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Abstract: Gait phase monitoring wearable sensors play a crucial role in assessing both health and
athletic performance, offering valuable insights into an individual’s gait pattern. In this study, we
introduced a simple and cost-effective capacitive gait sensor manufacturing approach, utilizing a
micropatterned polydimethylsiloxane dielectric layer placed between screen-printed silver electrodes.
The sensor demonstrated inherent stretchability and durability, even when the electrode was bent
at a 45-degree angle, it maintained an electrode resistance of approximately 3 Ω. This feature is
particularly advantageous for gait monitoring applications. Furthermore, the fabricated flexible
capacitive pressure sensor exhibited higher sensitivity and linearity at both low and high pressure
and displayed very good stability. Notably, the sensors demonstrated rapid response and recovery
times for both under low and high pressure. To further explore the capabilities of these new sensors,
they were successfully tested as insole-type pressure sensors for real-time gait signal monitoring.
The sensors displayed a well-balanced combination of sensitivity and response time, making them
well-suited for gait analysis. Beyond gait analysis, the proposed sensor holds the potential for a wide
range of applications within biomedical, sports, and commercial systems where soft and conformable
sensors are preferred.

Keywords: gait sensing; capacitive sensor; insole; gait phase monitoring; Ag electrode; micropatterned
PDMS; wireless

1. Introduction

Analyzing gait phases is a technique used in biomechanics, clinical evaluation, reha-
bilitation, sports science, and research. Gait phase analysis provides valuable perspectives
on human movement, assisting in diagnosing conditions, planning treatments, design-
ing assistive devices, and enhancing overall mobility and quality of life. These valuable
data serve multiple purposes, such as tailoring appropriate therapies for patients and
enhancing gait stability in sports, patients, and everyday activities [1,2]. The study of
human gaits encompasses an in-depth analysis of human movement, including the identi-
fication, description, and evaluation of the specific characteristics of human locomotion
including walking patterns, the measurement of kinematic aspects across various phases of
walking, and the assessment of musculoskeletal functions. Consequently, gait analysis is
instrumental in biomedical engineering for the investigation of human locomotion. This
wide-ranging utility has sparked significant interest among researchers and clinicians alike,
to find sensors and instrumentations for gait analysis [3–7]. V. Bucinskas et al. devised and
constructed a pressure sensor for assessing human gait by examining foot pressure distri-
bution. This sensor allows for the evaluation of key gait parameters such as step rhythm,
step size, weight distribution between heel and forefoot, and timing of gait phases. Gait
patterns can be identified by analyzing sensor data in the time domain and extracting key

Sensors 2024, 24, 2944. https://doi.org/10.3390/s24092944 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s24092944
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-2215-7370
https://orcid.org/0000-0003-0487-1092
https://orcid.org/0000-0002-3346-6187
https://doi.org/10.3390/s24092944
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s24092944?type=check_update&version=2


Sensors 2024, 24, 2944 2 of 16

parameters like pulse amplitude, pulse width, slope of the pulse front edge, and temporal
shifts between pulses.

Currently, different wearable and non-wearable sensors are used to monitor and
analyze gait patterns. The acceleration of the human body produced during gait can
be measured using wearable sensors, such as an inertial measurement unit (IMU) and
some other types of force-sensitive resistor (FSR) [8,9]. While being efficient, most of the
previously designed sensors have limitations in terms of sensitivity, accuracy, dynamic
range, or durability, thus affecting the overall performance of the sensor and suitability for
gait analysis [10]. For example, Tao et al. described a smart insole and its microfabrication
process to produce a sensor array to monitor the gait [11].

However, these sensor arrays have limitations in terms of resolution, reproducibility,
or scalability, which can also affect the reliability and cost-effectiveness of the sensor array.
To solve the problem of the above sensors, numerous studies have been performed on the
creation of a capacitive pressure sensor (CPS) for gait monitoring. CPS works by sensing the
variation in capacitance caused by the movement of the distance of two parallel conductive
plates. The corresponding force is then calculated directly from the measured capacitance.

