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Abstract: Ground subsidence is the main cause of vegetation degradation in mining areas. It is of
great significance to study the effects of ground subsidence on vegetation. At present, few studies
have analyzed the effects of ground subsidence on vegetation from different scales. However, the
conclusions on different scales may differ. In this experiment, chlorophyll content was used as an
indicator of vegetation degradation. We conducted a long-term field survey in the Lijiahao coalfield
in China. Based on field survey data and remote sensing images, we analyzed the effects of ground
subsidence on chlorophyll content from two scales (leaf scale and canopy scale) and summarized
the similarities and differences. We found that, regardless of leaf scale or canopy scale, the effects
of subsidence on chlorophyll content have the following three characteristics: (1) mining had the
least effect on chlorophyll content in the neutral area, followed by the compression area, and the
greatest effect on chlorophyll content in the extension area; (2) subsidence had a slight effect on
chlorophyll content of Caragana korshins, but a serious effect on chlorophyll content of Stipa baicalensis;
(3) chlorophyll content was not immediately affected when the ground sank. It was the cumulative
subsidence that affects chlorophyll content. The difference between leaf scale and canopy scale was
that the chlorophyll content at canopy scale is more affected by mining. This means that when
assessing vegetation degradation, the results obtained by remote sensing were more severe than
those measured in the field. We believe that this is because the canopy chlorophyll content obtained
by remote sensing is also affected by the plant canopy structure. We recommend that mining and
ecological restoration should be carried out concurrently, and that ground fissures should be taken as
the focus of ecological restoration. In addition, Caragana korshins ought to be widely planted. Most
importantly, managers should assess the effects of ground subsidence on vegetation on different
scales. However, managers need to be aware of differences at different scales.

Keywords: coal mining; ground subsidence; chlorophyll content; leaf scale; canopy scale

1. Introduction

Coal mining is very important to China’s economic development. At present, coal is
still the cornerstone of China’s energy security, accounting for about 57% of its primary
energy. Wang pointed out that coal will still account for more than half of China’s primary
energy by 2030 [1]. Therefore, in the short term, large-scale coal mining will continue
in China.

However, coal mining will cause ecological degradation, especially vegetation degra-
dation. Coal resources in the west of China account for more than 70% of the total coal
resources [2]. Unfortunately, western China has been defined as an ecologically fragile
zone because of the arid soils and low rainfall climate that render ecosystem restoration
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problematic [3]. Existing studies have shown that coal mining has caused serious damage
to the ecological environment in the semi-arid region, mainly including groundwater level
decline [4,5], soil moisture reduction [6,7], soil structure deterioration, and vegetation
degradation [8–11]. Among these, vegetation, as the most intuitive representation of envi-
ronmental degradation, has always been the focus of ecological restoration in mining areas.
Vegetation degradation can be reflected in many aspects, such as vegetation coverage [12],
biomass [13], and chlorophyll content [14]. Chlorophyll content is a valuable diagnostic
indicator for the early identification and assessment of the overall health of vegetation,
indicating its degradation status [15,16]. Many studies have shown that chlorophyll content
is an important factor that should be examined to determine plant stress conditions [17,18].

Underground mining causes ground subsidence [19,20], which is the main cause of
vegetation degradation [14]. Ma et al. pointed out that subsidence caused by mining
activities had a certain impact on the surface vegetation in the mining areas [21]. Wang et al.
found that land subsidence will cause the loss of soil organic matter, total nitrogen, and
available phosphorus, resulting in vegetation degradation [22]. Zhou et al. believed that
mining-induced geological deformation is likely to cause irreversible damage to natural
groundwater systems and affect the original circulation of groundwater, thus threatening
vegetation [23]. Consequently, it is of great significance to study the effects of ground
subsidence on vegetation for ecological restoration in mining areas.

However, there is a lack of studies analyzing the effect of ground subsidence on
vegetation from multiple scales. Vegetation can be divided into leaf scale and canopy
scale. Nowadays, there are more and more studies using remote sensing technology to
analyze vegetation degradation [11,24]. The data obtained by remote sensing are the sum
of multiple objects on a certain spatial (a pixel). This is the spectral information of a
mixed-ground object. Therefore, remote sensing data reflect the information of plants at
the canopy scale [25]. However, plant biophysical and biochemical parameters measured
in the field by leaf clips reflect leaf scale information [26]. Many studies have focused only
on leaf scale or canopy scale [27–30]. However, the conclusions on different scales may be
different. Therefore, the effects of ground subsidence on vegetation should be studied at
the leaf scale and canopy scale, respectively, and the similarities and differences between
them should be analyzed.

