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Abstract: The 5-hydroxytryptamine receptor 6 (5-HT6) has gained attention as a target for developing
therapeutics for Alzheimer’s disease, schizophrenia, cognitive dysfunctions, anxiety, and depression,
to list a few. In the present analysis, a larger and diverse dataset of 1278 molecules covering a broad
chemical and activity space was used to identify visual and concealed structural features associated
with binding affinity for 5-HT6. For this, quantitative structure–activity relationships (QSAR) and
molecular docking analyses were executed. This led to the development of a statistically robust
QSAR model with a balance of excellent predictivity (R2

tr = 0.78, R2
ex = 0.77), the identification of

unreported aspects of known features, and also novel mechanistic interpretations. Molecular docking
and QSAR provided similar as well as complementary results. The present analysis indicates that
the partial charges on ring carbons present within four bonds from a sulfur atom, the occurrence of
sp3-hybridized carbon atoms bonded with donor atoms, and a conditional occurrence of lipophilic
atoms/groups from nitrogen atoms, which are prominent but unreported pharmacophores that
should be considered while optimizing a molecule for 5-HT6. Thus, the present analysis led to
identification of some novel unreported structural features that govern the binding affinity of a
molecule. The results could be beneficial in optimizing the molecules for 5-HT6.

Keywords: 5-hydroxytryptamine receptor 6; neurodegeneration; QSAR; molecular docking;
pharmacophoric features

1. Introduction

Millions of people are suffering from central nervous system (CNS)-related diseases,
such as Alzheimer’s disease, schizophrenia, cognitive dysfunctions, anxiety, depression,
etc. [1–4], and are facing diverse health and social challenges. Though therapeutic agents
are available for the treatment of these diseases, they lack the ability to reduce the continu-
ous loss of cognitive function, as most of them target only the acetylcholine deficit [2,3,5–9].
Therefore, there is a need to develop a therapeutic agent with a different mechanism of ac-
tion and bio-activity profile to support the existing drug space. Recently, G-protein-coupled
receptors (GPCRs), viz., the serotonergic system of serotonin (5-hydroxytryptamine) recep-
tors, have received greater attention due to their vital role in signal transduction pathways
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and numerous neurological functions [2,4,7–10]. To add further, 5-hydroxytryptamine
receptors (5-HT1–7) play vital roles in many cognitive dysfunctions such as memory loss,
reduced learning ability, etc. [4,5,8,9]. Among them, the 5-HT6 receptor has emerged as
a promising target due to its crucial role in the onset of Alzheimer’s disease, cognitive
processes, mood control, depression, and anxiety [4,5,8,9], to name a few. It is believed that
blocking the 5-HT6 receptor significantly improves learning and memory processes [4,5,8,9].
In addition, it has also emerged as a molecular target for the treatment of obesity and the
related metabolic syndrome [11]. An additional advantage associated with 5-HT6 is its
restricted and exclusive occurrence within the CNS, which implies that compounds acting
through this receptor could have minimal peripheral side effects [2,3,6,10,12]. Even though
several molecules have been identified as promising ligands with high binding affinities
for 5-HT6 (see Figure 1), none of them has cleared the clinical stages or been approved as a
drug [1,7–10,12].

Figure 1. Chemical structures of representative examples of clinically tested 5-HT6 ligands.

Therefore, there is a need to develop a novel therapeutic agent with a better ADMET
(absorption, distribution, metabolism, excretion, and toxicity) profile and the retention of
a high binding affinity for 5-HT6. For this, it is essential to know the prominent and con-
cealed pharmacophoric features associated with binding affinities for 5-HT6 using a broad,
structurally diverse dataset with adequate variations in activity space. To achieve these
targets, computer-aided drug designing (CADD) is a contemporary and feasible solution
due to its low cost and time efficacy [13,14]. Ligand-based drug designing (LBDD) is a
thriving and widely accepted branch of CADD with a higher success rate of identification
of key pharmacophoric features. It is the method of choice if the 3D structure of a target
protein is not available [14]. Under the terrain of LBDD, the quantitative structure–activity
relationship (QSAR) is an effective and multidisciplinary approach that is useful to identify
salient and hidden pharmacophoric features [15–18].