Utilizing CPS as wearable sensors offers numerous advantages, such as extending
sensor lifespan and reducing production costs by introducing cost-effective rapid man-
ufacturing processes [12–19]. Additionally, CPS exhibits superior sensitivity and lower
linear error rates compared to FSR. Jia et al. reported a flexible CPS using 3D printing
technology on paper for foot pressure monitoring [12]. Although this work achieved
promising outcomes, it did not characterize walking patterns, preventing the comprehen-
sive monitoring of the gait signal. In a previously reported sensor system from Samarentsis
et al., a 3D-printed CPS-based smart insole was used, and displayed rapid response and
relaxation times, as well as adaptability to various gait speeds [13]. In their study, the
authors integrated sixteen pressure sensors hooked on a 3D-printed design to create a
smart insole that effectively mapped the dynamic plantar pressure and could differentiate
between different gait phases. However, the 3D-printed sensor has limited flexibility, and a
used a thicker sole that can affect user comfort and wearability. As highlighted in these
works, gait sensors can often face limitations related to stability, durability, nonlinearity,
and hysteresis [20–24].

To tackle these challenges, and to increase the conformal fitting and sensor sensitivity,
there has been a growing interest in flexible pressure sensors [25–38]. Zeng et al. devised
a flexible capacitive pressure sensor characterized by its uncomplicated structure, eco-
nomical production, broad operational scope, exceptional repeatability, and heightened
sensitivity. This was achieved through a simple method for preparing the dielectric layer
and the use of inexpensive chemical materials. Their findings demonstrate that the sensor
exhibits robust responsiveness to both static and dynamic pressures, with repeatability. No-
tably, the sensor showcases exceptional dynamic response (80 milliseconds) and recovery
(55 milliseconds). Within the pressure range of 0–10 kPa, the sensor demonstrates a sen-
sitivity of up to 0.3199 kPa−1, and even within the range of 15–65 kPa, it maintains a
sensitivity of 0.0779 kPa−1. Among the flexible polymer materials used in such flexible
pressure sensors, polydimethylsiloxane (PDMS) is widely employed due to its stability,
elasticity, dielectric constant, and recovery properties. Due to these key properties, several
research efforts have focused on the development of embedded sensors for measuring,
monitoring, diagnosing, and analyzing gait in rehabilitation settings. For instance, Park
et al. fabricated a resistive-based foot pressure sensor that uses a highly sensitive strain
sensor embedded in an elastomer material, along with a 3D-printed frame and stainless
steel [39]. The sensor is composed of a flexible polymer substrate with a thin metal layer
deposited on top and then layered with insulating material. The device can function as a
real-time monitoring system by integrating a pressure visualization program and offers
the flexibility to customize foot pressure measurements up to 160 kPa across five or more
areas on the sole. Researchers have also proposed different material-based piezo-resistive
and resistive sensors, multilayer graphene, and MWCNT/PDMS nanocomposite sensors
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to quantify gait pressure mapping data while walking and standing [40–43]. Overall, these
studies demonstrate that the gait pressure dissemination is higher within the heel and
forefoot when standing, then shifts to the whole foot and finally to the forefoot during the
first occurrence of the gait cycle. Jung et al. proposed a foot pressure measurement method
using printed flexible piezoresistive sensors [44]. In that work, the sensing parts of the gait
insole were created through a carbon-based composite. Other types of sensors with multi-
layered construction have been published for gait monitoring [45,46]. Notably, because of
the multilayer fabrication processes often required, these sensors often require a thicker
insole and can be challenging in terms of flexibility and conformability. Our attention was
on creating soft and flexible sensors that can be made inexpensively using methods like
printing or molding, which makes them affordable for mass production. These sensors,
if developed, could bring new ideas and advancements to areas like healthcare, robotics,
wearable tech, automotive, and more [47,48]. They could be used in various devices and
systems, even those with complicated shapes or parts that move, making them useful
across different industries. Hence, despite numerous recent advancements in the design
and production of flexible capacitive sensors, the design and fabrication of these sensors in
a simple manufacturing process that also delivers device flexibility and adequate sensitivity
remains a significant challenge.

Herein, we report a high-performing, soft, and wearable capacitive pressure sensor
made of PDMS molding combined with screen-printed electrodes through a basic PDMS
mold transfer microfabrication method. A microstructured PDMS layer is utilized as the
flexible dielectric material, while the patterned electrodes are obtained via screen-printing.
Additionally, this pressure sensor includes wireless capability. The flexible capacitive
pressure sensor exhibits high sensitivity and linearity under low pressure (SS1 = 0.06 kPa−1,
R2 = 0.96) and high pressure (SS2 = 0.006 kPa−1, R2 = 0.92) and good stability. The sensor’s
response and relaxation durations were very short under low and high pressure (200 ms
and 175 ms, 200 ms and 100 ms, respectively). In addition to the fabrication of the device,
our work also investigates the development of the pressure sensor to be used as an insole
for gait analysis. Figure 1 describes the diagram of our smart insole system.

