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Abstract: This study empirically investigates the asymmetric effects of spot (future) prices and
storage on rig counts in the US natural gas and crude oil markets from January 1986 to May 2020.
It adopts the Nonlinear Autoregressive Distributed Lag (NARDL) model and establishes a flexible
and efficient framework that measures the effects of positive and negative shocks in each of these
variables on rig counts while modeling possible asymmetries in both the short and long term. For
the natural gas market, the results reveal significant long-term asymmetric effects of spot (future)
gas prices and storage on gas rigs. The positive and statistically significant cumulative effect of
changes in natural gas storage suggests that larger natural gas storage has caused changes in the use
of natural gas drilling rigs. For the crude oil market, we find significant short-term asymmetric effects
of spot (future) gas prices and oil stocks on oil rigs. Furthermore, in addition to the optimal price
and level of storage, the cost, as proxied by the interest rate, is a crucial determinant in rig drilling
decision-making in the energy sector.

Keywords: rig counts; natural gas market; crude oil market; storage; stocks; Nonlinear Autoregressive
Distributed Lag (NARDL) model

1. Introduction

During the last 20 years, and especially the last 10 years, the shale revolution has
significantly changed the world energy market. Due to the application of new technologies
in horizontal drilling and fracturing oil and gas production has reached new milestones.
The resulting output increases have directly impacted price dynamics by providing un-
precedented growth in recent years. With increasing demand caused by the economic
growth of third-world countries and the financialization of commodities, prices of oil and
natural gas have risen significantly. High oil and natural gas prices have led to renewed
interest in investment in the energy sector. Due to the steady rise in demand and the
resulting higher prices, investment in the energy sector has become profitable, leading to
more exploration and production (E&P) activities in the fossil fuel industry, especially the
oil and natural gas sectors.

Investment in natural resource exploration and drilling is irreversible, which has long
been a critical issue for firms. The real option theory can be applied to the pricing of E&P
projects. According to the theory, the value of drilling activities is determined by multiple
factors, including the underlying value of the project, which is related to the price of natural
resources, price uncertainties [1], and convenience yield [2], among others. Several authors
have extended their efforts in this field. For instance, some authors studied development
and exploration in the oil industry [3–6], while some have empirically investigated the
associations between crude oil and gas prices and rig count [7–9].

The rig count is a key indicator of crude oil and natural gas development and explo-
ration activity. Industry practitioners closely monitor rig counts (In fact, Baker Hughes
collects and disseminates weekly US rig count information every Friday; these data are
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widely reported and discussed within the industry. Baker Hughes reports drilling rigs by
location (land, inland waters, and offshore), type (oil or gas and directional, horizontal, or
vertical), state, and major basin.). Figures 1 and 2 show the US rig count and natural gas
spot price (Henry Hub price) on a monthly basis. The figures show that these two variables
have followed a similar trajectory over the last 20 years. Around 2008–2009, both the rig
count and gas price rose rapidly and reached very high levels, only to plummet at the onset
of the most recent US recession in 2008.
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which suggests that higher or lower prices will lead to a higher or lower rig count, respec-
tively; and (2) the rig count effect, which suggests that a higher or lower rig count will 
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Figure 1. Time series of natural gas price and gas rig count. Data source: Baker Hughes and the US
Department of Energy, Energy Information Administration (EIA).
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Figure 2. Time series of crude oil price and oil rig count. Data source: Baker Hughes and the US
Department of Energy, Energy Information Administration (EIA).

Generally, one would expect the rig count and price to have a straightforward rela-
tionship; with more rigs being drilled, production will increase and prices will tend to
decrease. However, whether this relationship holds empirically, what causes drilling to
occur, and whether drilling results in higher production are all unclear. Hence, we propose
two relevant hypotheses regarding their connections: (1) the price effect hypothesis, which
suggests that higher or lower prices will lead to a higher or lower rig count, respectively;
and (2) the rig count effect, which suggests that a higher or lower rig count will lead to
lower or higher gas prices, respectively.
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According to the price effect hypothesis, higher prices result in more investment due to
an increase in the net present value of the project. The increase in investment results in more
producing wells. Higher prices enable production companies to obtain sufficient revenue
to acquire more debt to grow. Price increases are necessary to enable companies to invest
more in exploration activities. Hence, when gas prices are high, producing companies
can replenish depleted reserves with new reserves, allowing them to drill more wells.
Furthermore, with high gas prices firms will be able to drill wells that would have been
unprofitable to drill at lower price levels.

In the oil and natural gas industry, as companies develop unproven and undeveloped
wells into proven, developed, and producing wells they typically drill larger wells first. As
prices remain high, companies are able to drill in areas where initial large wells were drilled.
This suggests that the rig count–price relationship is not linear, and depends on the level of
the natural gas price. However, the rig count effect hypothesis follows the conventional
notion of demand and supply, in which more drilling rigs lead to greater production,
resulting in lower natural gas prices. According to this hypothesis, increases/decreases in
rig count correlate with increases/decreases in natural gas production.

A preliminary analysis of these hypotheses can be obtained from scatter plots (see
Figures 3 and 4). As the price effect hypothesis implies a positive relationship between
the rig count and price and the rig count effect hypothesis implies a negative relationship
between the rig count and price, a scatter plot of the two variables can help us to understand
the possible connection. The price effect hypothesis appears to have greater potential to be
supported by the data.
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Figure 3. Relationship between natural gas price and gas rig count. Data source: Baker Hughes and
the US Department of Energy, Energy Information Administration (EIA).
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The above charts show a positive correlation between the rig count and price, suggest-
ing that the price effect hypothesis is more likely to be supported by the data. Furthermore,
real option theory suggests that price uncertainty discourages investment, and further
implies that only sustained price increases can trigger an increase in rig count. This is
supported by the above graph, which shows several episodes of price spikes. These spikes
were caused by abnormally cold weather in the winters of 2000 and 2002 and by Gulf storms
in the summers of 2005 and 2008. These price spikes were not accompanied by an increase
in rig count, as these spikes did not represent a sustained price increase. This observation
reinforces our assumption that there could be a nonlinear relationship between rig count
and price. Thus, previous studies based on the assumption of a linear rig count–price
nexus [8,10–12] are insufficient to substantiate this observed relationship, and it warrants
further investigation.