Though different types of ligands encompassing diverse scaffolds are known for
5-HT6, the lack of an X-ray-resolved 3D structure restricts the use of structure-based drug
designing (SBDD) approaches. Consequently, many researchers have performed QSAR
analysis for 5-HT6 using different types of scaffolds. Doddareddy and co-workers [1]
accomplished a 3D QSAR analysis using a small dataset of 33 N1-arylsulfonylindole
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compounds as 5-HT6 antagonists. The analysis reinforced the pharmacophoric features
reported by López-Rodríguez et al. [4,19]. Later in 2011, Hao et al. [3] studied relatively
a larger dataset of 223 ligands reported for 5-HT6 for QSAR, homology-based molecular
docking, and molecular dynamics simulations for 5 ns. Their analysis pointed out that
the interaction with the residue Asp106 is important. A 2D and 3D QSAR analysis of
arylsulfonamide-derived 5-HT6 receptor antagonists [12] highlighted the importance of
the pharmacophore model reported by López-Rodríguez et al. [4,19]. Though these studies
contributed to the identification of some important structural features, the developed QSAR
models were either based on smaller datasets or specific scaffolds only, thereby lacking
general applicability. In addition, poor external predictive ability restricts their usage for a
lead optimization pipeline. A QSAR analysis based on a large and diverse set of molecules,
with a balance of predictive ability (predictive QSAR) and mechanistic interpretation
(mechanistic QSAR) provides an in-depth understanding of the correlation between the
structural features and the desired bio-activity [15,20,21]. Therefore, QSAR analysis has
been executed in the present work using a large and diverse dataset that covers a broad
chemical and activity space to find out the structural features of high importance for 5-HT6
ligands. Molecular docking has been carried out to support and complement the QSAR
analysis. Further, an in-depth analysis of a larger dataset comprising diverse scaffolds led
to the identification of reported as well as unreported pharmacophoric features, which
could be useful in the optimization of molecules during a drug discovery pipeline.

2. Results

In the present work, we have identified reported as well as unreported structural
features of 5-HT6 ligands. As stated in the introduction section, the emphasis was on
building a genetic algorithm–multilinear regression (GA-MLR) model with a balance of
predictive ability and mechanistic interpretations. The newly built six-parametric model is
as follows:

Model-1: pKi = 6.754 (±0.091) −0.109 (±0.014) * com_Hhyd_3A −0.700 (±0.043)
* ringC_S_4Bc −0.604 (±0.104) * flipo&S_ringN3B −0.528 (±0.075) * KRFPC620 −0.339
(±0.053) * sp3N_sp2O_8B + 0.545 (±0.067) * fsp3Cdon1B

The details of the molecular descriptors present in Model-1 have been tabulated in
Table 1 and are discussed in detail in the discussion section. Table 2 contains selected
validation parameters associated with Model-1.

Table 1. Some details of constituent molecular descriptors present in Model-1.

Molecular
Descriptor Description Software Used

for Calculation Correlation with pKi

com_Hhyd_3A
Total number of hydrogen atoms with partial charge
in the range of ±0.2 within 3 Å from center of mass

of molecule
PyDescriptor −0.625

ringC_S_4Bc Sum of partial charges on ring carbon atoms present
within four bonds from sulfur atom PyDescriptor −0.696

flipo&S_ringN3B Frequency of occurrence of ring nitrogen atom
present exactly at three bonds from lipophilic atom PyDescriptor −0.248

sp3N_sp2O_8B
Total number of sp3-hybridized nitrogen atoms
present within eight bonds from sp2-hybridized

oxygen atoms
PyDescriptor −0.133

KRFPC620 Nitrogen attached to three CH3CH2- groups PaDEL −0.444

fsp3Cdon1B Frequency of occurrence of H-bond donor atom
bonded with sp3-hybridized carbon atom PyDescriptor 0.026
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Table 2. Selected statistical validation parameters for Model-1.

Parameter Value Parameter Value

R2
tr 0.783 Q2

LMO 0.779

R2
adj. 0.781 R2

Yscr 0.006

RMSEtr 0.419 RMSEex 0.425

MAEtr 0.350 MAEex 0.357

CCCtr 0.878 R2
ex 0.772

R2
cv (Q2loo) 0.780 Q2-F1 0.768

RMSEcv 0.422 Q2-F2 0.768

MAEcv 0.352 Q2-F3 0.777

CCCcv 0.876 CCCex 0.871
Note: tr—Training, cv—Cross-validation, ex—External.

It is evident from above statistical parameters that the model is statistically predictive,
with high values of different parameters such as R2

tr (coefficient of determination), R2
adj.

(adjusted coefficient of determination), and R2
cv (Q2

LOO) (cross-validated coefficient of
determination for leave-one-out), R2

ex (external coefficient of determination), Q2−Fn, and
CCCex (concordance correlation coefficient for external set), etc., and low values of LOF
(lack-of-fit), RMSE (root-mean-square error), MAE (mean absolute error), R2

Yscr (R2 for
Y-scrambling), etc. Thus, the model possesses high external predictive ability, is free
from chance correlations, and satisfies the recommended threshold values for various
validation parameters [16,22–29]. All validation parameters associated with Model-1 and
their formulae are available in the Supplementary Materials.

Figure 2 contains the different graphs associated with Model-1, viz., the experi-
mental vs. predicted pKi (Figure 2a), experimental vs. residuals (Figure 2b), and the
Y-randomization plot (Figure 2d). We used a Williams plot to judge the applicability do-
main of the model (see Figure 2c). Thus, it satisfies all the OECD-endorsed guidelines and
criteria for creating a useful QSAR model.

Figure 2. Cont.



