noise (α = 2)

To evaluate the detection performance, a simulation comparison of the received signals
and the corresponding MSR outputs under two hypotheses was made, as shown in Figure 5.
For H0 hypothesis, the received signal is pure noise, and for the H1 hypothesis, the received
signal is a noisy sinusoidal signal with the amplitude A = 0.1. The 10 Hz signal can be
clearly identified in the frequency domain. The results obtained by MSR processing results
are shown in Figure 5c,d. In view of the normalized power spectrum of the two hypothesis,
it can be seen that the MSR output energy is more likely to tend toward a low frequency that
follows a Lorentz distribution, as mentioned previously. For the H0 hypothesis, the MSR
output signal follows the noise response when the peak in power spectrum is close to 0 Hz,
while for the MSR output power spectrum of the H1 hypothesis, the peak is located at 10 Hz.
The MF and MSR-MF of the two hypotheses are shown in Figure 5e,f, where the results of
MF and MSR-MF are so close that they cannot exactly predict the detection performance.

To analyze the effect on the detection performance of the different test statistics of
detectors, a comparison of the probability density function (PDF) with 105 statistics is
presented in Figure 6. The test statistics include an energy detector with a low pass filter
for received signal TLPF−ED, PED for received signal TPED, PED for MSR output signal
TMSR−PED, PSNR for MSR output signal TMSR−PSNR, matched filter for received signal
TMF, and matched filter for MSR output signal TMSR−MF. The curve of the H0 hypothesis
and H1 hypothesis with different signal amplitudes can clearly reveal their detection
performance, where the TLPF−ED should be inferior in all results. This is further revealed
in Figure 7. In comparison with Figure 6b,c, corresponding to TPED and TMSR−PED, it can
be seen that the performance is close. According to the detection curve in Figure 7, PED is
better under a higher SNR, while MSR-PED is superior under lower-SNR conditions. For
real applications, the detection probability PD generally requires that PD ≥ 80%; hence,
the PED may be a better choice than MSR-PED in this instance. The PDF of the proposed
TMSR−PSNR is shown in Figure 6d. Intuitively, it can be seen that the TMSR−PSNR is superior
to the PDF corresponding to the H0, and the H1 hypothesis is more likely to be separated.
This indicates that utilizing TMSR−PSNR can lead to a better detection performance, and this
result is further validated, as shown in Figure 7. This means that the proposed MSR-PSNR
is efficient in improving the detection performance, especially under low-SNR conditions.
By setting the detection probability at PD = 0.8, the minimum detectable SNR of MSR-PSNR
can reach −24 dB. The ROC curves corresponding to −20 dB and −30 dB are given in
Figure 7b. It can be seen that MSR-PSNR is superior with a different PFA, especially in
improving the detection performance under low-false-alarm-rate conditions. For MSR-MF
and MF detectors, it can be seen that MF is superior. This indicates that MSR processing
cannot break through the constraints of the optimal detection theory under Gaussian noise.

In summary, the detection of weak periodic signals with MSR can essentially be regarded
as a special nonlinear filter, of which the performance of a suboptimal detector can improved,
especially under low-SNR conditions. Constructing test statistics using peak SNR can achieve
a better detection performance, especially under low-SNR and low-false-alarm-rate conditions.
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(a) (b)

(c) (d)

(e) (f)

Figure 5. Comparison of input and MSR output results of H0 and H1 hypothesis under Gaussian noise
(α = 2): (a) received signal under H0 hypothesis (A = 0); (b) received signal under H1 hypothesis
(A = 0.1); (c) MSR output signal under H0 hypothesis (A = 0); (d) MSR output signal under H1

hypothesis (A = 0.1); (e) matched filtering processed to the received signal and the corresponding
MSR output signal under the H0 hypothesis (A = 0); (f) matched filtering processed to the received
signal and the corresponding MSR output signal under the H1 hypothesis (A = 0.1).
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(a) (b)

(c) (d)

(e) (f)

Figure 6. Comparison of probability density function (PDF) of different test statistics under Gaussian
noise (α = 2): (a) energy detector with low pass filter for received signal (TLPF−ED); (b) PED for
received signal (TPED); (c) PED for MSR output signal (TMSR−PED); (d) PSNR for MSR output signal
(TMSR−PSNR); (e) matched filtering for received signal (TMF); (f) matched filtering for MSR output
signal (TMSR−MF).
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(a) (b)

Figure 7. Detection performance comparison of different methods under Gaussian noise (α = 2):
(a) detection probability (PD) curve, varying with SNR (PFA = 0.01); (b) receiver operating curve
(ROC) corresponding to −20 dB and −30 dB.