In this study, we attempt to clearly determine the rig count–price relationship based on
our observations as a way to complement existing studies. Previous studies have identified
the existence of nonlinearity and extended research efforts toward disentangling the rig
count–price relationship. Previous study empirically investigated the impact of changes
in oil price on the rig count, finding that the rig count had a one-quarter lag influence on
price changes [13]. They provided both linear and nonlinear evidence of the relationships;
however, they failed to specifically identify the thresholds of different regimes, nor did they
discuss the long-term relationships among the variables, which are of particular interest to
academics and practitioners for long-term policy considerations. In a similar fashion, the
relationship between the oil rig count and spot oil price and production was explored and
discovered that investment activities as proxied by the oil rig count responded positively
to changes in oil spot prices in the US using the NARDL framework [11]. Our work differs
from theirs in several ways. First, as suggested by previous study, any drilling investment
resulting in future output and future output prices can be secured in futures contracts [8].
This implies that future prices are more appropriate than spot prices when considered
in the context of investment decision-making. For comparison, our study includes both
spot and future prices. Second, we investigate both the oil market and the natural gas
market, as both markets are intricately and closely linked. As the number of rigs is constant
over time, the use of more rigs to explore for natural gas would reduce the availability of
rigs to explore for oil, and vice versa. To illustrate this effect, we use the change in the
number of crude oil rigs in our modeling setting. In this way our study provides a deeper
understanding of the market interaction, which is more important in investment decisions
as opposed to in a single market.

In this paper, we extend the extant literature by accounting for many important and
relevant control variables associated with natural gas prices that may influence the energy
sector, among which are storage impacts and weather factors. The reasons for including
factors in our model settings are discussed in Section 2. The same section clarifies the
importance of examining the short-term and long-term relationships in the rig count–price
nexus. The remainder of the paper is organized as follows. Section 3 describes our data
sources and provides a brief overview of the dataset; Section 4 then discusses the method-
ology applied to test Granger causality, co-integration, and the threshold models under
the assumption of asymmetric price impacts. We provide measurements of the related
factors and details on the procedure adopted to isolate the impact of unconventional gas
production. Section 5 reports the empirical results of the models, and Section 6 concludes
the paper.

2. Review of the Related Literature
2.1. Time Effect in the Rig Count–Price Nexus

The advancement of horizontal drilling and hydraulic fracturing technology is ex-
pected to significantly increase the productivity of oil wells. A long-term equilibrium
relationship among the oil production differences in oil-producing areas over a period of
time was found in previous study [14]. Furthermore, the number of oil rigs and crude
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oil prices have positive and statistically significant coefficients for total oil production.
Although the rise in crude oil prices has resulted in a reduced number of rigs, those with
horizontal drilling and hydraulic fracturing technology are found to be most sensitive to
crude oil prices. In the short term, crude oil prices drive the total oil production and rig
numbers in each region. In the long term, a feedback effect occurs between the total oil
production and the number of rigs, rather than crude oil prices. Therefore, in evaluating oil
companies and capital investment projects it is vital to determine regional differences in
total oil production, the number of oil rigs, and crude oil prices in relation to oil-drilling
activity. The long-term and short-term elasticity were estimated, respectively [15], while
drilling rigs reacted more to changes in natural gas rigs than oil rigs and that they responded
to actual oil prices rather than to actual natural gas prices. Research results indicate that
while drilling rigs are highly flexible to changes in natural gas drilling rigs and actual oil
prices in the short term, they are insensitive to changes in natural gas prices. According to
the error correction model, changes in the use of drilling rigs are adjusted to eliminate the
long-term imbalance between drilling rigs and commodity prices.

The rig count–price relationship may change over time. Recently, the relationship
between oil prices and drilling rigs is proved and lagged rather than contemporaneous [10].
This means that changes in oil prices do not directly cause changes in the number of rigs.
The number of non-shale drilling rigs is more resilient to the negative impact of oil. The
negative correlation is lower considering the differences in the hysteresis of shale-drilling
rigs. As the lag time under consideration increases, the asymmetry of the drilling platform’s
response to oil prices above the median becomes more pronounced. This can be translated
into a different response to the rig count, which will have a greater impact during a bearish
oil market. Considering the time required to activate the new rig, the insignificance of the
positive oil shock coefficient can explain the need for a longer delay. Therefore, it might
take longer for a positive oil shock to have an impact.

Previous studies examined how domestic oil drilling impacts the uncertainty of oil
prices [16]. They measured domestic drilling activities by the number of rigs drilling for
oil each week, while oil uncertainty was measured by the implied volatility of future oil
options. It was found that the uncertainty of oil has a significantly negative impact on the
number of rigs, with an increase of one standard deviation in uncertainty reducing the
number of rigs by up to 4%. Moreover, the same study found that the number of domestic
drilling rigs responded quickly to changes in oil prices within four weeks. The structural
dynamics model used to estimate the demand for oil and the alternative measures based
on the uncertainty of the time series econometric model were both found to be robust.

2.2. Storage

The idea that storage influences fuel prices is valid from a theoretical standpoint
and empirically supported. The relationship between storage and commodity prices has
been discussed since 1993, when Holbrook Working published the theory of storage. By
highlighting the connection between the value of storage of a commodity and the volume of
this commodity in storage, and how storage can influence the commodity’s yield, previous
studies have presented an elaboration of the storage theory [17–20]. They proposed that
changing amounts of a commodity under storage could lead to price fluctuations. Likewise,
analyst forecasts in the natural gas storage market are investigated and how analysts
facilitate price discovery in futures markets was studied [21]. They discovered that the
market appears to condition expectations regarding a weekly storage release based on
analysts’ forecasts, and places greater emphasis on analysts’ long-term accuracy than on
their recent accuracy.

Storage has been proven to be a fundamental driver in the energy market. Previous study
examined how natural gas storage injections and withdrawals affected natural gas supply
and demand conditions and studied the effect of gas storage injections or withdrawals on the
residual volatility in future natural gas prices [22]. Moreover, some empirical evidence that
supported the significant influence of storage on natural gas prices and their volatility was
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provided [23]. As the US natural gas market has evolved from a highly regulated market to
a deregulated one [24], weather-affected natural gas prices have rendered it one of the most
unstable markets. Over time, the causal flow from crude oil and cracking diffusion to natural
gas has occurred simultaneously [25]. From the perspective of contemporaneous relations, this
allows us to understand the divergence and convergence of oil and gas relations. Additionally,
reserve changes and seasonality have a simultaneous and lagging causal relationship with
natural gas, confirming that weather conditions and inventories determine natural gas prices.
Finally, the impact of speculative activities on natural gas volatility is minimal, indicating that
the financial role of the natural gas market remains limited. To date, financialization has not
been the primary driver behind natural gas prices. Empirical analysis shows that there is a
long-term equilibrium relationship between crude oil and natural gas price returns when taking
other factors into consideration.