Pharmaceuticals 2022, 15, 834 5 of 18

Figure 2. Different graphs associated with the Model-1. (a) Experimental vs. predicted pKi (the solid
line represents the regression line); (b) experimental vs. residuals; (c) Williams plot for applicability
domain (the vertical solid line represents h* = 0.021 and the horizontal dashed lines represent the
upper and lower boundaries of the applicability domain); (d) Y-randomization plot.

The docking scores for all the molecules are incorporated in the Supplementary Materials
(see Excel file ‘SupplementaryMaterial-Final.xlsx’, available in the Supplementary Materials).

3. Discussion

The interpretation of a QSAR model using molecular descriptors, also known as
mechanistic interpretation, is a crucial aspect to highlight and link various structural
features with significant influence in deciding the bio-activity of molecules [15,21]. It is
also one of the requirements suggested by the OECD for developing a thriving QSAR
model. In the present work, we used a simple approach in which the pKi values of different
molecules were compared using a specific molecular descriptor. Nonetheless, we make
clear that the final experimental pKi value of a molecule cannot be governed by just a single
structural feature (molecular descriptor). To add further, the extending or reverse effect
of other molecular descriptors and unknown factors play crucial roles in deciding the pKi
value of a molecule. Therefore, a concomitant consideration of all molecular descriptors
and their associated structural features is a better strategy for the effective use of a QSAR
model. Model-1 encompasses six molecular descriptors.

The molecular descriptor com_Hhyd_3A represents the total number of hydrogen
atoms with a partial charge in the range of ±0.200 and also present within 3 Å from the
center of mass (com) of the molecule. As the partial charge must be within the range
±0.200, this descriptor expresses the role played by non-polar hydrogens [30] when present
within 3Å from the center of mass of the molecule. The descriptor com_Hhyd_3A has a
negative coefficient in Model-1, which indicates that the lower the value, the better the
binding affinity. This could be achieved by replacing non-polar hydrogen atoms with
suitable atoms/groups. This indirectly points out that the presence of polar hydrogens,
in turn, polar groups nearer to center of mass of a molecule, are beneficial for escalating
the pKi value. In addition, hydrogen is smaller than other elements, and replacing it with
any other element will increase the steric bulk. Therefore, bulkiness near the center of
mass of the molecule is highly favorable for increasing the pKi value. To add further,
com_Hhyd_3A depends on the location of the center of mass, which changes with the
positions of groups/atoms (positional isomers). Therefore, the value of com_Hhyd_3A
varies for positional isomers, for example, molecules number 331 and 332. Hence, the
descriptor effortlessly captures the importance of positional isomerism in deciding the
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pKi value. Thus, the descriptor com_Hhyd_3A and its negative correlation (correlation
coefficient R = −0.63) with pKi highlighted the crucial role played by the presence of
polar groups and steric bulkiness near the center of mass of a molecule as well as the
positional isomerism. This observation was further confirmed by comparing following
pairs of molecules: 542 (Ki = 25520 nM, com_Hhyd_3A = 8) with 547 (Ki = 2506 nM,
com_Hhyd_3A = 6) (depicted in Figure 3), 543 (Ki = 14650 nM, com_Hhyd_3A = 9) with
545 (Ki = 8611 nM, com_Hhyd_3A = 6), 1011 (Ki = 91 nM, com_Hhyd_3A = 6) with
1082 (Ki = 419 nM, com_Hhyd_3A = 7), 935 (Ki = 2843 nM, com_Hhyd_3A = 8) vs. 937
(Ki = 2005 nM, com_Hhyd_3A = 6), and 929 (Ki = 2427 nM, com_Hhyd_3A = 7) vs. 938
(Ki = 1540 nM, com_Hhyd_3A = 5), to list a few. Thus, for the first time, com has been used
as a useful approach to explain the differences in the binding affinities of ligands for 5-HT6.
In addition, this novel approach provides a novel justification for the differences in the
activity of positional isomers.

Figure 3. Depiction of com_Hhyd_3A using molecules 542 and 547 as representative examples (radius
of gray sphere is 3 Å).

ringC_S_4Bc, which signifies the sum of partial charges on ring carbon atoms present
within four bonds from a sulfur atom, has a negative coefficient in Model-1. In addition,
it has a correlation coefficient of −0.696 with pKi. Therefore, decreasing the value of
ringC_S_4Bc could lead to a higher pKi value, i.e., a better binding affinity. The descriptor
highlights the importance of ring carbon and sulfur atoms; therefore, it looks as if merely
ring carbon or sulfur atoms are enough to control the binding affinity. Replacing it with
nringC (the total number of ring carbon atoms) or nS (the total number of sulfur atoms)
reduced the statistical performance of Model-1 (R2 = 0.74 and 0.73). Therefore, a combined
presence of ring carbons and sulfur atoms within four bonds from each other has more
influence. The descriptor is shown using molecules 335 and 339 as representative examples
in Figure 4. A comparison of the following pairs of molecules confirmed the observation:
335 with 339, 952 with 953, 954 with 955, 248 with 249, 762 with 763, 221 with 260, 175 with
650, 1089 with 1101, 989 with 1030, etc.