The wearable gait monitoring system includes the PDMS micropatterned dielectric
layer-based soft capacitive sensor, which can measure both stationary and dynamic gait
phases. A data acquisition system is also included, which can read data from four sensors,
transmit the data wirelessly using Bluetooth Low Energy (BLE), and display the data on
a mobile Android application (Figure 1B). To assess the system’s performance, a range of
static and dynamic movements, such as different postures, walking, turning, falling, and
going upstairs, were examined. Our findings demonstrate that the system is capable of
continuously monitoring and distinguishing various plantar pressure distributions. The
flexible insole, based on the typical arch foot architecture, incorporates four sensors located
at the heel, lateral rear foot, midfoot, and front foot. The foot pressure over the pressure
sensor was examined by detecting the change in capacitance of the pressure sensors when
pressure was applied, revealing that the forefoot and heel experience greater pressure when
a person stands in a normal stance. Gait phases and patterns were identified based on
capacitive responses to static and dynamic plantar pressures from the instrumented insole.
This work opens new applications in fields that include wearable medicine, detection of
sports injuries, athlete training, design of sports equipment, and other related areas.
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along with the electronics, is designed for continuous and precise gait tracking in every-
day life. Figure 1 illustrates the process wherein signals from the foot are obtained, veri-
fied, wirelessly transmitted, and subsequently processed to extract gait characteristics for 
health monitoring and offline analysis. 

To create the micropatterned dielectric layer in our sensor, we use a soft molding 
technique with PDMS and a tape mold [49]. This process entails pouring liquid PDMS 
into the pattern-containing mold, followed by baking and cross-linking the material. Fig-
ure 2A details the steps for creating the micropatterned PDMS. Initially, the adhesive part 
of the tape is removed, and the tape ribbon (Scotch Tape) is dissolved in hexanes over-
night. Then, a blend of PDMS elastomer, specifically Sylgard® 184 from Dow Corning 
(Midland, Michigan, United States), composed of a base and curing agent, is poured onto 
the tape ribbon. After degassing in a vacuum desiccator, the mixture is cured at 70 °C for 
45 min. This procedure yields a PDMS film that can be readily peeled off from the tape 
ribbon, resulting in the formation of the inverse tape structure. In this project, we 

Figure 1. (A) Graphic demonstration of the wearable gait monitoring system, the inset shows the
image of the electrode and the micropatterned PDMS dielectric layer. (B) Front-end electronics for
the wearable gait monitoring system with wired and wireless options.

2. Materials and Methods
2.1. Sensor Fabrication

The proposed sensor is fabricated through the application of micropatterned PDMS
and screen-printed silver (Ag) paste on PDMS, as shown in Figure 2. The proposed device,
along with the electronics, is designed for continuous and precise gait tracking in everyday
life. Figure 1 illustrates the process wherein signals from the foot are obtained, verified,
wirelessly transmitted, and subsequently processed to extract gait characteristics for health
monitoring and offline analysis.

To create the micropatterned dielectric layer in our sensor, we use a soft molding
technique with PDMS and a tape mold [49]. This process entails pouring liquid PDMS into
the pattern-containing mold, followed by baking and cross-linking the material. Figure 2A
details the steps for creating the micropatterned PDMS. Initially, the adhesive part of the
tape is removed, and the tape ribbon (Scotch Tape) is dissolved in hexanes overnight. Then,
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a blend of PDMS elastomer, specifically Sylgard® 184 from Dow Corning (Midland, MI,
USA), composed of a base and curing agent, is poured onto the tape ribbon. After degassing
in a vacuum desiccator, the mixture is cured at 70 ◦C for 45 min. This procedure yields a
PDMS film that can be readily peeled off from the tape ribbon, resulting in the formation
of the inverse tape structure. In this project, we augmented the area and thickness of
the micropatterned dielectric layer to ensure a larger surface area, which is conducive to
measuring a wide range of pressures.
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PDMS. (B) The fabrication process of screen-printed electrode patterning. (C) The fabricated device.