Inventory announcements have played a crucial role in stimulating the price dynamics
of energy products. The effect of oil and gas inventory announcements on energy prices
was examined and found that energy prices are more strongly influenced by unexpected
changes in inventory than previously shown [26]. Moreover, some jumps in daily futures
prices and intraday price fluctuations associated with inventory announcements of crude
oil, heating oil, and natural gas were identified by using intraday data from January 1990
to January 2008 [27]. They found that the Energy Information Administration’s inventory
announcement dates tended to experience greater fluctuations and that the volatility and
trading volume were higher on days with a jump in the inventory announcement than on
days without a jump in the announcement.

2.3. Weather Impacts

Conversely, weather influences the pricing of many agricultural and energy commodi-
ties. It is found that El Niño–Southern Oscillation (ENSO) influenced crop production and
was associated with low grain yields [28]. Several studies have examined the relationship
between weather and commodity prices [29,30]. Their findings indicated that weather
factors, especially temperature, significantly impacted commodity prices. It was found
that both the energy and agriculture industries are considered weather-sensitive [31]. In
addition, it was pointed out that the energy industry is especially vulnerable to weather
risks when considering that the energy demand is highly dependent on weather conditions.
For instance, while the demand for gasoline and jet fuel is highly seasonal, it is not sensitive
to temperature [32]. However, electricity, natural gas, and heating oil consumption are all
sensitive to the weather. Specificlly, the weather significantly impacts electricity demand
and energy consumption and directly influences electricity prices [33]. Despite the impor-
tance of weather in determining the demand for natural gas, few studies have examined
the direct effects of weather on the natural gas market [34].

3. Data Sources

The primary sample for the empirical analysis covers January 1986 to May 2020. Oil
exploration data consist of the weekly number of onshore rotary rigs actively exploring
or developing oil or natural gas in the US; this information is compiled by Baker Hughes.
The weekly and monthly rig count data for countries are from Baker Hughes, and the
weekly data are converted into monthly data by simple averaging. The Energy Information
Administration (EIA) of the US Department of Energy provides monthly gas price data and
unconventional natural gas data, including production, storage, and gas wells. The weather
variables are taken from AccuWeather.com, a commercial source of weather information.

4. Methodology

Our empirical method is based on several observations and stylized facts regarding
rig counts and the prices of crude oil and natural gas, respectively. Preliminary test results
indicate that both variables are non-stationary. Therefore, we rely on non-stationary time-
series methods to test our hypotheses.
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Granger causality is the first method that we employ to test the association between
spot (future) prices and rig count, establishing a simple linear causal relationship between
the two variables. Then, based on the idea that higher prices lead to greater rig counts, we
assume that the relationship between the rig count and spot (future) price depends on the
value of the price. Due to low prices, only high-capacity production wells are drilled, as
firms can cover their production costs. At higher prices, firms can expand into more drilling
areas, leading to a lower production volume per well. Firms can do this because the higher
prices cover the increased cost of drilling. When prices are low, firms may temporarily
stop drilling. Consequently, firms will respond quickly to rising prices, and there will be
more drilling activity [35]. When spot (future) prices increase and the drilling capacity is
almost full (higher production wells having been developed), the higher prices are not able
to induce drilling activity at the same pace. Accordingly, the drilling response to rising spot
(future) prices differs: at lower prices, the drilling response is higher, while at higher prices
the drilling response is lower.

4.1. Modeling Related Weather Factors

We use temperature variables to capture the impact of weather on gas prices, assuming
that the temperature directly affects the demand for oil and natural gas. Thus, we define the
temperature measures as cooling degree days (CDD) and heating degree days (HDD) [36]. A
cooling degree day occurs when 65 ◦F is subtracted from the actual temperature and the result
is greater than zero. A heating degree day occurs when the actual temperature is subtracted
from 65 ◦F and the result is lower than zero. The definitions of HDD and CDD are as follows:
CDDt = max(0, TDt − 65F); HDDt = max(0, 65F − TDt); TDt = (Tmaxt − Tmint)/2 is
the temperature for day t; Tmaxt is the maximum temperature; and Tmint is the minimum
temperature for date t. The temperature shock HDDs and CDDs represent the respective
monthly accumulation of daily CDDs and HDDs for a particular month.

4.2. Modeling the Storage Surprises of Natural Gas

To measure storage surprises, we assume that the storage level depends on the demand
influenced by the temperature. Therefore, we consider the temperature as a key variable
influencing the expected changes in natural gas storage. Thus, we determine the storage
change in the following way [23]: ∆NGSt = α0 + α1 × TEMPt + εt, where ∆NGSt is the
expected change in storage released by the EIA for the month t and TEMPt is the weighted
average temperature of natural gas consumption for month t. Therefore, the storage
surprise (εt) is calculated as the difference between the actual storage change announced
by the EIA and the expected storage change.

4.3. Isolating the Impact of Unconventional Energy Production

Unconventional natural gas (crude oil) production, represented by shale gas produc-
tion, has grown exponentially, possibly leading to a distorted relationship between the
rig count and gas (crude oil) prices. Lack of data prevents a full analysis of the effects of
unconventional gas (crude oil). However, in this study we aim to determine the impact
of shale gas on production and rig counts by controlling for the unconventional gas pro-
duction/well variables. This is a reasonable approach, as unconventional gas production
is not considered to be endogenously determined by gas prices. Instead, technological
advancement in horizontal drilling has led to a rise in shale gas production. We rerun the
test using the shale gas production/well as an exogenous or control variable to check the
robustness of the test results [37].