A literature survey revealed that a combination of a H-bond acceptor, such as a sul-
fonamide or sulfone moiety, along with fused rings such as naphthalene, benzothiophene,
or indole, is highly suitable for augmenting the pKi values of 5-HT6 ligands [6] due to
their hydrophobic character [5]. Interestingly, the sulfone or sulfonamide groups are di-
rectly attached to fused rings in many compounds of the present dataset. In addition, in
the present work, we found that the partial charges on the ring carbons of fused rings
also influenced the binding affinity of a molecule for 5-HT6. Therefore, the hydrophobic
character of fused rings and the partial charges on a ring carbon are equally important.
This observation is further supported by the molecular docking analysis. The molecular
docking analysis revealed that molecules number 335 and 339 have different poses and
types of interactions. Molecule 335 has an established H-bond with Asp87 (distance 2.86 Å)
and a pi–pi interaction with Phe-222 (distance 5.17 Å), whereas molecule 339 has only a
H-bond formation with Asn225 (distance 2.70 Å) and lacks any pi–pi interactions. Molecule
335 was able to establish a pi–pi interaction due to the presence of a sulfone group, which
caused substantial changes in the partial charges of ring carbon atoms and the C-S-C bond
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angle (99.8◦ in 335 and 105.6◦ in 339) and also changed the solvent-accessible surface areas
(2312.8 Å2 for 335 and 2098.4 Å2 for 339). The docking poses for molecules number 335
and 339 are shown in Figure 4c. The yellow dotted line represents the prominent interac-
tion with distances in Angstrom units. It is clear from the present analysis that not only
lipophilic factors but electronic factors associated with ring carbon atoms vicinal to sulfur,
in turn aromatic/aliphatic rings, are an important parameter in deciding the inhibitory
activity for 5-HT6. Thus, the present work is successful in identifying novel unreported
crucial aspects of a previously known pharmacophoric feature required for better activity
for 5-HT6.

Figure 4. Molecules 335 and 339 as representative examples to depict the effect of descriptor
ringC_S_4Bc. (a) Comparison of docking pose of 335 (pink) and 339 (blue), (b) C-S-C bond an-
gle shown using yellow dotted lines, (c) docking pose for 335 (pink) and 339 (blue), (d) carbon atoms
(yellow) within four bonds of sulfur (magenta) with respective partial charges.

The molecular descriptor flipo&S_ringN3B represents the frequency of occurrence
of a ring nitrogen atom exactly three bonds from a lipophilic atom or sulfur atom. If the
same ring nitrogen atom is also present at two or less bonds from any other lipophilic
atom or sulfur atom, then it is neglected while calculating flipo&S_ringN3B. It has a
negative coefficient in Model-1, which suggests that lowering the value of flipo&S_ringN3B
could lead to a better binding profile. This observation is justified by the fact that there
are 383 molecules with Ki ≤ 10 nM, but only one of them has flipo&S_ringN3B = 2
(molecule number 50). Only two molecules (molecules number 569 and 978) possess
flipo&S_ringN3B = 1, and the remaining 380 molecules have flipo&S_ringN3B = 0. A
comparison of molecules 870 with 871, 896 with 903, and 892 with 897 and 898 further
strengthens the observation. For example, consider molecules 986 and 1024. In the case of
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molecule 986, the presence of an additional -CH3 group on the imidazole ring increased the
number of lipophilic atoms within three bonds of the ring nitrogen as well as the lipophilic
surface area (178.3 Å2), thereby having flipo&S_ringN3B = 0, while molecule 1024 lacks
such a substituent and consequently has flipo&S_ringN3B = 1 and a lower lipophilic surface
area of 173.5 Å2 (See Figure 5).

Figure 5. Representation of flipo&S_ringN3B using molecules 986 and 1024 as examples. The green
contour in the middle figures depicts the lipophilic surface area.

Likewise, in the case of highly active molecules, a lower value of flipo&S_ringN3B is
possible due to a lower number of ring nitrogen (for example molecule 681) or due to the
presence of lipophilic atoms within three bonds of a ring nitrogen. Thus, this descriptor
signifies that the presence of lipophilic atoms near ring nitrogen atoms decreases the value
of flipo&S_ringN3B, which in turn increases the pKi value. In other words, it points out
an unreported structural feature of conditional importance of lipophilic atoms as well as
ring nitrogen atoms in deciding the binding affinity profile. A plausible reason could be
attributed to the fact that increasing the lipophilic environment around a ring nitrogen
balances the polarity induced by the highly electronegative nature of nitrogen, which
ultimately leads to improved brain penetration [4] due to the better lipophilic characters
of the molecule. The molecular docking poses for molecules number 986 and 1024 (see
Figure 5) indicate that the additional -CH3 group is responsible for pi-alkyl hydrophobic
interactions with the active site residues of 5-HT6 for molecule number 986. In the case of
molecule number 986, the additional -CH3 group interacts with Phe221, Cys91, and Trp218.
The interaction with Trp218 is absent in case of molecule number 1024.