In this manuscript, we used chlorophyll content as an indicator of vegetation degrada-
tion. Based on long-term field survey data, we analyzed the effects of ground subsidence
on chlorophyll content from two scales (leaf scale and canopy scale) and summarized the
similarities and differences. The purpose of this article is to substantiate the theoretical
and methodological principles for identifying the impact of soil subsidence on the content
of chlorophyll in vegetation in semi-arid mining areas and to develop a methodology
for the comprehensive assessment of vegetation degradation in mining areas based on
mutil-scale indicators.

2. Materials and Methods
2.1. Study Area

This experiment took the 31,115 working faces of the Lijiahao coalfield as the research
area. The Lijiahao coalfield is located in Ordos, Inner Mongolia Autonomous Region,
China. The study area belongs to a semi-arid continental climate zone. The annual average
precipitation is 348.3 mm. The annual average evaporation is 2506.3 mm, which is 7.2 times
the precipitation. Therefore, this area is short of water resources, and the ecological
environment is fragile. The main vegetation types in the study area are Stipa baicalensis,
Caragana korshins, and other drought-tolerant species. The main soil type is loess. The
working face parameters and mining parameters are shown in Table 1. The mining method
is underground mining, so it will cause a large area of subsidence. During the survey
period, this working face was mined for the first time.
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Table 1. Working face parameters and mining parameters.

Parameters Value

length of working face 2600 m
width of working face 600 m

coal seam dip angle 0–3◦

mining depth 122–266 m
mining height 4.7–4.9 m

mining rate 8 m/d
Source: These parameters were provided by the managers of the Lijiahao coalfield.

2.2. Data Acquisition
2.2.1. The Quadrats

We set up three transects on the subsidence area. Each transect included eight quadrats.
According to the characteristics of ground subsidence, the subsidence area was divided into
three mining disturbance areas: neutral area, compression area, and extension area [31,32].
There were two quadrats each in the neutral area, compression area, extension area, and
natural area. The layout of the quadrats is shown in Figure 1. The quadrats in the natural
area were far away from the subsidence area. Subsidence areas (neutral area, compression
area, and extension area) had the same environmental conditions (soil type, vegetation
type, etc.) as natural areas, except that they were affected by mining. The investigation
objects and the investigation frequency are shown in Table 2.
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Figure 1. The layout of the transects and quadrats. Source: Built on the basis of the author’s
field survey.

Table 2. Investigation objects and investigation frequency.

Investigation Content Investigation Frequency

Chlorophyll content at leaf scale
Transect 1: a total of 11 sets of measurements.
Transect 2: a total of 11 sets of measurements.
Transect 3: a total of 11 sets of measurements.

Ground subsidence a total of 40 sets of measurements.

UAV images a total of 11 sets of images.
Source: Built on the basis of the author’s field survey.

2.2.2. Leaf Chlorophyll Content

Stipa baicalensis (Sb) and Caragana korshins (Ck) were taken as the research objects. They
were the main species in the study area. A portable instrument (SPAD-502PLUS, Konica
Minolta, Tokyo, Japan) was used to measure the SPAD (Soil and plant analyzer develop-
ment) value of the leaf, which represented the chlorophyll content at the leaf scale [33,34].
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SPAD-502 determined the leaf chlorophyll content by measuring leaf transmittance in two
wavelength ranges [35]. Due to the leaf clip, the measurement area was only 2 mm × 3 mm.
Therefore, the measurement results were only related to the biochemical parameters of
the tested leaves. There was a stable quantitative relationship between the SPAD value
and leaf chlorophyll content [36,37]. For Sb or Ck, the SPAD values of different branches
differed. Even for the same branch, the SPAD values in different leaves differed [38]. To
reduce the error caused by heterogeneity, the same leaves were measured each time. We
selected 10 leaves from each plant and measured each leaf five times. The average of all
measurements was calculated.

2.2.3. Ground Subsidence Monitoring

We established 38 fixed monitoring points in the subsidence area to monitor ground
subsidence. The distribution of monitoring points is shown in Figure 1. There were
21 monitoring points along the mining direction and 17 monitoring points perpendicular
to the mining direction. The monitoring point was made of concrete. The measuring
instrument was RTK (the spatial accuracy is ±2cm; T2RGET, Guangzhou, China). The
elevation of the monitoring point was recorded for each measurement. In transect 1, within
each quadrat, there is a fixed monitoring point. Subsidence and chlorophyll content were
measured simultaneously.