The top and bottom electrodes of our capacitive sensor were fabricated using a screen-
printing technique. Figure 2B describes the fabrication process of the screen-printed Ag
electrode. The silver electrodes were fabricated using doctor blade screen printing. We
designed the preliminary pattern using AutoCAD 2022 software and replicated it in Cricut
Design Space software [50]. Subsequently, a Cricut machine was utilized to create the
vinyl shadow mask essential for screen printing. Prior to the printing process, the micro-
patterned PDMS underwent a 10 min UV/ozone treatment on PDMS film. Ag paste was
then generously applied to the top of the vinyl shadow mask affixed to the PDMS, followed
by the removal of excess paste using a squeegee. Upon peeling off the vinyl mask, the
desired electrode pattern was revealed. Finally, the printed electrodes underwent curing at
room temperature for 20 min, resulting in the completion of the final fabricated device, as
illustrated in Figure 2C.
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2.2. Working Principle

We developed a pressure sensor based on the capacitive principle, employing two
PDMS electrodes with Ag patterns applied via screen printing. These electrodes are
separated by an air gap and PDMS material. The operating principle of this capacitive
pressure sensor is simple: when the distance between the Ag-patterned electrodes changes,
the capacitance also varies (see Figure 1). This relationship is described by the formula
C = ∈A/D, where C represents capacitance, ε stands for the relative dielectric constant
of the material, A denotes the electrode area, and D signifies the distance between the
electrodes. When pressure is applied to the electrodes, temporarily reducing the gap
between them, if the material between the electrodes is elastically compressible, this change
triggers a corresponding alteration in capacitance. Furthermore, the change in capacitance
directly corresponds to the variation in distance and, thus, to the pressure change. By
tracking these capacitance fluctuations, we can precisely measure pressure alterations,
enabling the development of pressure-sensing devices.

2.3. Electrical and Mechanical Characterization

The electrical and mechanical characteristics of the sensor were analyzed using various
device characterization approaches. This included assessing linearity, conductivity, and
flexibility in both low- and high-pressure regions. Multiple sensors were fabricated and
evaluated to select the most suitable one based on performance criteria. Characterization in-
volved viewing the internal structure using a scanning electron microscope and measuring
capacitance changes under applied pressure using a force gauge and an LCR meter.

Achieving optimal performance, ensuring reliability, adapting to diverse environ-
ments, and meeting specific application requirements all rely on the fundamental electrical
and mechanical assessment of flexible pressure sensors. This characterization process is
crucial in driving the progress of sensor technologies, enhancing their effectiveness and
reliability. By altering the mechanical and electrical parameters, the proposed pressure
sensor with a linear response and high sensitivity can be obtained. Figure S1 shows the
characterization and measurement setup. The thickness of the dielectric layers is approx.
3 mm, and the size of the sensor is approx. 2.5 cm × 4 cm. In addition, the outer diameter
of the sensor and the diameter of the detection area (i.e., the electrodes) were approximately
2.5 mm and 7 mm, respectively. The pressure sensor is made by connecting wires to
two electrodes using conductive copper tape. The performance assessment of the pressure
sensor fabricated in this study focused on three key parameters: linearity, conductivity,
and flexibility. The sensor was characterized in both the low-pressure and high-pressure
regions. In the low-pressure range, sensitivity was determined by applying forces ranging
from 0 kPa to 25 kPa on top of the device. In the high-pressure range, sensitivity was
evaluated by applying a force ranging from 30 kPa to 360 kPa. Numerous sensors were
fabricated, incorporating different combinations of dielectric layers and electrode materials.
Based on the performance evaluation of each pressure sensor, the most suitable one was
selected. We used a field emission scanning electron microscope (S4800, Hitachi, Japan)
to view the internal structure of the sensors. To assess and measure the flexible pressure
sensor, a combination of a moving stage (Mark-10 ESM303) and a force gauge (M2, Force
gauge, 500 kPa) was employed, as depicted in Figure S1. On both sides, the screen-printed
film was covered with silver paste and tied to copper wires in order to measure capaci-
tance. We recorded the capacitance changes in the sensors connected to the LCR meter
(E4980A Precision LCR Meter) under 1 V and 1 kHz. We used the force gauge through a
moving stage to apply pressure, while the LCR meter monitored the real-time capacitance
characteristics of the fabricated sensor. For data acquisition from the sensors, we opted for
the commercially available Arduino Nano board, a compact and small board based on the
ATmega328 microcontroller.
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2.4. Hardware and Wireless Data Transmission