The molecular descriptor fsp3Cdon1B, which signifies the frequency of occurrence of
a H-bond donor atom directly bonded with an sp3-hybridized carbon atom, has a positive
coefficient in Model-1. Therefore, increasing such a combination of carbon and H-bond
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donor atoms could lead to a higher pKi value. An inspection of molecules with Ki ≤ 10 nM
(383 molecules) reveals that only 16 molecules lack such a combination of donor and carbon,
286 molecules have one such combination, and 82 molecules possess fsp3Cdon1B = 2. A
comparison of molecules number 250 (Ki = 71.1 nM, fsp3Cdon1B = 0) and 251 (Ki = 7.2 nM,
fsp3Cdon1B = 1) further supports the positive effect of the presence of fsp3Cdon1B on
the pKi value (see Figure 6). The molecular docking poses for molecules number 250
and 251 support this observation (see Figure 6b–d). Both molecules interact with similar
residues such as Leu163 (H-bond). However, a prominent difference in the docking poses
of molecules number 251 and 250 is the H-bond formation with a distance of 2.52 Å by
the -NH of the piperidine ring with Asp87, which is absent in the case of 250. This is due
to the fact that the pyran ring of molecule 250 is oriented away from Asp87, whereas the
piperidine ring of 251 is close enough to establish a H-bond with Asp87. Thus, it highlights
the importance of the presence of a donor atom in the 5-HT6 ligand. The -NH of the
piperidine ring is responsible for fsp3Cdon1B = 1 for molecule number 250. Thus, the
molecular docking and QSAR provided similar and complementary results.

Figure 6. (a) Representation of fsp3Cdon1B using molecules number 250 and 251 as examples,
(b) docking pose for molecule number 251 (dotted line represents H-bond formation), (c) overlap of
docking pose of 250 (cyan) and 251 (pink), (d) docking pose for 250.

Another molecular descriptor which highlights the importance of nitrogen atoms and
their local environment is KRFPC620. The molecular descriptor KRFPC620 considers the
count of a fragment that encompasses a planer nitrogen atom attached to three CH3-CH2-
groups. For better clarification, it is depicted in Figure 7 using representative examples
only. The negative coefficient for the descriptor indicates that the pKi value increases with



Pharmaceuticals 2022, 15, 834 10 of 18

a decrease in the value of KRFPC620. A comparative analysis of the following pairs of
molecules supports this trend: 472 with 776, 748 with 749, 757 with 761, 1074 with 1096, 1068
with 1075, 1100 with 1116, 1094 with 1058, etc. To add further, of the 383 molecules with
Ki ≤ 10 nM, 37 molecules have KRFPC620 = 1, whereas 346 molecules lack the presence of
KRFPC620. Therefore, such a combination of nitrogen with CH3-CH2- must be avoided for
a better pKi value.

Figure 7. Pictorial representation of KRFPC660 (blue colored) using representative examples.

Many researchers have highlighted the importance of the presence of a positive ion-
izable atom or group such as the nitrogen in piperazine or in a (dimethylamino)ethyl
fragment for a better binding affinity for 5-HT6 [4]. The present work also successfully
highlighted the negative impact of a third ethyl group on ionizable nitrogen on binding
affinity. Therefore, in agreement with previous studies [4,12], a methyl substituted piper-
azine, non-substituted piperazine, or a (dimethylamino)ethyl fragment is a better choice to
act as a positive ionizable moiety.

Another descriptor whose value must be lowered due to its negative coefficient in
Model-1 to have a better pKi value is sp3N_sp2O_8B. It counts the total number of sp3-
hybridized nitrogen atoms present within eight bonds of sp2-hybridized oxygen atoms. Of
the 383 molecules with Ki ≤ 10 nM, 181 molecules lack such a combination of nitrogen and
oxygen atoms, whereas the remaining 201 molecules possess only one such combination.
In addition, the following pairs of molecules, on comparison, support the observation: 624
with 627 (see Figure 8), 557 with 556 and 555, 271 with 274, 116 with 120, and 117 with 123,
to mention a few.

To summarize the prominent structural features and the pharmacophoric model, we
used the two most active molecules, 681 and 271, as representative examples (see Figure 9).
The pharmacophoric pattern consists of two hydrophobic regions (green contour), two
H-bond acceptor regions (red contour), and one H-bond acceptor region (blue contour),
as depicted in Figure 9a using molecule 681. Thus, the pharmacophoric pattern agrees
with previous studies [4,12]. Figure 9b depicts the molecular descriptor ringC_S_4Bc in
molecule 271. Figure 9c represents the descriptors fliporingN3B and fsp3Cdon1B. The
three hydrophobic -CH3 groups shown by green dots are responsible for balancing the
hydrophilic effect of ring nitrogen atoms, thus enhancing the CNS penetration ability of a
molecule. Moreover, the -CH3 groups labelled as A and B enhance the value of fsp3Cdon1B,
as they are directly attached to donor atoms. Thus, the present work not only captured the
pharmacophoric features reported by López-Rodríguez et al. [4,12] but also successfully
extended it.
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Figure 8. Illustrative examples for representation of sp3N_sp2O_8B.