4.2. Detection Performance Analysis under Non-Gaussian Impulsive Noise (α = 1.5)

In the last subsection, the detection performance is evaluated under Gaussian noise.
Here, the non-Gaussian impulsive noise conditions with typical α = 1.5 is further considered.
A simulation comparison of the received signals and the corresponding MSR outputs under
two hypothesis is presented in Figure 8. The received signals of the two hypotheses are shown
in Figure 8a,b. For impulsive noise, it can be seen that the SNR of the 10 Hz characteristic
frequency is greatly affected. Through MSR processing, the corresponding results can be
obtained, as shown in Figure 8c,d. The normalized power spectrum of the H0 hypothesis
follows a Lorentz distribution, while for the MSR output power spectrum of the H1 hypothesis,
the 10 Hz peak can be clearly identified. This means that the proposed MSR methods can be
more effective in dealing with non-Gaussian impulsive noise. The MF and MSR-MF of the
two hypotheses are shown in Figure 8e,f, suggesting that the results of the MSR-MF can be
improved and a better detection performance can be achieved.

To better reveal the effect of different test statistics on the detection performance, a
comparison of probability density function (PDF) with 105 statistics is presented in Figure 9.
The test statistics of TPED, TMSR−PED, TMSR−PSNR, TMF and TMSR−MF were adopted. In
Figure 9a,b, the PDF is shown to be greatly affected by the heavy tail of impulsive noise.
This means that the detection performance of PED and MF would be reduced under low-
PFA conditions, which will limit its utilization in passive sonar systems. The PDF of the
proposed TMSR−PED and TMSR−PSNR performs better, as illustrated in Figure 9c,d. It can be
seen the heavy-tail characteristic of impulsive noise is greatly suppressed. This leads to a
better detection performance, as shown in Figure 10. The detection performance is greatly
improved by MSR processing, where MSR-PED was detected to be approximately 16 dB lower
than PED, at PD = 0.8. The proposed MSR-PSNR can achieve a better performance, showing
an approximately 6 dB improvement compared to MSR-PED, at PD = 0.8. This indicates that
the proposed MSR-PED and MSR-PSNR are superior under non-Gaussian impulsive noise
conditions, and the improvement in detection performance is significant. For MSR-MF and
MF detectors, it can be seen that MSR-MF is superior. This is because MF is not the optimal
detector under non-Gaussian noise conditions. The ROC curves corresponding to 0 dB are
given in Figure 10b. It can be seen that the proposed MSR-PSNR is superior with different
PFA rates, especially under low-false-alarm-rate conditions.
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(a) (b)

(c) (d)

(e) (f)

Figure 8. Comparison of input and MSR output results under H0 and H1 hypotheses (α = 1.5):
(a) received signal under H0 hypothesis (A = 0); (b) received signal under H1 hypothesis (A = 0.5);
(c) MSR output signal under H0 hypothesis (A = 0); (d) MSR output signal under H1 hypothesis
(A = 0.5); (e) matched filtering processed to the received signal and the corresponding MSR output
signal under H0 hypothesis (A = 0); (f) matched filtering processed to the received signal and the
corresponding MSR output signal under H1 hypothesis (A = 0.5).
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(a) (b)

(c) (d)

(e)

Figure 9. Comparison of probability density function (PDF) of different test statistics under non-
Gaussian impulsive noise (α = 1.5): (a) PED for received signal (TPED); (b) PED for MSR output
signal (TMSR−PED); (c) PSNR for MSR output signal (TMSR−PSNR); (d) matched filtering for received
signal (TMF); (e) matched filtering for MSR output signal (TMSR−MF).
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(a) (b)

Figure 10. Detection performance comparison of different methods under non-Gaussian impulsive
noise (α = 1.5): (a) detection probability (PD) curve, varying with SNR (PFA = 0.01); (b) receiver
operating curve (ROC) corresponding to 0 dB.

In summary, the proposed MSR-PED and MSR-PSNR are superior under non-Gaussian
impulsive noise conditions (α = 1.5), which can lead to a significant improvment in
detecting weak signals. The MSR-PSNR performs better, especially under low-false-alarm-
rate conditions.