2.2.4. UAV Images

Images were acquired on cloudless days. The unmanned aerial vehicle (UAV) model
is PHANTOM4 RTK (DJI, Shenzhen, China). According to the terrain conditions, mining
progress, and accuracy requirements, we designed a UAV flight plan, including flight range,
flight height, and image overlap. The flight range was the entire subsidence area. The
flight altitude was 60m. Image overlap was 80%. Data were collected between 11:00 and
13:00 (i.e., solar noon) to minimize disturbances from the atmosphere and changes in solar
elevation. In addition, we set up 20 control points in this area for geometric correction. A
total of 11 sets of images were acquired.

2.3. Data Processing
2.3.1. UAV Image Processing

UAV images were processed using the professional photogrammetry software Pix4Dmapper.
Based on the information of the control points, high-precision orthophotos and point cloud
data were generated. Because there were non-ground points (houses, trees, etc.) and noise
points in the point cloud, the ground points were separated from them. Therefore, the point
cloud data were imported into TerraSolid software for point cloud filtering. In the process
of separating ground points, voids were created. Therefore, the Kriging Interpolation
Algorithm was used when generating DEM (Digital Elevation Model). This step was
performed in ArcGIS 10.6. Finally, the orthophoto and DEM were obtained. The DEM and
orthophoto both had a spatial resolution of 2 cm.

2.3.2. Canopy Chlorophyll Content

In this study, images were obtained from the UAV platform and contained a lot of
information about the plant canopy. Therefore, the remote sensing vegetation index was
used to characterize canopy chlorophyll content [21]. Since the images included red band,
green band, and blue band, we chose the RGB vegetation index. Previous studies have
shown that the red band and blue band are correlated well with chlorophyll content [39].
Therefore, some vegetation indices based on red band and blue band were proposed
to indicate chlorophyll content, such as Ikaw and BRRI [40,41]. After a comprehensive
comparison, we finally chose the BRRI (Blue-red ratio index). Numerous studies have
shown that BRRI is a good proxy for chlorophyll content [41–44]. In particular, Qu et al.
also obtained images from PHANTOM4 RTK (the same UAV used in this study) [42]. The
formula for BRRI is as follows (Formula 1). B represents the reflectance of the blue band,
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and R represents the reflectance of the red band. The canopy of each Sb or Ck was extracted
from the orthophoto using hand delineation. The non-leaf parts and very bright and
shadow pixels within the canopy were masked using a threshold method. The RGB values
for the remaining pixels were averaged as the RGB values of the canopy. Subsequently, the
BRRI was calculated using RGB values. Chlorophyll content at leaf scale and canopy scale
was obtained from the same individual plant.

BRRI =
B
R

(1)

2.3.3. Vegetation Degradation Coefficient

To objectively indicate the degree of vegetation degradation, we constructed a degra-
dation coefficient. The calculation method is shown in Formulas (2) and (3). Comparing the
vegetation in the subsidence area with the vegetation in the natural area clearly reflected
whether the vegetation was degraded. When the vegetation was not disturbed by mining,
the coefficient was around 1 due to similar environmental conditions in the subsidence
area and the natural area. However, when the vegetation was disturbed by mining, the
degradation coefficient gradually decreased. The smaller the value, the greater the impact
of mining on vegetation.

degradation coefficient (leaf scale) =
SPAD(subsidence area)

SPAD(natural area)
(2)

degradation coefficient (canopy scale) =
BRRI(subsidence area)

BRRI(natural area)
(3)

2.3.4. Subsidence Parameters

We selected cumulative subsidence (m) and subsidence rate (m/d) as subsidence
parameters. Cumulative subsidence referred to the total subsidence compared to before
mining. The subsidence rate referred to the subsidence that occurred just the day before.
For example, we measured chlorophyll content on 1 July. Cumulative subsidence referred
to the total subsidence from before mining to 1 July. The subsidence rate was the cumulative
subsidence on 1 July minus the cumulative subsidence on 30 June.

3. Results
3.1. Time Series Monitoring Results of Ground Subsidence
3.1.1. The Fixed Monitoring Points

Figure 2 shows the ground subsidence data obtained from the fixed monitoring points.
The two quadrats in the neutral area were located at points 1 and 2. The two quadrats in
the compression area were located at points 6 and 8, and the two quadrats in the extension
area were located at points 10 and 12. Point 17 was in the natural area. The subsidence
from large to small was: neutral area>compression area>extension area, and the No. 17
monitoring point basically had no subsidence. According to the underground mining
parameters, the working face was mined to the position of transect 1 on 15 June. Due to
the advanced influence, transect 1 slightly sank on 1 June, with a maximum subsidence
value of 0.074 m (point 2). When the mining range exceeded transect 1, the monitoring
points continued to sink and were in the active period of sinking. After 8 July, the ground
gradually entered a stable state. During the investigation, the maximum subsidence was
4.338 m.