Figure 9. Depiction of (a) pharmacophoric feature using molecule 681 (green: hydrophobic, red:
H-bond acceptor, blue: H-bond donor regions, dotted lines show distances in Angstrom units),
(b) yellow atoms represent ringC_S_4Bc in molecule 271, (c) fliporingN3B represented by red-colored
bonds with numbering using molecule 271.

The molecular docking score spans from −5.7 to −12.2 for molecules in the current
dataset (see Supplementary Materials). For the sake of convenience, twenty molecules with
the highest and lowest molecular docking scores are tabulated in Table 3. Surprisingly, not
only the molecular docking score has a weak correlation of 0.10 with pKi but also many
molecules with lower binding affinity values have better docking scores (see Tables 3 and 4).
This could be attributed to the large size of the active site of 5-HT6 (see Figure 10), which
allows the adoption of different conformations for molecules. Moreover, recent studies
point out that current docking software such as AutoDock, Dock, etc., and respective
algorithms for docking scores are inclined toward the flexibility of ligands, which in turn,
is associated with the loss of ligand conformational entropy on binding [31]. The molecules
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with lower binding affinity for 5-HT6 have a high degree of flexibility. Thus, all these
factors together resulted in an artificially more favorable binding score for the more flexible
decoys than for actives.

Figure 10. Binding site of 5-HT6 used in the present work.

Table 3. The molecular docking score and Ki (nM) for ten molecules with the highest and lowest
molecular docking scores.

Molecule
Number SMILES Ki

(nM)

Affinity-
Docking

Score (Kcal/mol)

741 CC(=O)Nc(cc1)ccc1CCNICC2Cc(c23)ccc4c3ccn4S(=O)(=O)c5ccccc5 79.43 −12.2

134 C1NCCCC1C(=O)Nc(ccc2)c(c23)[nH]nc3S(=O)(=O)c4cccc(c45)cccc5 9.8 −12

489 c1cccc(c12)[nH]cc2C(C3=O)CC(=O)N3CCCN(CC4)CCC4c5c[nH]c(c56)ccc(c6)OC 264 −11.9

490 c1cccc(c12)[nH]cc2C(C3=O)CC(=O)N3CCN(CC4)CCC4c5c[nH]c(c56)ccc(F)c6 1146 −11.8

1093 CC(=O)Nc(n1)[nH]c(c1C)-c2cn(c(c23)cccc3)S(=O)(=O)c4cccc(c45)cccc5 13 −11.7

668 CI(C)CCC1c2c[nH]c(c23)ccc(c3)NS(=O)(=O)c(ccc4)c(c45)nccc5 21.2 −11.7

133 C1CCCCN1CCC(=O)Nc(ccc2)c(c23)[nH]nc3S(=O)(=O)c4cccc(c45)cccc5 24 −11.7

381 FC(F)(F)c1cc(ccc1)S(=O)(=O)n(c(c2c34)CCC(C2)N)c3ccc(c4)OC 39.1 −11.7

805 c1cccc(c12)ccc(c2)S(=O)(=O)NCCN(CC3)CC=C3c4c[nH]c(c45)ccc(F)c5 67 −11.7

628 c1cccc(c12)CN([C@@H](C2)C(=O)N)C(=O)CCCCN3CCN(CC3)c(cccc4)c4-c5ccccc5 594 −11.7

1086 CCn1cncc1-c2c[nH]c(c23)ccc(Br)c3 1349 −7.3

1016 CCn1cncc1-c2c[nH]c(c23)cccc3 3020 −7.3

1203 N1CCC[C@@H]1Cc2c[nH]c(c23)cccc3 60 −7.2

1202 c1cccc(c12)n(cc2)C[C@H]3CCCN3C 550 −7.2

339 NCCc1cc(ccc1)Sc2ccccc2 115 −7.1

93 CCN(CC)CCc1c[nH]c(c12)cccc2 575 −6.4

738 NCCc1c[nH]c(c12)ccc(c2)O 42.333 −6.2

534 CC(N)Cc1c[nH]c(c12)cccc2 910.505 −6.2

444 NCCc1c[nH]c(c12)ccnc2 64 −5.7

445 CN(C)CCc1c[nH]c(c12)ccnc2 100 −5.7
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Table 4. SMILES (simplified molecular input line entry system) notation, Ki (nM), pKi (M), and
molecular docking score for the five most and five least active molecules of the selected dataset.