4.4. Other Control Variables

We assume that the oil price influences the gas industry sector and that the oil rig
count influences the gas production. It is possible that oil can enter the gas sector, as both
oil and gas are competitive fuels and because oil is a member of the energy sector, which
means that the demand for energy in general (economic and financial investment demand,
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linked to the financialization of the commodity market) can influence both. The oil rig
count influences the gas market due to the technological linkage of oil wells producing
associated gas. Thus, the oil rig count can significantly impact the gas industry variables.
Hence, we use the lag of the oil rig count as an explanatory variable [8].

The rest of the control variables are included in order to improve the model’s explanatory
power and facilitate comparison. The log change in steel prices serves as a proxy for drilling
costs, while the one-year T-bond rate serves as a control measure for the financial costs.

4.5. Empirical Specifications
4.5.1. Natural Gas Rigs

Benchmark model:
We apply an autoregressive distributed lag (ARDL) in terms of first differences, allow-

ing us to control for certain factors potentially affecting rig drilling decisions [8]. To test the
effect of spot prices on the rig counts for natural gas, we estimate the following Model (1)
for our sample:

Model (1): The spot price effect

∆ln
(

RigNG
t
)
= β0 +

m
∑

i=0
δi∆ln

(
SpotNG

t−i

)
+ φ1

(
m
∑

i=0
δ̂i

)
+

m
∑

i=0
µi∆ln

(
StorageNG

t−i

)
+ ω1

(
m
∑

i=0
µ̂i

)
+β1∆ln

(
RigOil

t

)
+ β2∆ln

(
ProductionNG

t
)

+β3HDDt + β4CDDt+β5∆ln(PIPEt) + β6 INTt +
11
∑

j=1

(
πjT

j
t

)
+ α1εNG

t−1 + α2εNG
t−2 + ψt

(1)

where ∆ln
(

RigNG
t
)

represents the change in the natural logarithmic count of natural gas

rigs in month t;
m
∑

i=0
δi∆ln

(
SpotNG

t−i

)
represents the change in the natural logarithm of spot

prices in the previous month (t − i) for i = 0, 1, 2, 3 . . . m, testing for whether the driver
of rig count changes influences changes in spot prices; and ∆ln

(
StorageNG

t−i

)
indicates

the change in the natural logarithm of natural gas storage in the previous month (t −
i) for i = 0, 1, 2, 3 . . . m, as a measure of the influence of rig count changes on changes
in gas storage. We account for the crowding out effect we consider the change in the
number of crude oil rigs ∆ln

(
RigOil

t

)
in the natural logarithm of the natural gas model [8];

∆ln
(

ProductionNG
t
)

measures changes in the natural logarithm of natural gas production,
while HDDt and CDDt are the heating degree days (HDD) and cooling degree days (CDD),
respectively. Additionally, ∆ln(PIPEt) is the logarithm of changes in an index of steel
pipe prices, implicating that drilling costs affect drilling decisions and a major proportion
of the drilling costs. Following previous reseach [1,8], INTt is included as the six-month
treasury bond rate reflecting the costs due to fluctuating interest rates across business cycles.
This additionally serves as a control for the estimated cost of launching energy projects

under various economic circumstances;
11
∑

j=1

(
πjT

j
t

)
denotes dummy variables that take the

value 1 when the month is j and not December and 0 otherwise, where j = 1, 2, 3,. . ., 11,
representing January, February, etc., and November, respectively. This variable aims to
gauge the seasonal effects of weather conditions on gas rig activity. Both εNG

t−1 and εNG
t−2

denote the permitted autocorrelation of residuals for the above model.
Moreover, we applied polynomial distributed lags (PDLs), which are finite-order dis-

tributed lag models with impulse-response functions constrained to stand on polynomials
of known degrees [8]. Therefore, φ1

(
∑m

i=0 δ̂i
)

in Model (1) denotes a quadratic impact struc-
ture of gas spot prices, where the index i represents the lag: δ̂i = f0 + f1i + f2i2, where i = 1,
2, 3, and 4. We include four lags of spot price variables in the gas (oil) market regressions.
We focus on the cumulative effects of spot price changes on natural gas drilling activity

changes [8]. Therefore, we compute sums of
(

m
∑

i=0
δ̂i

)
for the spot price of natural gas. We
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specifically add ω1

(
m
∑

i=0
µ̂i

)
as a quadratic impact structure of the changes in gas storage,

where the index i represents the lag [8]: µ̂i = g0 + g1i + g2i2 as i = 1, 2, 3, and 4. When the
values of δi (i = 1, 2, 3 . . . n) are positive and the sum is significantly different from zero,
this is consistent with the conclusion that an increase in future gas prices tends to cause
an increase in rig drilling activity for gas producers. If all values of δi (i = 1, 2, 3 . . . n) and
the sum do not significantly differ from zero, we cannot reject the notion that there is no
correlation between spot gas price changes and gas rig count changes.

Model (2): The future price effect

∆ln
(

RigNG
t
)
= β0 +

m
∑

i=0
λi∆ln

(
FutureNG

t−i

)
+ γ1

(
m
∑

i=0
λ̂i

)
+

m
∑

i=0
µi∆ln

(
StorageNG

t−i

)
+ ω1

(
m
∑

i=0
µ̂i

)
+β1∆ln

(
RigOil

t

)
+β2∆ln

(
ProductionNG

t
)
+ β3HDDt + β4CDDt + β5∆ln(PIPEt) + β6 INTt +

11
∑

j=1

(
πjT

j
t

)
+α1εNG

t−1 + α2εNG
t−2 + ψt

(2)

Similarly, we model the effects of future gas prices on gas rig counts by including
∆ln

(
FutureNG

t−i

)
, defined as the change in the natural logarithm of the future gas price.

The remaining control variables are the same as in Model (1).
ARDL model
Model (3): The spot price effect

∆ln
(

RigNG
t
)
= β0 +

n
∑

i=1
ρi∆ln

(
RigNG

t−i

)
+ κ1

(
n
∑

i=1
ρ̂i

)
+

m
∑

i=0
δi∆ln

(
SpotNG

t−i

)
+ φ1

(
m
∑

i=0
δ̂i

)
+

m
∑

i=0
µi∆ln

(
StorageNG

t−i

)
+ ω1

(
m
∑

i=0
µ̂i

)
+β1∆ln

(
RigOil

t

)
+ β2∆ln

(
ProductionNG

t
)
+ β3HDDt + β4CDDt + β5∆ln(PIPEt) + β6 INTt

+
11
∑

j=1

(
πjT

j
t

)
+α1εNG

t−1 + α2εNG
t−2 + ψt

(3)

In Model (3), we expand our baseline model to ARDL by considering the lagged gas
rig counts; ∆ln

(
RigNG

t−i

)
denotes changes in the natural logarithm of the natural gas rig

count in the previous month (t − i) for i = 0, 1, 2, 3 . . . m, as a measure of the influence of
rig count changes on changes in spot prices.