Int. J. Environ. Res. Public Health 2023, 20, 493 6 of 19

Int. J. Environ. Res. Public Health 2023, 20, x FOR PEER REVIEW 6 of 19 
 

 

3. Results 
3.1. Time Series Monitoring Results of Ground Subsidence 
3.1.1. The Fixed Monitoring Points 

Figure 2 shows the ground subsidence data obtained from the fixed monitoring 
points. The two quadrats in the neutral area were located at points 1 and 2. The two quad-
rats in the compression area were located at points 6 and 8, and the two quadrats in the 
extension area were located at points 10 and 12. Point 17 was in the natural area. The 
subsidence from large to small was: neutral area>compression area>extension area, and 
the No. 17 monitoring point basically had no subsidence. According to the underground 
mining parameters, the working face was mined to the position of transect 1 on 15 June. 
Due to the advanced influence, transect 1 slightly sank on 1 June, with a maximum sub-
sidence value of 0.074 m (point 2). When the mining range exceeded transect 1, the moni-
toring points continued to sink and were in the active period of sinking. After 8 July, the 
ground gradually entered a stable state. During the investigation, the maximum subsid-
ence was 4.338 m. 

 
Figure 2. Subsidence data obtained from fixed monitoring points (perpendicular to the mining di-
rection). The legend is the date of the measurement. Source: Built on the basis of the author’s field 
survey and calculations. 

3.1.2. The DEM Generated from UAV Images 
For transect 1, we used fixed monitoring points to obtain subsidence data. For tran-

sects 2 and 3, we obtained subsidence data in the form of drone aerial photography. Figure 
3 was obtained by subtracting the DEM of 1 September from the DEM of 30 May. Surface 
subsidence caused by mining created a basin in the study area. According to Figure 3, 
during the investigation period, the maximum subsidence value in this area was 4.32 m, 
which was very close to the 4.338 m obtained through the field measurement. Comparing 
the elevation value obtained by the DEM with the elevation value obtained by the field 
measurement, the difference was small (Figure 4). Therefore, the DEM obtained by the 
UAV monitored ground subsidence. 

Figure 2. Subsidence data obtained from fixed monitoring points (perpendicular to the mining
direction). The legend is the date of the measurement. Source: Built on the basis of the author’s field
survey and calculations.

3.1.2. The DEM Generated from UAV Images

For transect 1, we used fixed monitoring points to obtain subsidence data. For transects
2 and 3, we obtained subsidence data in the form of drone aerial photography. Figure 3
was obtained by subtracting the DEM of 1 September from the DEM of 30 May. Surface
subsidence caused by mining created a basin in the study area. According to Figure 3,
during the investigation period, the maximum subsidence value in this area was 4.32 m,
which was very close to the 4.338 m obtained through the field measurement. Comparing
the elevation value obtained by the DEM with the elevation value obtained by the field
measurement, the difference was small (Figure 4). Therefore, the DEM obtained by the
UAV monitored ground subsidence.
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3.2. Time Series Monitoring Results of Chlorophyll Content
3.2.1. The Leaf Scale

Since the plants were in the growing season, the chlorophyll content in the natural area
showed an increasing trend during the investigation period. In general, the chlorophyll
content in the subsidence area also showed an increasing trend, but the increase rate
was obviously slower than that in the natural area. The difference in chlorophyll content
between the subsidence area and the natural area first increased and then decreased. In
some periods, chlorophyll content even declined in the subsidence area, which means that
the plants were severely disturbed.

The degradation coefficient reflected the difference in chlorophyll content between
the subsidence area and the natural area. It can be seen from Figure 5 that the degradation
coefficients of Sb and Ck decreased first and then increased, and the turning point was
8 July. At the beginning of the investigation, the degradation coefficients were all around
1, and the degradation coefficients of most of the quadrats were even greater than 1. This
indicates that the original state of plants in the subsidence area and the natural area is
similar, and even the growth state of the plants in the subsidence area is better than that in
the natural area.