Molecule
Number SMILES (Simplified Molecular Input Line Entry System) Notation Ki(nM) pKi(M) Docking Score

(Kcal/mol)

681 C1CNCCN1c(ccc2)c(c23)scc3S(=O)(=O)c4ccccc4 0.5006 9.301 −9

271 Cc(n1)cc(NC)n(c12)nc(NC)c2S(=O)(=O)c3ccccc3 0.5754 9.24 −8.3

142 C1CNCCC1Nc(c2)ccc(c23)[nH]nc3S(=O)(=O)c(c4)ccc(c45)cccc5 0.6 9.222 −10.8

279 Cc(n1)IN)c(C)n(c12)nc(NC)c2S(=O)(=O)c3ccccc3 0.6457 9.19 −8.4

428 CN(C1)CIn2)c1c(C)n(c23)nc(NC)c3S(=O)(=O)c4ccccc4 0.66 9.18 −9.1

622 O=I(C)c(=O)n(C)c(c12)ncn2CCCCN3CCN(CC3)c4ccccc4 14210 4.847 −9.6

543 c1cccc(OC)c1N(CC2)CCICCCCI(=O)N(C)C(=O)C3(C)c4ccccc4 14650 4.834 −10.1

267 c1ccccc1N(CICCN2CC(O)CN3C(=O)N(C)C(=O)C3(c4ccccc4)c5ccccc5 20410 4.69 −9.7

542 c1cccc(F)cICC2)I2CCCCCN3C(=O)N(C)C(=O)C3(C)c4ccccc4 25520 4.593 −10.1

266 c1cI(OC)c1N(CC2)CCN2CCCN3C(=O)N(C)C(=O)C3(c4ccccc4)c5ccccc5 29070 4.537 −10.8

4. Materials and Methods

In the present study, we have followed the OECD (Organization for Economic Co-
operation and Development) guidelines and standard protocol, which has been endorsed
by different researchers, for an effective QSAR analysis [15,17,18,21,29,32–35]. The different
steps for developing a model involved a careful selection of a dataset and data curation,
followed by 3D structure generation for all molecules, molecular descriptor calculations
and their pruning, model development and its thorough validation (internal and external),
and mechanistic interpretation [20,36,37]. These steps were executed sequentially to avoid
errors and human bias and to ensure the appropriate validation of the model.

4.1. Selection of Dataset

The size, composition, and structural diversity of the dataset are important char-
acteristics that decide the success and utility of QSAR and molecular docking analysis
throughout the pipeline of drug discovery [15–17,21,29,32,34,38–41]. Therefore, a large
dataset of 3398 reported ligands for 5-HT6 was downloaded from BindingDB (https:
//www.bindingdb.org/bind/index.jsp, accessed on 14 January 2022). Then, duplicates,
salts, metal derivatives, rule-of-five violators, and molecules with undefined Ki values
were removed as a part of data curation [42], which reduced the size of the dataset to
only 1278 molecules. The reduced dataset was still diverse enough, with the presence of
positional and chain isomers, different heterocyclic and aromatic scaffolds, stereoisomers,
etc. The experimental Ki spanned five orders of magnitude (0.5006 nM to 29.07 µM). For a
better QSAR analysis, the experimental Ki values were converted to pKi (pKi = −lgKi). To
understand the structural variation possessed by the dataset, some highly active and least
active molecules are depicted in Figure 11, and their other details are presented in Table 4.

4.2. Calculation of Molecular Descriptors and Objective Feature Selection (OFS)

The next step involved the conversion of all SMILES notations to respective 3D-optimized
structures using the appropriate method. For this, OpenBabel 3.1 [43] was used to convert
SMILES to SDF (structure data file). After that, MOPAC2016 [44] was used to convert
SDF to MOL2 using PM3, a semi-empirical method based on the same formalism and
equations as the Austin Model-1 (AM1) method, for structure optimization and partial
charge assignment. Then, molecular descriptor calculations were accomplished using
PyDescriptor [45] and PaDEL [46], which together provided more than 42,000 molecular
descriptors for each molecule. Though the myriad numbers of molecular descriptors
increase the possibility of achieving a successful QSAR analysis, they also increase the
risk of chance correlations or overfitting from noisy redundant descriptors. Therefore,

https://www.bindingdb.org/bind/index.jsp
https://www.bindingdb.org/bind/index.jsp
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OFS was performed using QSARINS 2.2.4 [47], which eliminated near constant (for 90%
molecules) and highly intercorrelated (|R| > 0.90) molecular descriptors. After OFS,
the reduced set of molecular descriptors encompassed only 4186 descriptors, which still
covered a broad descriptor space due to the presence of 1D to 3D descriptors, fingerprint,
and charged-based descriptors as well as atom-pair descriptors. The remaining descriptors
were easily interpretable in terms of structural features, thereby increasing the possibility
of mechanistic interpretation of the model.

Figure 11. Representative examples from the selected dataset (five most active and five least active
molecules) of 5-HT6 ligands.

4.3. Splitting the Dataset and Subjective Feature Selection (SFS)

SFS is a crucial step during model building to select a suitable number and set of
molecular descriptors using a suitable feature selection algorithm such as stepwise regres-
sion, genetic algorithm, etc. For the appropriate training and validation of the model,
before actual model building, the dataset was randomly divided into a training set (80%,
i.e., 1024 molecules) and a prediction set (20%, i.e., 254 molecules). The random division
of a dataset into an 80:20 proportion was performed to avoid any bias and minimize in-
formation leakage [32,48], to confirm the external predictive ability of the model, and to
achieve a better composition of the training and prediction sets [29,34]. The training set
was used only for the selection of the appropriate number and set of molecular descriptors.
The prediction set, also termed the external validation set, was used only for the validation
of the newly developed model.