Model (4): The future price effect

∆ln
(

RigNG
t
)
= β0 +

n
∑

i=1
ρi∆ln

(
RigNG

t−i

)
+ κ1

(
n
∑

i=1
ρ̂i

)
+

m
∑

i=0
λi∆ln

(
FuturetNG

t−i

)
+ γ1

(
m
∑

i=0
λ̂i

)
+

m
∑

i=0
µi∆ln

(
StorageNG

t−i

)
+ ω1

(
m
∑

i=0
µ̂i

)
+β1∆ln

(
RigOil

t

)
+ β2∆ln

(
ProductionNG

t
)
+ β3HDDt + β4CDDt + β5∆ln(PIPEt) + β6 INT

+
11
∑

j=1

(
πjT

j
t

)
+α1εNG

t−1 + α2εNG
t−2 + ψt

(4)

Based on Model (2), we extend our baseline model to ARDL by considering the lagged
gas rig count ∆ln

(
RigNG

t−i

)
in the model.

NARDL model
Model (5): The spot price effect
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∆ln
(

RigNG
t
)
= β0 + β1ln

(
RigNG

t−1
)
+ θPositive

NG ln
(
SpotPositive

t
)
+ θ

Negative
Gas ln

(
SpotNegative

t

)
+ ϑPositive

NG ln
(
StoragePositive

t
)

+ϑ
Negative
NG ln

(
StorageNegative

t

)
+

n
∑

i=1
ρi∆ln

(
RigNG

t−i
)
+ κ1

(
n
∑

i=1
ρ̂i

)
+

m
∑

i=0

[
δPositive

i ∆ln
(
SpotPositive

t−i
)
+ δ

Negative
i ∆ln

(
SpotNegative

t−i

)]
+

m
∑

i=0

(
φPositive

NG δ̂Positive
i + φ

Negative
NG δ̂

Negative
i

)
+

m
∑

i=0

[
µPositive

i ∆ln
(
StoragePositive

t−i
)
+ µ

Negative
i ∆ln

(
StorageNegative

t−i

)]
+

m
∑

i=0

(
ωPositive

NG µ̂Positive
i + ω

Negative
NG µ̂

Negative
i

)
+ β2∆ln

(
RigOil

t
)
+ β3∆ln

(
ProductionNG

t
)
+ β4 HDDt + β5CDDt

+β6∆ln(PIPEt) + β7 INTt +
11
∑

j=1

(
πjT

j
t

)
+ α1εNG

t−1 + α2εNG
t−2 + ψt

(5)

where n and m are lag orders; θPositive
NG and θ

Negative
Gas denote partial positive and negative values of

the natural logarithm of gas spot prices; and ϑPositive
NG and ϑ

Negative
NG represent partial positive and

negative values of the natural logarithm of gas storage. Furthermore, δPositive
i , δ

Negative
i , µPositive

i ,

and µ
Negative
i are the partial sums of positive and negative changes in each of the explanatory

variables ∆ln
(
SpotPositive

t−i
)
, ∆ln

(
SpotNegative

t−i

)
, ∆ln

(
StoragePositive

t−i
)
, and ∆ln

(
StorageNegative

t−i

)
, re-

spectively. Specifically, both
m
∑

i=1
δPositive

i (
m
∑

i=1
µPositive

i ) and
m
∑

i=1
δ

Negative
i (

m
∑

i=1
µ

Negative
i ) measure the

short-term effects of changes in the natural logarithm of gas spot prices (gas storage) on gas rigs.
In contrast to Model (3), Model (5) includes one lagged natural logarithm of gas rigs ln

(
RigNG

t−1
)
.

Model (6): The future price effect

∆ln
(

RigNG
t
)
= β0 + β1ln

(
RigNG

t−1
)
+ θPositive

NG ln
(

FuturePositive
t

)
+ θ

Negative
NG ln

(
FutureNegative

t

)
+ϑPositive

NG ln
(
StoragePositive

t
)

+ϑ
Negative
NG ln

(
StorageNegative

t

)
+

n
∑

i=1
ρi∆ln

(
RigNG

t−i

)
+ κ1

(
n
∑

i=1
ρ̂i

)
+

m
∑

i=0

[
λPositive

i ∆ln
(

FuturePositive
t−i

)
+ λ

Negative
i ∆ln

(
FutureNegative

t−i

)]

+
m
∑

i=0

(
γPositive

NG λ̂Positive
i + γ

Negative
NG λ̂

Negative
i

)
+

m
∑

i=0

[
µPositive

i ∆ln
(
StoragePositive

t−i
)
+ µ

Negative
i ∆ln

(
StorageNegative

t−i

)]
+

m
∑

i=0

(
ωPositive

NG µ̂Positive
i + ω

Negative
NG µ̂

Negative
i

)
+ β2∆ln

(
RigOil

t

)
+ β3∆ln

(
ProductionNG

t
)

+β4HDDt + β5CDDt

+β6∆ln(PIPEt) + β7 INTt +
11
∑

j=1

(
πjT

j
t

)
+ α1εNG

t−1 + α2εNG
t−2 + ψt

(6)

Model (6) considers the asymmetric effects of (future) gas prices and gas storage
on changes in gas rigs. Similar to the specification of Model (5), n and m are lag or-
ders; θPositive

NG and θ
Negative
Gas denote partial positive and negative values of the natural

logarithm of future gas prices; and ϑPositive
NG and ϑ

Negative
NG represent partial positive and

negative values of the natural logarithm of gas storage, while λPositive
i , λ

Negative
i , µPositive

i ,

and µ
Negative
i are the partial sums of positive and negative changes in ∆ln

(
FuturePositive

t−i

)
,

∆ln
(

FutureNegative
t−i

)
, ∆ln

(
StoragePositive

t−i
)
, and ∆ln

(
StorageNegative

t−i

)
, respectively. Specif-

ically, both
m
∑

i=1
λPositive

i (
m
∑

i=1
µPositive

i ) and
m
∑

i=1
λ

Negative
i (

m
∑

i=1
µ

Negative
i ) measure the short-term

effects of changes in the natural logarithm of future gas prices (gas storage) on changes in
gas rigs.
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4.5.2. Crude Oil Rigs