The experimental setup included an insole integrated with the sensor device and a
3D-printed box housing the PCB and system components. This setup enabled optimal
performance and portability, essential for real-world applications. To facilitate wireless
data transmission, we employed Bluetooth Low Energy (BLE), a standardized protocol
operating at 2.4 GHz. The complete hardware was enclosed in a 3D-printed box. We utilized
DesignSpark Mechanical 2022 software to create a three-dimensional enclosure, specifically
a box, to house the printed circuit board (PCB) and system components. The overall setup
consisted of an insole and a 3D printed box that accommodated the PCB. This choice proved
beneficial for ensuring optimal performance within a confined space, particularly when
enclosed in a plastic box. To enhance portability, we designed the data acquisition device
to be rechargeable and portable, utilizing lithium polymer (Li-Po) batteries that included
built-in protection circuitry.

In summary, the fabrication process involved creating micropatterned PDMS and
screen-printed Ag electrodes, while the sensor principle relied on capacitance changes to
measure pressure variations. Electrical and mechanical characterization ensured perfor-
mance optimization, while hardware and wireless data transmission facilitated practical
applications in gait tracking and health monitoring.

3. Results and Discussion
3.1. Electrical and Mechanical Properties

The electrical characterization of the screen-printed electrode is shown in Figure S2.
The resistance of silver (Ag) patterned electrodes changes when bent on PDMS. The bending
angle was from 0 to 75 degrees, where it exhibits 3Ω at 45 degrees. It is demonstrated
that even though there was a large deformation of the electrode, the resistance was low
and stable.

3.2. Sensor Performance and Characteristics

Precise, reliable, and meaningful gait measurements in both high and low-pressure
regions, essential for detecting human movement, require soft and flexible sensors with
high sensitivity and linearity [13,14]. These characteristics ensure the sensor’s efficacy in
accurately capturing the nuances of human motion, offering valuable insights applicable
to both clinical and research settings. The proposed sensor with micropatterned PDMS
showed high sensitivity and linearity. Due to the micropatterned structure of the PDMS,
the separation between the two electrodes could easily be changed, resulting in good
sensitivity through capacitance change. A thinner and more flexible sensor is preferred
for a conformal fit inside the shoe and for better sensitivity. We reduced the thickness of a
pressure sensor by using thin and flexible polymers (PDMS) and thin patterned electrodes.
To enhance durability, we enhanced the wearability of the sensors by embedding them
within a protective casing.

3.3. Sensitivity and Linearity Evaluation

The fabricated sensor was tested for its pressure response and sensitivities using the
measurement system shown in Figure S1. We measured the sensitivity of the fabricated
micropatterned PDMS film, as shown in Figure 3A. We obtained the capacitance output
under different pressures and calculated the sensitivity and linearity of the fabricated sensor,
which are SS1 = 0.06 kPa−1, R2 = 0.96. We manually applied a constant pressure of 5 kPa on
the sensor and repeatedly measured the capacitance, as shown in Figure 3B. In repeated
loading and unloading scenarios, the capacitance response continued to be constant.

To quantify the sensor error and repeatability, multiple experiments were performed
with loading and unloading of the same pressure (5 kPa), as shown in Figure 3B. The
results showed that the mean value of ∆C/C0 is 0.6940, standard deviation 0.0236, and
standard error 0.0016. The mean of the response time was found to be 0.2129 s, the standard
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deviation of the response time 0.0198, and the standard error of the response time was
found 0.0075.
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Figure 3. Mechanical characterization under low pressure. (A) Measured sensitivity at low-pressure
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The output capacitance exhibited a consistent shape, although slight variations oc-
curred due to manual pressure application and release. Dynamic force demonstrations
were conducted by repetitively touching and withdrawing the force gauge head from a
flat surface to apply and remove dynamic pressure, as depicted in Figure 3C. As depicted
in Figure 3C, the capacitance increased with higher applied pressure. An essential char-
acteristic of the wearable pressure sensor is its ability to detect low pressures. To assess
the performance in the ultra-low-pressure range, sequential loading and unloading of tiny
pressures (1, 2, and 5 g) were conducted, and the sensor’s response was analyzed, as shown
in Figure 3D. Additionally, the sensor’s capability for detecting delicate pressures was eval-
uated by tapping and releasing the sensor, as illustrated in Figure 3E. A consistent outcome
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was obtained when the finger was tapped at a frequency of 4 Hz. The capacitive pressure
sensor demonstrated response and relaxation periods of 200 ms and 175 ms, respectively,
as presented in Figure 3F. Based on the response of the sensor, we can confirm that the
sensor performance is stable under low-pressure conditions.