4.3. Detection Performance Analysis under Non-Gaussian Impulsive Noise (α = 1)

In the case of strong non-Gaussian impulsive noise, the detection performance of the
proposed methods is further evaluated with α = 1. With strong non-Gaussian impulsive
noise, the received signals are hard to detect. As shown in Figure 11a,b, it is difficult to
identify the 10 Hz signal in both the time and frequency domains under the two hypotheses.
After MSR processing, the frequency domain results corresponding to the assumption of H0
still exhibit typical Lorentz distribution characteristics, where no resonance phenomenon
occurs. Corresponding to the assumption of H1, comparing the results of Figure 11b,d, a
10 Hz peak is clearly detected in the frequency domain and the local SNR shows a nearly
20 dB improvement. This indicates that the proposed MSR can achieve a superior denoising
performance under strong non-Gaussian impulsive noise, and the corresponding MSR-
PED and MSR-PSNR are expected to show a significant improvement in their detection
performance for passive sonars. In view of the results of MF and MSR-MF, it can be
intuitively seen that MSR-MF has significant advantages.

The PDF distributions and detection performance comparisons are shown in
Figures 12 and 13. Due to the strong impulsive characteristics of α = 1, the test statistics for
PED and MF are heavy-tailed, as shown in Figure 12a,b, which would lead to a high false
alarm rate. The corresponding receiver operating curve (ROC) in Figure 13b can reveal this
limit. After MSR processing, the heavy tail of the corresponding PDF distribution is greatly
suppressed. However, for the test statistics of TMSR−PED, as given in Figure 12c, the PDF
exhibits a typical bimodal structure, making it difficult to achieve the desired detection perfor-
mance under low-false-alarm-rate conditions. This has a significant effect on the energy-based
detectors, as well as TMSR−MF, which is shown to have a slight bimodal structure in Figure 12e.
For these reasons, the performance of all energy-based detectors decreases under low-false-
alarm-rate conditions. These are clearly revealed in the comparison of ROC performance
with PED, MF, MSR-PED, and MSR-MF, where the detection performance quickly decreases
when PFA ≤ 0.05, as shown in Figure 13b. This shortcoming can be readily overcome by the
proposed MSR-PSNR detector, which can suppress the bimodality of its PDF distribution, as
shown in Figure 12d. The detection performance, as shown in Figures 13, further verified that
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the proposed MSR-PSNR method could improve the detection performance, especially under
low-false-alarm-rate conditions (PFA ≤ 0.02).

(a) (b)

(c) (d)

(e) (f)

Figure 11. Comparison of input and MSR output results under H0 and H1 hypotheses (α = 1):
(a) received signal under the H0 hypothesis (A = 0); (b) received signal under the H1 hypothesis
(A = 1); (c) MSR output signal under the H0 hypothesis (A = 0); (d) MSR output signal under the
H1 hypothesis (A = 1); (e) filtering processes, matched to the received signal and the corresponding
MSR output signal under the H0 hypothesis (A = 0); (f) filtering processes, matched to the received
signal and the corresponding MSR output signal under the H1 hypothesis (A = 1).
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(a) (b)

(c) (d)

(e)

Figure 12. Comparison of probability density function (PDF) of different test statistics under non-
Gaussian impulsive noise (α = 1): (a) PED for received signal (TPED); (b) PED for MSR output signal
(TMSR−PED); (c) PSNR for MSR output signal (TMSR−PSNR); (d) matched filtering for received signal
(TMF); (e) matched filtering for MSR output signal (TMSR−MF).



Sensors 2024, 24, 2943 20 of 25

(a) (b)

Figure 13. Detection performance comparison under non-Gaussian impulsive noise (α = 1): (a) de-
tection probability (PD) curve with varied SNR (PFA = 0.05); (b) receiver operating curve (ROC)
corresponding to 10 dB.

In summary, as the non-Gaussian noise and pulsatility increase, the performance
of energy-based detectors will be greatly affected, especially under low-false-alarm-rate
conditions. In such cases, the proposed MSR-PSNR method can effectively address this
problem. From the perspective of signal processing gains, a significant improvement in
local SNR is achieved by MSR processing. The essence of its detection performance gain
under low-false-alarm-rate conditions can be understood as a beneficial change in the PDF
distribution of the test statistics after special nonlinear transformation. How to better utilize
the nonlinear filtering effect to optimize the PDF distribution is still an open problem that is
worth future study. From the perspective of its application, MSR’s advantages in detecting
low SNR and low false alarm rates in conditions with complex background noise can
provide a potential solution for passive sonars in very-low-frequency marine environments
with strong impulsive interferences.