As the ground sank, the degradation coefficient decreased gradually, indicating that
the chlorophyll content of plants in the subsidence area was obviously lower than that
in the natural area. Studies have shown that underground mining will result in surface
subsidence and the formation of fissures, which will lead to the decline of soil water content,
the deterioration of soil physical and chemical properties, and even the rupture of plant
roots. These will have a non-negligible negative impact on vegetation growth. According to
the minimum value of the degradation coefficient (on 8 July), it can be found that whether
it was Sb or Ck, the value in the neutral area was the largest, followed by the compression
area and the extension area. This showed that coal mining had the greatest impact on the
plants in the extension area, followed by the compression area, and the least impact on the
plants in the neutral area. Comparing the degradation coefficients of Sb and Ck, it can be
seen that under the same ground subsidence, the degradation coefficient of Ck was greater
than that of Sb, which indicates that Ck has better resistance to mining.
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Figure 5. Time series monitoring results of chlorophyll content at leaf scale. All the data in the figures
were obtained at transect 1. The 31,115 working faces were mined to the position of transect 1 on
15 June. There were two quadrants in each disturbance area, and only the data from the first quadrat
are shown in the figures. Source: Built on the basis of the author’s field survey and calculations.

After 8 July, the degradation coefficient showed an increasing trend, indicating that
the plants in the subsidence area grew rapidly, and the chlorophyll content increased
significantly. It can be seen from Figure 2 that after 8 July, the land subsidence rate
decreased significantly, and ground activities basically stopped. Therefore, the impact of
ground subsidence on plant growth was greatly reduced. On the other hand, in order to
restore the ecological environment of the subsidence area and promote the recovery of
damaged plants, the managers began to water the plants in the subsidence area and filled a
large number of fissures after 10 July. Therefore, the plants in the subsidence area recovered
gradually and grew rapidly. Although managers have taken some measures to promote the
recovery of the plants, until the end of the investigation, the degradation coefficient was
still less than 1, which means that the growth status of the plants in the subsidence area
was still poor. Therefore, the ecological restoration of mining areas is a long-term project
that requires continuous and scientific effort from managers.

3.2.2. The Canopy Scale

In Figure 6, the trend of the degradation coefficient is similar to that in Figure 5.
Consistent with the results of the leaf scale, land subsidence had the greatest impact on
plants in the extension area, followed by the compression area, and the impact on plants
in the neutral area was the least. In addition, in the same subsidence, the degradation
coefficient of Ck was greater than that of Sb, indicating that coal mining had less impact on
Ck. After 3 July, the degradation coefficient gradually increased, which was consistent with
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the results of the leaf scale. This was mainly because there was no longer severe subsidence,
and managers had taken timely ecological restoration measures.
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Figure 6. Time series monitoring results of chlorophyll content at canopy scale. All the data in
the figures were obtained at transect 1. The 31,115 working faces were mined to the position of
transect 1 on 15 June. There were two quadrants in each disturbance area, and only the data from
the first quadrat are shown in the figures. Source: Built on the basis of the author’s field survey
and calculations.

3.3. The Correlation between Degradation Coefficient and Subsidence Parameters

We analyzed the correlation between subsidence parameters and degradation coeffi-
cient at the leaf and canopy scales (Tables 3 and 4). Data were analyzed using the SPSS 22.0
statistical package. A bivariate correlation procedure was used to calculate the Pearson
correlation coefficient. Both the leaf scale and canopy scale results showed that there
was no correlation between the degradation coefficient and subsidence rate, while the
correlation between the degradation coefficient and cumulative subsidence was strong. In
this study, the subsidence rate was equal to the subsidence value the previous day. This
demonstrates that ground subsidence will not immediately affect the growth of vegetation.
It is the cumulative subsidence that threatens vegetation growth. The effect of ground
subsidence on plants characterized the hysteresis effect and cumulative effect. Therefore,
if some management measures are taken in time, the impact of mining may be mitigated.
However, if managers do not take any action, ground deformation will severely affect
vegetation growth.
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Table 3. The Pearson correlation coefficient between the degradation coefficient and subsidence
parameters at leaf scale.

Cumulative Subsidence Subsidence Rate

Neutral area-Sb −0.642 ** −0.298
Compression area-Sb −0.597 ** −0.244

Extension area-Sb −0.451 * −0.148
Neutral area-Ck −0.831 ** −0.354

Compression area-Ck −0.784 ** −0.262
Extension area-Ck −0.723 ** −0.211

Note: ** means that the correlation coefficient passes the 0.01 significance test. * means that the correlation
coefficient passes the 0.05 significance test. Source: Built on the basis of the author’s calculations.