Benchmark model:
Model (7): The spot price effect

∆ln
(

RigOil
t

)
= β0 +

m
∑

i=0
δi∆ln

(
SpotOil

t−i

)
+ φ1

(
m
∑

i=0
δ̂i

)
+

m
∑

i=0
µi∆ln

(
StocksOil

t−i

)
+ ω1

(
m
∑

i=0
µ̂i

)
+ β1∆ln

(
RigNG

t
)

+β2∆ln
(

ProductionOil
t

)
+β3HDDt + β4CDDt + β5∆ln(PIPEt) + β6 INTt +

11
∑

j=1

(
πjT

j
t

)
+ α1εOil

t−1 + α2εOil
t−2 + ψt

(7)

Likewise, in Model (7) we examine the effects of oil spot prices and oil stocks on the
changes in crude oil rigs. The dependent variable ∆ln

(
RigOil

t

)
represents the changes in

the natural logarithm of crude oil rigs, while ∆ln
(

SpotOil
t−i

)
and ∆ln

(
StocksOil

t−i

)
indicate

the changes in the natural logarithm of crude oil stocks in the previous month (t − i) for i =
0, 1, 2, 3 . . . m, to test whether the driver of rig count changes influences crude oil stocks.
According to our natural gas model, we consider the change in the number of natural gas
rigs ∆ln

(
RigNG

t
)

in the natural logarithm of natural gas to model the substitution effect.
The other explanatory variables are the same as in Models (1) and (2).

Model (8): The future price effect

∆ln
(

RigOil
t

)
= β0 +

m
∑

i=0
λi∆ln

(
FuturetOil

t−i

)
+ γ1

(
m
∑

i=0
λ̂i

)
+

m
∑

i=0
µi∆ln

(
StocksOil

t−i

)
+ ω1

(
m
∑

i=0
µ̂i

)
+β1∆ln

(
RigNG

t
)

+β2∆ln
(

ProductionOil
t

)
+ β3HDDt + β4CDDt + β5∆ln(PIPEt) + β6 INTt +

11
∑

j=1

(
πjT

j
t

)
+α1εOil

t−1 + α2εOil
t−2 + ψt

(8)

Similar to Model (7), Model (8) examines the effects of future oil prices and oil stocks
on crude oil rig counts; ∆ln

(
FutureOil

t−i

)
is the change in the natural logarithm of (future)

crude oil prices in the previous month (t − i) for i = 0, 1, 2, 3 . . . m.
ARDL model
Model (9): The spot price effect

∆ln
(

RigOil
t

)
= β0 +

n
∑

i=1
ρi∆ln

(
RigOil

t−i

)
+ κ1

(
n
∑

i=1
ρ̂i

)
+

m
∑

i=0
δi∆ln

(
SpotOil

t−i

)
+ φ1

(
m
∑

i=0
δ̂i

)
+

m
∑

i=0
µi∆ln

(
StockOil

t−i

)
+ ω1

(
m
∑

i=0
µ̂i

)
+β1∆ln

(
RigNG

t
)
+ β2∆ln

(
ProductionOil

t

)
+ β3HDDt + β4CDDt + β5∆ln(PIPEt)

+β6 INTt +
11
∑

j=1

(
πjT

j
t

)
+ α1εOil

t−1 + α2εOil
t−2 + ψt

(9)

We expand Model (7) to ARDL by considering the lagged oil rig counts in the above
model; ∆ln

(
RigOil

t−i

)
and ∆ln

(
SpotOil

t−i

)
represent the changes in the natural logarithm of

oil rigs and oil spot prices in the previous month (t − i) for i = 0, 1, 2, 3 . . . m, examining
whether changes in both oil rig counts and oil spot prices occur.
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Model (10): The future price effect

∆ln
(

RigOil
t

)
= β0 +

n
∑

i=1
ρi∆ln

(
RigOil

t−i

)
+ κ1

(
n
∑

i=1
ρ̂i

)
+

m
∑

i=0
λi∆ln

(
FutureOil

t−i

)
+ γ1

(
m
∑

i=0
λ̂i

)
+

m
∑

i=0
µi∆ln

(
StockOil

t−i

)
+ ω1

(
m
∑

i=0
µ̂i

)
+β1∆ln

(
RigNG

t
)
+ β2∆ln

(
ProductionOil

t

)
+ β3HDDt + β4CDDt + β5∆ln(PIPEt) + β6 INT

+
11
∑

j=1

(
πjT

j
t

)
+α1εOil

t−1 + α2εOil
t−2 + ψt

(10)

We expand Model (8) to ARDL by incorporating the lagged oil rig counts in the above
model; ∆ln

(
RigOil

t−i

)
and ∆ln

(
FutureOil

t−i

)
are the changes in the natural logarithm of oil

rigs and (future) oil prices in the previous month (t − i) for i = 0, 1, 2, 3 . . . m, allowing us
to explore whether the driver of changes in oil rig counts influences lagged oil rigs and
lagged future oil prices.

NARDL model
Model (11): The spot price effect

∆ln
(

RigOil
t

)
= β0 + β1ln

(
RigOil

t−1

)
+ θPositive

Oil ln
(
SpotPositive

t
)
+ θ

Negative
Oil ln

(
SpotNegative

t

)
+ϑPositive

Oil ln
(
StockPositive

t
)
+ ϑ

Negative
Oil ln

(
StockNegative

t

)
+

n
∑

i=1
ρi∆ln

(
RigOil

t−i

)
+ κ1

(
n
∑

i=1
ρ̂i

)
+

m
∑

i=0

[
δPositive

i ∆ln
(
SpotPositive

t−i
)
+ δ

Negative
i ∆ln

(
SpotNegative

t−i

)]
+

m
∑

i=0

(
φPositive

Oil δ̂Positive
i + φ

Negative
Oil δ̂

Negative
i

)
+

m
∑

i=0

[
µPositive

i ∆ln
(
StockPositive

t−i
)
+ µ

Negative
i ∆ln

(
StockNegative

t−i

)]
+

m
∑

i=0

(
ωPositive

Oil µ̂Positive
i + ω

Negative
Oil µ̂

Negative
i

)
+ β2∆ln

(
RigNG

t
)
+ β3∆ln

(
ProductionOil

t

)
+β4HDDt + β5CDDt

+β6∆ln(PIPEt) + β7 INTt +
11
∑

j=1

(
πjT

j
t

)
+ α1εOil

t−1 + α2εOil
t−2 + ψt

(11)