3.4. High-Pressure Performance

The sensor was characterized in the high-pressure range by subjecting it to various
forces, as illustrated in Figure 4. The capacitance output was measured at different pressure
levels, the linearity of the fabricated sensor in the high-pressure region was calculated with
an R2 value of 0.92, and the sensitivity was SS2 = 0.006 kPa−1, as indicated in Figure 4A.
Dynamic forces were also applied, as depicted in Figure 4B, revealing an increase in capaci-
tance with increasing pressure. To verify the stability of capacitance under consistent force,
a pressure of 100 kPa was applied to the sensor using a force gauge, and the capacitance
was repeatedly measured, as shown in Figure 4C [11–13]. Figure 4D shows the variation
in relative capacitive change for loading and unloading, which indicates low hysteresis.
We also verified the capacitance changes under different forces, as shown in Figure S4,
compared to Figure 4B. In order to verify the repeatability of the proposed sensor, we
used three sensors for obtaining the capacitances under different forces. According to
Figure S5, there are slight variations in capacitances. These variations occurred because of
the air gap of the capacitive pressure sensor. Since the variations are not large, it shows the
repeatability of the proposed sensor.
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3.5. Gait Signal Acquisition and Analysis

The process of tracking gait signals encompasses the collection of diverse parameters
associated with an individual’s walking style. The choice of specific signals to observe is
contingent upon the goals of the gait analysis and the applications under consideration. In
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this context, we acquired gait signals during distinct dynamic phases using the proposed
wearable device. This device holds potential for applications such as the examination
of biomechanics, evaluation of rehabilitation outcomes, and assessment of intervention
effects [11–34,50]. Technological advancements in sensors, particularly in soft and wireless
sensing systems, have significantly increased the ease of monitoring these gait signals
across different environments. A recording of four steps utilizing the insole is shown in
Figure 5A,B, demonstrating that the distinct gait phases can be identified using the obtained
time and capacitance information. The sensors were attached to an insole, demonstrating
their capacity to track human gait by analyzing the multiple phases of pressure signals
from different foot areas [13].
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Figure 5. Gait signal acquisition for identification of foot pressure distribution in different dynamic
phases. Record of (A) the gait cycle of the reverse strike pattern, (B) forward strike pattern using
the fabricated smart insole system, (C) gait signal of the left and right foot under normal walking
conditions, and (D) putting the left and right foot on different areas under different forces.

To capture signals from the foot motion of a human, a basic four-channel capacitance-
to-digital converter called FDC1004 was employed and coupled to the pressure sensor, as
displayed in Figure 1. The proposed sensor was incorporated into the heel of a commercial
insole to demonstrate its application as a smart insole. To perform the experiment mea-
surement, first, we demonstrated and measured the two-gait cycle pattern, which is the
forward strike pattern and the reverse strike pattern [14]. Figure 5A shows the obtained
capacitance of the reverse strike gait cycle pattern. We placed two sensors at the Rearfoot1
and Rearfoot2 and two sensors at the Forefoot3 and Forefoot4, as shown in Figure S3A. In
the case of a reverse strike pattern, first, the subject was asked to land the rear foot and then
contact the ground using the forefoot and, finally, lift the rear foot. According to Figure 5A,
the obtained capacitance follows the pattern. Sensors Rearfoot1 and Rearfoot2 have higher
capacitances than Forefoot3 and Forefoot4 because of the heel pressure. When the forefoot
contacted the ground, the rearfoot was lifted, and sensors Rearfoot1 and Rearfoot2 gave
higher capacitances than Forefoot3 and Forefoot4 because of the forefoot pressure on the
sensor. Figure 5B shows the obtained capacitance of the forward strike gait cycle pattern. It
is the opposite case of the reverse strike pattern where, initially, the sensors Forefoot3 and
Forefoot4 give higher capacitances compared to Rearfoot1 and Rearfoot2 because of the
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front foot pressure. Later, when the front foot was lifted, sensors Rearfoot1 and Rearfoot2
gave higher capacitances than Forefoot3 and Forefoot4 because of the rearfoot pressure
on the sensor. The obtained capacitance behavior indicates that the sensors are working
accurately to detect and monitor the gait cycle pattern. Subsequently, we positioned the
sensors on the left and right feet, as shown in Figure S3B, and instructed the subject to
imitate a walking pattern. The gait signal was then recorded simultaneously from both feet.
The fabricated pressure sensors showed an increase in capacitance when pressed by the
foot, owing to the compression of the dielectric layer (micropatterned PDMS), as depicted
in Figure 5C [13,34]. Conversely, when the foot was lifted, the capacitance was reduced
because of the elastic regaining of the PDMS dielectric. Figure 5D shows the obtained
capacitance under different forces on different parts of the left and right foot. We can easily
identify the different pressure locations from different areas of the left and right foot.