Table 4. The Pearson correlation coefficient between the degradation coefficient and subsidence
parameters at the canopy scale.

Cumulative Subsidence Subsidence Rate

Neutral area-Sb −0.717 ** −0.312
Compression area-Sb −0.651 ** −0.267

Extension area-Sb −0.629 ** −0.178
Neutral area-Ck −0.835 ** −0.332

Compression area-Ck −0.619 * −0.234
Extension area-Ck −0.674 ** −0.219

Note: ** means that the correlation coefficient passes the 0.01 significance test. * means that the correlation
coefficient passes the 0.05 significance test. Source: Built on the basis of the author’s calculations.

3.4. The Relationship between Degradation Coefficient and Cumulative Subsidence

According to Tables 3 and 4, the degradation coefficient and cumulative subsidence
have a stronger correlation than the subsidence rate. Hence, we drew scatter diagrams
between the degradation coefficient and cumulative subsidence at the leaf and canopy
scales, respectively (Figures 7 and 8). Managers took some ecological recovery measures
after 10 July, and the surface subsidence basically stopped. Hence, we only used data
before 10 July. According to the fitting results, the slope in the neutral area was the largest,
followed by the compression area, and the slope in the extension area was the smallest.
This showed that subsidence had the least impact on plants in the neutral area and had
the greatest impact on plants in the extension area. This was consistent with the results
obtained in Section 3.2. In addition, the slope at the canopy scale was smaller than the leaf
scale for the same species in the same mining disturbance area. That is, at the canopy scale,
vegetation degradation was more severe than at the leaf scale. Therefore, when we analyze
the impact of subsidence on vegetation from different scales, the results may differ. We
should be concerned about the differences in the results due to the scale.
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4. Discussion
4.1. The Degradation Coefficient

Instead of directly using SPAD or BRRI to analyze vegetation degradation, we chose
the degradation coefficient. Because the measured SPAD or remote sensing generated
BRRI cannot directly reflect the vegetation degradation degree. However, the degradation
coefficient compares the vegetation in the subsidence area with the vegetation in the natural
area, so it can clearly reflect whether the vegetation in the subsidence area is degraded.
For example, in Figure 5, the smallest degradation coefficient is 0.774, indicating that the
chlorophyll content in the subsidence area is only 77.4% of that in the natural area. This
means that the vegetation has been severely damaged.

4.2. The Similarities between the Leaf Scale and the Canopy Scale

The results of both leaf scale and canopy scale showed that the degradation coefficient
in neutral area is the largest, followed by compression area and extension area. This
indicates that coal mining has the least effect on plants in the neutral area, followed by the
compression area, and the greatest effect on plants in the extension area. It can be seen from
Figure 2 that the subsidence value in the neutral area is the largest because the neutral area
is located in the center of the subsidence basin. The extension area has the least subsidence
because it is located at the edge of the basin. However, coal mining will not only cause
vertical movement of the ground but also horizontal movement [45,46]. Although the
subsidence in the neutral area is the largest, it is easier to form fissures in the extension area
due to the land being stretched. Fissures will greatly reduce soil moisture [47]. In particular,
the study area is located in a semi-arid region, and soil moisture is crucial for plant growth.
Therefore, plant degradation in the extension area is more serious. Although there was
obvious ground subsidence in the neutral area, the fissures were less, so the plants were
slightly disturbed. Consequently, the results of both the leaf scale and canopy scale indicate



Int. J. Environ. Res. Public Health 2023, 20, 493 13 of 19

that the extension area is the key area for ecological restoration in the mining area. Timely
filling ground fissures is a wise choice.

Figure 5 (leaf scale) and Figure 6 (canopy scale) all showed that subsidence had a slight
effect on the chlorophyll content of Ck but a serious effect on the chlorophyll content of Sb.
This indicates that Ck is more suitable as a pioneer species of ecological restoration in this
area. We think this is because Ck has stronger roots. On the one hand, the roots of Sb are
more likely to break under severe ground deformation (vertical and horizontal movement),
while Ck can survive (Figure 9). On the other hand, drought is the biggest threat to plants
in this region. The stronger roots could help Ck gain access to more groundwater resources
and thus resist drought. After comparing various plants in the Wuhai coalfield (also located
in the Inner Mongolia Autonomous Region), Tan also pointed out that Ck had a strong
ability to enrich soil water and nutrients, and was suitable for ecological restoration in the
mining area [48].
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Figure 9. Even if there are fissures, the roots of Ck will not easily break. Ck can continue to
live (left figure). However, Sb is more likely to die (there are fissures where the red line is marked on
the figure) (right figure). Source: Built on the basis of the author’s field survey.