Similar to the NARDL setting of natural gas, Model (11) aims to model the asymmetric
effect of crude oil (spot) prices and stocks on oil rigs. Here, n and m are lag orders; θPositive

NG

and θ
Negative
Gas represent the partial positive and negative values of the natural logarithm of

oil spot prices; and ϑPositive
NG and ϑ

Negative
NG represent the partial positive and negative values

of the natural logarithm of crude oil stocks. Furthermore, δPositive
i , δ

Negative
i , µPositive

i , and

µ
Negative
i are the partial sums of positive and negative changes in each of the explanatory

variables ∆ln
(
SpotPositive

t−i
)
, ∆ln

(
SpotNegative

t−i

)
, ∆ln

(
StockPositive

t−i
)
, and ∆ln

(
StockNegative

t−i

)
,

respectively. Specifically, both
m
∑

i=1
δPositive

i (
m
∑

i=1
µPositive

i ) and
m
∑

i=1
δ

Negative
i (

m
∑

i=1
µ

Negative
i ) mea-

sure the short-term effects of changes in the natural logarithm of oil spot prices (oil stocks)
on oil rigs. In contrast to Model (3), Model (5) considers one lagged natural logarithm of
gas rigs ln

(
RigNG

t−1
)
.
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Model (12): The future price effect

∆ln
(

RigOil
t

)
= β0 + β1ln

(
RigOil

t−1

)
+ θPositive

NG ln
(

FuturePositive
t

)
+ θ

Negative
Oil ln

(
FutureNegative

t

)
+ ϑPositive

Oil ln
(

StocksPositive
t

)
+ϑ

Negative
Oil ln

(
StocksNegative

t

)
+

n
∑

i=1
ρi∆ln

(
RigOil

t−i

)
+ κ1

(
n
∑

i=1
ρ̂i

)
+

m
∑

i=0

[
λPositive

i ∆ln
(

FuturePositive
t−i

)
+ λ

Negative
i ∆ln

(
FutureNegative

t−i

)]
+

m
∑

i=0

(
γPositive

Oil λ̂Positive
i + γ

Negative
Oil λ̂

Negative
i

)
+

m
∑

i=0

[
µPositive

i ∆ln
(

StocksPositive
t−i

)
+ µ

Negative
i ∆ln

(
StocksNegative

t−i

)]
+

m
∑

i=0

(
ωPositive

Oil µ̂Positive
i + ω

Negative
Oil µ̂

Negative
i

)
+ β2∆ln

(
RigNG

t
)
+ β3∆ln

(
ProductionOil

t

)
+ β4HDDt

+β5CDDt

+β6∆ln(PIPEt) + β7 INTt +
11
∑

j=1

(
πjT

j
t

)
+ α1εOil

t−1 + α2εOil
t−2 + ψt

(12)

Model (12) is similar to Model (11) as it incorporates the positive and negative effects of

(future) oil prices on the change in oil rig counts. Specifically, both
m
∑

i=1
λPositive

i (
m
∑

i=1
µPositive

i ) and

m
∑

i=1
λ

Negative
i (

m
∑

i=1
µ

Negative
i ) measure the short-term effect of changes in the natural logarithm of future

oil prices (oil stocks) on the number of oil-drilling activities. The remaining control variables are
the same as in Model (8). To mitigate serial correlation in our estimations, we use heteroscedasticity
and autocorrelation consistent (HAC) standard errors, allowing for a maximum of five lags of serial
correlatiom [38].

5. Empirical Results
We examine the relative total influence of future price changes against spot price changes,

applying four-month lags to both variables. We report the overall effects of spot price changes on the
rig count ∑m

i=1 δ̂i, and the total influence of future price changes on rig count changes separately on
the rig count ∑m

i=1 λ̂i while simultaneously controlling for the overall effects of storage (stocks) on
the rig count ∑m

i=1 µ̂i.

5.1. Natural Gas Market
Panel A of Table 1 reports the empirical results of the baseline model for the natural gas market.

The estimated results of Model (1) indicate that the cumulative effect of spot price changes (∑m
i=1 δ̂i)

is 0.203 (t = 3.840), which is positive and statistically significant. Therefore, higher gas spot prices
economically promote the number of gas rigs. Furthermore, the cumulative effect of gas storage
changes (∑m

i=1 λ̂i) is 0.039 (t = 1.810), which is positive and statistically significant. It confirms that
larger gas storage significantly increases gas rig usage. Regarding the control variables, we find the
coefficient of change in the oil rig to be 0.098 (t = 2.595). There is a positive and statistically significant
relationship between the change in gas rigs and the change in oil rigs. We confirm the positive and
significant association between the changes in steel pipe prices and the changes in gas rigs, which
is in line with the previous findings [8]. Further, the relationship between the one-year treasury
bond interest rate and the change in gas rigs is positive and statistically significant. Finally, error
autocorrelation controlled with two lags (εNG

t−1 and εNG
t−2) is reported to be positive and statistically

significant as 0.539 (t = 6.092) and 0.213 (t = 3.190), respectively. Unfortunately, there is no significant
evidence for the estimated coefficients of gas production, CDD, and HDD. Additionally, the results
estimated according to Model (2) indicate that the cumulative effect of future gas price changes
(∑m

i=1 λ̂i) is 0.247 (t = 3.880), which is positive and statistically significant. The results for both gas
spot and future prices are significantly different from zero, with the impact of future price changes on
decision making being greater than that of spot price changes. The cumulative effect of gas storage
changes (∑m

i=1 µ̂i) is 0.035 (t = 1.860), which is positive and statistically significant. The results for
other control variables are similar to the findings of Model (2).



Energies 2023, 16, 5752 14 of 25

Table 1. Natural gas rig activity and storage.