We evaluated the limping of the left and right foot under different forces, as demon-
strated in Figure S3C. All the sensors responded well according to different dynamic forces.
We can identify the location of the force after analyzing the capacitance data, as described
in Figure 6A. To check the limping of a foot up and down, we placed the sensors in different
locations of a single foot while doing foot up and down motion. Observations revealed
that when the foot was elevated, the capacitance decreased as the sensor remained un-
pressed for specific durations. Conversely, when the foot was lowered, the capacitance
increased, with variations depending on the sensor’s location, as depicted in Figure 6A. The
recorded capacitance values resulting from foot tapping at a frequency of 7 Hz as shown in
Figure 6B. The combination of Figure 6A,B demonstrates that the proposed sensor enables
easy differentiation between the gait patterns of the right and left foot.
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The developed sensor was integrated into a wearable device, demonstrating its util-
ity in capturing gait signals during various dynamic phases. Recorded signals enabled
identification of distinct gait phases, showcasing the sensor’s potential for applications in
biomechanics, rehabilitation assessment, and intervention effects monitoring. The sensor’s
capability to track pressure signals from different foot areas further enhances its suitability
for gait analysis.

3.6. Practical Applications and Wireless Monitoring

We made an Android application to monitor the gait signal wirelessly. Figure 6A
shows the four capacitances obtained from the single foot using Bluetooth communication.
Moreover, we made another Android application to show the pressure ON–OFF result, as
shown in Figure 6B. Additionally, to illustrate the screen-printed pressure sensor in dynamic
pressure mapping applications, we use finger taps to press the pressure sensor. The
signal from the pressure sensor changes immediately, as shown in Figure 6C,D. This study
illustrated practical applications of the sensor, including incorporation into smart insoles for
gait analysis. The sensor accurately captured gait cycle patterns, facilitating differentiation
between forward and reverse strike patterns. Furthermore, wireless monitoring capabilities
were demonstrated through Android applications, enabling real-time gait signal tracking.
Dynamic pressure mapping applications were also showcased, highlighting the sensor’s
versatility in various monitoring scenarios.

In summary, the developed pressure sensor exhibits promising performance charac-
teristics, making it a valuable tool for precise gait analysis and monitoring in both clinical
and research settings. Its soft, flexible nature and wireless capabilities enhance its usability
across diverse applications, paving the way for advancements in biomechanics and reha-
bilitation sciences. Table 1 shows the performance summary of the proposed device. The
performance comparison of the proposed sensor with other reported capacitive pressure
sensors for gait monitoring is shown in Table S1 (Supporting File).

Table 1. Performance summary of the proposed gait monitoring device.

Parameters Measured Value/Properties/Justifications

Pressure Range From 0 to 1000 kPa covers the typical pressures exerted by the foot during activities like walking,
running, and standing. We evaluated 0 to 300 kPa.

Sensitivity
A range of 0.001–10 kPa−1 pressure change is what the sensor should detect. The proposed flexible
capacitive pressure sensor exhibits high sensitivity and linearity under low pressure (SS1 = 0.06 kPa−1,
R2 = 0.96) and high pressure (SS2 = 0.006 kPa−1, R2 = 0.92)

Accuracy

The desired level of accuracy for pressure measurements is 90% to 95%. To quantify the sensor error and
repeatability, multiple experiments were performed with loading and unloading of the same pressure
(5 kPa), as shown in Figure 3B. Results showed that the mean value of ∆C/C0 is 0.6940, standard
deviation is 0.0236, and standard error is 0.0016.

Precision Accurate measuring is needed to catch small changes in how people walk, so we can study them closely
and see how they improve over time. For that reason, we measured the tiny pressure (1 g weight).

Reliability The proposed system gives the same results each time we measure.