It is essential to include the optimum number of molecular descriptors in the model
to avoid over- and underfitting. Consequently, a simple graphical method was used to
identify the optimum number of descriptors for a model. Usually, the successive addition
of a variable (molecular descriptor) in a multilinear regression (MLR) model augments the
value of Q2

LOO until the final elevation point is achieved [25,29]. After that, there is little
or poor augmentation to the value of Q2

LOO. Hence, the number of molecular descriptors
matching the elevation point were considered optimum for model building [36]. This is
depicted in Figure 12 as a graph. From Figure 12, the final elevation point is matched to
six molecular descriptors. Therefore, the heuristic search was confined to including only
six molecular descriptors in the QSAR model using a multi-regression analysis. The set
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of molecular descriptors were selected using a genetic algorithm as a feature selection
algorithm and using Q2

LOO as the fitness parameter along with the genetic algorithm–
multilinear regression (GA-MLR) method using QSARINS-2.2.4 [47].

Figure 12. Plot of number of descriptors against leave-one-out coefficient of determination, Q2
LOO,

to identify the optimum number of descriptors.

4.4. Building Regression Model and Its Validation

The search for six molecular descriptors for the development model ultimately pro-
vided different combinations of different molecular descriptors. However, only one com-
bination of molecular descriptors was selected due to the statistical performance and the
satisfaction of the following stringent parameters and criteria, which have been suggested
by other researchers [16,22–29]:

R2
tr ≥ 0.6; Q2

LOO ≥ 0.5; Q2
LMO (cross-validated coefficient of determination for leave-

many-out) ≥ 0.6; R2
tr > Q2

LOO; R2
ex ≥ 0.6, CCC (concordance correlation coefficient) ≥ 0.80;

Q2-Fn ≥ 0.60; high values of the external validation parameters R2
ex, Q2

F1, Q2
F2, and Q2

F3;
and low values of R2

Yscr (coefficient of determination for Y-randomization), RMSE (root-
mean-square error), and MAE (mean absolute error), with RMSEtr < RMSEcv.

The formulae and other details of these statistical parameters are available in the
Supplementary Materials. For further validation, it was essential to determine the applica-
bility domain of the QSAR model [49,50]. For this, we used a Williams plot (standardized
residuals vs. hat values) to evaluate the applicability domain of the QSAR model [47].

4.5. Molecular Docking

Since the X-ray-resolved structure of 5-HT6 is not available, an appropriately vali-
dated and reported homology model built using a β2 receptor template (PDB ID: 4LDE)
by Vanda et al. [8] was used for molecular docking [6,7] in the present work. 4LDE (se-
lected template) and 5-HT6 (modelled receptor) possess equivalent positions for the most
conserved amino acid in each helix and motifs characteristic for class A GPCRs [6–8]. The
sequences of 5-HT6 and 4LDE were retrieved from the UniProtKB/Swiss-Prot database [8].
The protein was prepared using Chimera (www.cgl.ucsf.edu/chimera/, accessed on
14 January 2022) with default settings. Then, for the execution of molecular docking,
AutoDock Vina [51], available in DockingApp [52], which allows users to select flexible
residues of the input receptor, was used with flexible docking for virtual screening with
default settings. The binding site of 5-HT6, which consists of four major grooves, P1-P4,
used in the present work, is depicted in Figure 10. The binding site was used for automated

www.cgl.ucsf.edu/chimera/
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molecular docking for all the molecules. Further details of molecular docking are available
in the Supplementary Materials.

5. Conclusions

The present work has resulted in the development of a statistically predictive GA-MLR
model with a balance of excellent predictive ability (R2

tr = 0.78, R2
ex = 0.77) and novel

mechanistic interpretations. The present QSAR and molecular docking analysis has suc-
cessfully identified the importance of steric bulkiness, polar groups, and substitution with
respect to the center of mass. It also highlighted the role played by partial charges on ring C
atoms present near sulfur atoms. Further, Model-1 successfully identified that a conditional
occurrence of lipophilic atoms/groups with respect to nitrogen atoms is better for having
a higher pKi value. The crucial role played by the interrelationships between specific
types of atoms, such as sp3-hybridized carbon/nitrogen atoms, ring nitrogen atoms, etc.,
further escalated the expediency of Model-1. The model possesses high external predictive
ability, which is evident from its statistical performance. In conclusion, the present work
not only effectively identified reported and novel unreported pharmacophoric features
associated with 5-HT6 but also offers a highly predictive QSAR model. It could be beneficial
throughout the drug discovery pipeline to optimize the lead compounds to develop a better
therapeutic for 5-HT6.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/ph15070834/s1: Additional statistical parameters for model-1, Addi-
tional details of experimental procedure for molecular docking, Statistical symbols with names and
explanations, Molecular descriptors for all molecules used in model-1, their correlation matrix and
molecular docking score.
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