5. Experimental Verification

To better reveal the practical application performance, a set of sea experiment data
were adopted, collected in the South China Sea. The water depth of this sea area is about
38 m, with a flat sand bottom on the seabed. A low-frequency broadband sound source
(UW350) was deployed at 10 m’ depth with a fixed location (18.251768◦ N, 108.905868◦ E) to
set a prereceived ship-radiated noise fragment. An ocean sonics hydrophone was utilized
to receive signals that were deployed at the same depth by a moving ship at different
distances. The hydrophone was calibrated with a broadband frequency band ranging from
10 Hz to 200 kHz. The sensitivity of the hydrophone was −178 dB re 1 V/µPa. To better
reveal the low-frequency signal, the sampling rate fs was set to 10.24 kHz. A 10 s fragment
of the received signal in the time domain and the time–frequency domain are illustrated
in Figure 14c,d. A very low-frequency periodic line’s spectral characteristics are shown at
66 Hz, along with its high-order harmonics of the target signal.
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(a) (b)

(c) (d)

Figure 14. Sea experiment: (a) the deployment of low-frequency broadband sound source UW350;
(b) the receiver with an ocean sonics hydrophone; (c) the received signal in the time domain; (d) the
received signal in the time–frequency domain (received at 500 m distance).

The MSR processing results for the data received at different distances and different
levels of ambient noise are shown in Figure 15. It can be seen that the output of MSR
has typical low-pass filtering characteristics that follow the Lorentz distribution. As the
received distance increases, the resonance is more likely to respond to enhance the lower-
frequency noise. For the received signals corresponding to 1 km and 2 km, the resonance
phenomenon can occur at the characteristic frequency of 66 Hz, while for the received
signal corresponding to 5 km, the MSR output response is close to the ambient noise.

The detection performance of PED and the proposed MSR-PED and MSR-PSNR is
compared in Figure 16. It can be seen that the performance of the MSR-PED is better
than PED under different false alarm probabilities. This should refer to the denoised
performance of MSR. The detection performance of the proposed MSR-PSNR is the best.
This is in accordance with the previous simulation analyses. Under low-false-alarm-rate
conditions, the proposed MSR-PSNR could also be superior.
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(a) (b)

(c) (d)

Figure 15. Normalized power spectral density (PSD) comparison of received signal and the correspond-
ing MSR output for different distances: (a) 1 km; (b) 2 km; (c) 5 km; (d) ambient noise.

(a) (b)

Figure 16. Detection performance comparison for ship-radiated signals: (a) detection probability (PD)
curve, varied with distance; (b) receiver operating curve (ROC).
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6. Conclusions

In this paper, a novel matched stochastic resonance (MSR)-based weak signal detection
model was established, and two MSR-based detectors, named MSR-PED and MSR-PSNR,
were proposed to address the problem of weak signal detection under non-Gaussian impul-
sive background noise. Comprehensive detection performance analyses in both Gasussian
and non-Gasussian impulsive noise conditions were presented. For a typical non-Gasussian
impulsive noise assumption with α = 1.5, MSR-PED and MSR-PSNR can achieve approxi-
mately 16 dB and 22 dB improvements, respectively, with a determined detection performance,
compared to the classical PED method. For stronger non-Gaussian impulsive noise conditions
corresponding to α = 1, the improvement in detection performance is more significant and can
be superior to the matched filtering (MF) performance with prior information. The proposed
MSR-PSNR methods can resolve the challenging problem of a high false alarm rate caused by
heavy-tailed impulsive noise. From the perspective of signal processing, the improvement
achieved by MSR-PSNR in the detection performance under low-false-alarm-rate conditions
can be understood as a beneficial change in the PDF distribution of the test statistics after
special nonlinear transformation. How to better utilize the nonlinear filtering effect to opti-
mize the PDF distribution is still an open problem that is worthy of future study. From the
application perspective, the advantages of MSR in detecting low SNR and low false alarm
rates with complex background noise can provide a potential solution for passive sonars
operating in complex marine environments with strong impulsive interferences. In view of
this, this work can make a positive contribution to resolving the challenges of underwater
passive sonar detection with non-Gaussian impulsive background noise, and can provide
important guidance for future research work.
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