At both the leaf scale and canopy scale, there is no correlation between subsidence
rate and degradation coefficient, but there is a significant correlation between cumulative
subsidence and degradation coefficient. In this manuscript, the subsidence rate is equal
to the subsidence value the previous day. This shows that ground subsidence does not
immediately disturb the growth of vegetation. Of course, there are extremes. Because
the ground sinks at inconsistent rates, subsidence induces fissures (Figure 10). Fissures
may break the roots of a plant, causing it to die in a short time. However, if the roots are
not destroyed, the effects of subsidence on plant chlorophyll content have a hysteresis
effect. This gives us a chance to take remedial action. Therefore, if managers take timely
ecological restoration measures at the initial stage of subsidence, more serious vegetation
degradation may be avoided. The strong correlation between cumulative subsidence
and the degradation coefficient indicated that the effects of subsidence on plants have a
cumulative effect. This also warns us that ecological restoration should be carried out in
time. Hu et al. put forward the concept and technology of the “Concurrent Mining and
Reclamation (CMR)” of the coal mine’s ecological environment and the realization path [49].
It is believed that CMR is based on the concept of “Source and Process Control,” rather than
the traditional concept of “Terminal Treatment,” which is characterized by synchronous
or timely treatment during the mining process [50]. Chugh pointed out that CMR was an
advanced technology in subsidence land reclamation [51].
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above the fissures will die immediately, but those around the fissures will still survive. Source: Built
on the basis of the author’s field survey.

4.3. The Differences between Leaf Scale and Canopy Scale

It can be seen from Figures 7 and 8 that the slope at canopy scale is smaller than that
at the leaf scale. This means that the degradation coefficient decreased more rapidly at
the canopy scale when the ground subsided. Consequently, when assessing vegetation
degradation, the results obtained by remote sensing were more severe than those measured
in the field.

We believe that this is because the canopy chlorophyll content obtained by the remote
sensing vegetation index is not only related to the leaf chlorophyll content but also affected
by the canopy structure. When the canopy structure changes, the quantitative relationship
between the canopy chlorophyll content and the leaf chlorophyll content also changes. For
example, Gitelson et al. and Fu et al. believed that canopy chlorophyll content was the
product of leaf chlorophyll content and the leaf area index [52,53]. Coal mining creates many
fissures in the subsidence area. Fissures can make plants more vulnerable to drought stress.
Studies have shown that in order to retain more water, the vegetation canopy structure will
change under drought conditions [54–56]. Therefore, when plants are affected by mining,
canopy structure parameters will change, and the quantitative relationship between canopy
chlorophyll content and leaf chlorophyll content will also change. We used data from
different periods to build the BRRI-SPAD model (Figure 11). The data acquired on 11 June
is represented by a black square, and the data acquired on 1 July is represented by a red
circle. According to Figure 11, when plants are disturbed by mining, the quantitative model
between BRRI and SPAD will change, and the slope of the model will become smaller.

We further illustrate this phenomenon with a simplified diagram (Figure 12). Before
mining, no matter at the leaf scale or canopy scale, chlorophyll content was basically the
same in the natural area and subsidence area, and the degradation coefficient was about
1. After a period of mining, the chlorophyll content continued to increase in the natural
area but gradually decreased in the subsidence area. Therefore, the degradation coefficient
at the leaf scale is T2

T1 . If the quantitative model between leaf chlorophyll content and
canopy chlorophyll content does not change, the degradation coefficient should be V2

V1 at
canopy scale. However, when the canopy structure changes, the leaf chlorophyll content—
canopy chlorophyll content model changes from model 1 to model 2. Therefore, the
degradation coefficient of the canopy scale changes from V2

V1 to V3
V1 . Obviously, V3

V1 < V2
V1 = T2

T1 .
Consequently, the vegetation degradation obtained by remote sensing is more severe than
that measured in the field.
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survey and calculations.
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Figure 12. The difference in degradation coefficient at canopy scale and leaf scale. Before mining,
no matter at the leaf scale or canopy scale, chlorophyll content was basically the same in the natural
area and subsidence area, and the degradation coefficient was about 1. After a period of mining,
the chlorophyll content continued to increase in the natural area but gradually decreased in the
subsidence area. Therefore, the degradation coefficient at the leaf scale is T2

T1 . If the quantitative model
between leaf chlorophyll content and canopy chlorophyll content does not change, the degradation
coefficient should be V2

V1 at canopy scale. However, when the canopy structure changes, the model
changes from model 1 to model 2. Therefore, the degradation coefficient at the canopy scale changes
from V2

V1 to V3
V1 . Obviously, V3

V1 < V2
V1 = T2

T1 . Source: Author’s development.