Linearity
The sensor’s response is linear across the pressure range. The flexible capacitive pressure sensor exhibits
high sensitivity and linearity under low pressure (SS1 = 0.06 kPa−1, R2 = 0.96) and high pressure
(SS2 = 0.006 kPa−1, R2 = 0.92).

Real-Time Monitoring We made real-time monitoring capability that allows us to see the changes in capacitances with load in
real-time.

User-Friendly Interface We used a simple microcontroller-based user interface and software for the data collection and analysis.

Durability We used PDMS as the substrate which is durable construction and robust materials ensure the longevity
and reliability of the gait sensing system.
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Table 1. Cont.

Parameters Measured Value/Properties/Justifications

Portability To enhance portability, we designed the data acquisition device to be rechargeable and portable, utilizing
lithium polymer (Li-Po) batteries that included built-in protection circuitry. App-based data connectivity.

Hysteresis
Minimize the difference in sensor output for the same pressure, depending on whether the pressure is
increasing or decreasing. Figure 4D shows the variation in relative capacitive change for loading and
unloading which indicates low hysteresis.

Response Time The capacitive pressure sensor demonstrated response and relaxation periods of 200 ms and 175 ms,
respectively, as presented in Figure 3F.

Stability The sensor’s performance remains consistent over time, according to Figure 5C,D.

Size and Form Factor
The thickness of the dielectric layers is approx. 3 mm, and the size of the sensor is approx. 2.5 cm × 4 cm.
In addition, the outer diameter of the sensor and the diameter of the detection area (i.e., the electrodes)
were approximately 2.5 mm and 7 mm, respectively.

4. Conclusions

In this work, we successfully designed and fabricated a flexible capacitive pressure
sensor that utilized micropatterned PDMS dielectric material to analyze human gait. The
new integrated sensor design was found to be lightweight, and the robust smart insole
developed was used for real-time gait pattern analysis. The new device underwent real-
time gait response testing and demonstrated its efficiency in sensing different gait patterns
in real-time. A total of four sensors in an integrated assembly were developed for a soft
shoe sole, and the device was effectively integrated into a commercially available shoe pad
to analyze gait pressure signals. The thickness of the pressure sensor was decreased by
utilizing thin and flexible polymers (PDMS) and a thin patterned electrode. The design
of the sensor was fine-tuned using microfabrication to make it thinner and flexible while
still maintaining sensitivity and accuracy. Additionally, the pressure sensor was combined
with active electronic components, such as a capacitance-to-voltage digital converter and
wireless transmitters, to increase the data connectivity, and decrease its overall size and
thickness while preserving its functionality. This can be beneficial in instances where there
is limited space in the shoe, or the sensor needs to be incorporated into a larger system.
The findings indicate that the flexible pressure sensor created in this study is a valuable
instrument for analyzing gait signals and differentiating various walking patterns. The
simple approach employed to produce sensitive and lightweight sensors demonstrated
in this research would be well-suited for detecting human motion and further enabling
personalized healthcare applications. The insole has been evaluated in both static and
dynamic situations, allowing in the future to track and potentially modify a patient’s
problematic posture and walking patterns. Physiotherapists, for example, such informa-
tion may improve patient recovery by monitoring and fine-tuning the real stress on the
limb, while sports professionals may utilize the device to follow an athlete’s training and
improve performance.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/s24092944/s1, Figure S1: Measurement setup. (A) Setup for
the measurement of the sensor response. (B) Photograph of gait signal acquisition using a flexible
capacitive pressure sensor. (C) Image of the flexible electrode surface. (D) SEM image of the
micropatterned PDMS. The white scale bar represents 300 µm. Figure S2: (A) Experimental image of
the electrical characterization, (B) Resistance changes of electrodes when bent on PDMS. Figure S3.
Placement of sensors in different locations. (A) two forefoot and two rearfoot, (B) left and right side
(forefoot and rearfoot), (C) one forefoot, two midfoot, and one rearfoot. Figure S3: Placement of
sensors in different locations. (A) two forefoot and two rearfoot, (B) left and right side (forefoot and
rearfoot), (C) one forefoot, two midfoot, and one rearfoot. Figure S4: Capacitance changes under
different forces. Figure S5: Capacitance changes under different forces for three sensors; Table S1.
Performance comparison of capacitive pressure sensor for gait monitoring application.

https://www.mdpi.com/article/10.3390/s24092944/s1
https://www.mdpi.com/article/10.3390/s24092944/s1
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