4.4. The Shortcomings and Future Work

In this study, PHANTOM4 RTK was used to acquire remote sensing images. This is
because PHANTOM4 RTK can acquire both the orthophoto and DEM. In addition, the
PHANTOM4 RTK is easy to operate and suitable for repeated experiments. For example,
in this study, we obtained 11 sets of images. However, the PHANTOM4 RTK has only three
bands (red, green, and blue). Based on the RGB images, we calculated the BRRI index.
Although the BRRI index has been shown to correlate well with chlorophyll content in
many studies, this experiment should be repeated using other vegetation indices in the
future. For example, the vegetation index is based on hyperspectral remote-sensing images.
Hyperspectral has more bands, so it can better characterize chlorophyll content [57–59].
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In addition, vegetation degradation in mining areas is reflected in many aspects. For
example, vegetation coverage [60], chlorophyll fluorescence [31], biodiversity [61], etc. In
the future, we should study the effects of ground subsidence on these factors at different
scales and analyze their similarities and differences. Like chlorophyll content, chlorophyll
fluorescence can also be divided into leaf scale and canopy scale [62–64]. Therefore, we
can study the effect of ground subsidence on chlorophyll fluorescence from the leaf scale
and canopy scale. For vegetation cover and biodiversity, their definitions are based on
community. However, the size of the community is not fixed. When the defined community
size is small, we can obtain vegetation coverage or biodiversity through field surveys, such
as quadrats. When the defined community size is large, we can obtain it by remote sensing.
However, when the community size is different, the results differ [65,66]. Therefore, we
should study the effect of ground subsidence on vegetation coverage or biodiversity from
different scales. In conclusion, we should pay attention to the scale effect when evaluating
the impact of coal mining or ground subsidence on the ecological environment. Only
when we evaluate the multi-scale can we get more comprehensive and objective evaluation
results. Our research conclusions can better serve the government. However, sometimes we
cannot evaluate the effect of coal mining on the ecological environment from multiple scales
when time-cost is taken into account. Therefore, we should choose the most appropriate
scale. How to obtain an optimal scale should also be one of our future research directions.

5. Conclusions

In this study, we analyzed the effect of ground subsidence on chlorophyll content at
different scales. We found that the following three conclusions can be reached at both the
leaf scale and canopy scale: (1) coal mining has the least effect on chlorophyll content in
the neutral area, followed by the compression area, and the greatest effect on chlorophyll
content in the extension area; (2) subsidence had a slight effect on chlorophyll content
of Caragana korshins, but a serious effect on chlorophyll content of Stipa baicalensis; and
(3) chlorophyll content is not immediately affected when the ground sinks. The effect of
ground subsidence on plants characterizes the hysteresis effect and cumulative effect. It
is the cumulative subsidence that affects chlorophyll content. However, we found that
the degradation coefficient decreased more rapidly at the canopy scale when the ground
subsided. The vegetation degradation at the canopy scale obtained by remote sensing
is more severe than that at leaf scale measured in the field. Therefore, when evaluating
vegetation degradation, the results obtained at different scales differ. This difference is due
to the properties of the observed objects themselves.

Based on the above conclusions, we put forward specific practical recommendations.
We pointed out that ground fissures are the key to ecological reclamation. Managers should
fill the fissures in time to prevent the loss of soil nutrients and soil moisture, especially
in extension areas. In addition, Caragana korshins ought to be regarded as the pioneer
species in semi-arid mining areas and be widely cultivated. We recommend that mining
and ecological restoration be carried out concurrently. We believe that “Concurrent Mining
and Reclamation (CMR)” is an advanced technology in subsidence land reclamation and
should be widely promoted. Most importantly, in the future, managers should assess plant
degradation on multiple scales, such as the leaf scale, canopy scale, and even landscape
scale, rather than just a single scale. At leaf scale, we can use field measurement methods,
such as a variety of hand-held instruments. At the canopy or landscape scale, we can use
remote sensing. However, managers need to be aware of the differences in different scales,
and integrate the results of multiple scales to comprehensively evaluate environmental
degradation in mining areas. In addition, the degradation coefficient proposed in this study
is suitable for indicating vegetation degradation and is recommended to be widely used.
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