Panel A: OLS Using Newey–West Heteroscedasticity—and Autocorrelation—Consistent Standard Errors

Variable

Dependent Variable =∆ln
(
RigGas

t
)
, i.e., Changes in the Natural Logarithm of Number of Natural Gas

Drilling Rigs

Model (1) Model (2)

Coefficient (t-Statistic) Coefficient (t-Statistic)

Constant −0.025 (−0.478) 0.027 (0.622)
∆ln

(
SpotGas

t
)

0.006 (0.437)
∆ln

(
SpotGas

t−1
)

0.028 (1.369)
∆ln

(
SpotGas

t−2
)

0.053 ** (2.547)
∆ln

(
SpotGas

t−3
)

0.048 * (1.728)
∆ln

(
SpotGas

t−4
)

0.067 *** (3.249)
∑m

i=0 δ̂i 0.203 *** (3.840)

∆ln
(

FutureGas
t

)
−0.000 (−0.020)

∆ln
(

FutureGas
t−1

)
0.038 (1.554)

∆ln
(

FutureGas
t−2

)
0.075 ** (2.367)

∆ln
(

FutureGas
t−3

)
0.053 (1.459)

∆ln
(

FutureGas
t−4

)
0.081 *** (2.777)

∑m
i=0 λ̂i 0.247 *** (3.880)

∆ln
(

StorageGas
t

)
−0.004 (−0.501) 0.005 (0.853)

∆ln
(

StorageGas
t−1

)
0.010 (1.470) 0.007 (1.097)

∆ln
(

StorageGas
t−2

)
0.015* (1.937) 0.013 ** (2.016)

∆ln
(

StorageGas
t−3

)
0.008 (1.002) 0.005 (0.755)

∆ln
(

StorageGas
t−4

)
0.010 (1.134) 0.005 (0.682)

∑m
i=0 µ̂i 0.039 * (1.810) 0.035 * (1.860)

∆ln
(

RigOil
t
)

0.098 *** (2.595) 0.101 ** (2.537)
∆ln

(
ProductionGas

t
)

−0.006 (−0.135) −0.042 (−0.972)
ln(CDDt) −0.000 (−0.055) −0.007 (−1.159)
ln(HDDt) 0.002 (0.410) −0.003 (−0.584)

∆ln(Pipe Pricest) 0.241 ** (2.324) 0.210 * (1.899)
(Treasury Bond Rate)6−month

t 0.003 *** (2.763) 0.003 ** (2.485)
εGas

t−1 0.539 *** (6.092) 0.503 *** (5.897)
εGas

t−2 0.213 *** (3.190) 0.235 *** (3.998)

Monthly Fixed Effects Yes Yes

Observations 276 313
F-statistic 14.35 *** 12.97 ***

Panel B: Autoregressive Distributed Lag (ARDL)

Variable

Dependent Variable =∆ln
(
RigGas

t
)
, i.e., Changes in the Natural Logarithm of Number of Natural Gas

Drilling Rigs

Model (3) Model (4)

Coefficient (t-Statistic) Coefficient (t-Statistic)

Constant −0.027 (−0.599) 0.034 (0.815)
∆ln(Rig)Gas

t−1 0.627 (1.644) 0.376 (1.037)
∆ln(Rig)Gas

t−2 −0.633 (−1.435) −0.180 (−0.445)
∆ln(Rig)Gas

t−3 0.509 ** (1.987) 0.303 (1.256)
∆ln(Rig)Gas

t−4 −0.121 * (−1.791) −0.127 * (−1.965)
∑n

i=0 ρ̂i 0.382 (1.580) 0.372 (1.580)
∆ln

(
SpotGas

t
)

0.011 (0.606)
∆ln

(
SpotGas

t−1
)

0.026 (1.406)
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∆ln
(
SpotGas

t−2
)

0.061 *** (3.098)
∆ln

(
SpotGas

t−3
)

0.049 ** (2.470)
∆ln

(
SpotGas

t−4
)

0.055 *** (2.914)
∑m

i=0 δ̂i 0.202 *** (4.700)

∆ln
(

FutureGas
t

)
0.007 (0.241)

∆ln
(

FutureGas
t−1

)
0.037 (1.273)

∆ln
(

FutureGas
t−2

)
0.078 *** (2.615)

∆ln
(

FutureGas
t−3

)
0.048 (1.620)

∆ln
(

FutureGas
t−4

)
0.057 * (1.928)

∑m
i=0 λ̂i 0.227 *** (4.040)

∆ln
(

StorageGas
t

)
−0.001 (−0.118) 0.007 (0.985)

∆ln
(

StorageGas
t−1

)
0.011 (1.436) 0.009 (1.289)

∆ln
(

StorageGas
t−2

)
0.015 ** (2.111) 0.014 ** (2.160)

∆ln
(

StorageGas
t−3

)
0.010 (1.305) 0.007 (1.035)

∆ln
(

StorageGas
t−4

)
0.006 (0.680) 0.002 (0.236)

∑m
i=0 µ̂i 0.042 * (1.780) 0.039 * (1.830)

∆ln
(

RigOil
t
)

0.057 * (1.769) 0.062 * (1.943)
∆ln

(
ProductionGas

t
)

−0.016 (−0.335) −0.053 (−1.128)
ln(CDDt) 0.000 (0.051) −0.008 (−1.385)
ln(HDDt) 0.003 (0.680) −0.003 (−0.566)

∆ln(Pipe Pricest) 0.147 (1.278) 0.123 (1.051)
(Treasury Bond Rate)6−month

t 0.002 (1.513) 0.002 * (1.705)
εGas

t−1 −0.070 (−0.183) 0.142 (0.389)
εGas

t−2 0.454 (1.189) 0.208 (0.574)

Monthly Fixed Effects Yes Yes

Observations 276 313
F-statistic 16.16 *** 15.85 ***

Panel C: Nonlinear Autoregressive Distributed Lag (NARDL)

Dependent Variable =∆ln
(
RigGas

t
)
, i.e., Changes in the Natural Logarithm of Number of Natural Gas Drilling Rigs

Variable
Model (5)

Variable
Model (6)

Coefficient (t-Statistic) Coefficient (t-Statistic)

Constant 1.478 *** (3.844) Constant 0.361 ** (2.028)
ln
(

RigGas
t−1
)

−0.056 *** (−4.544) ln
(

RigGas
t−1
)

−0.030 *** (−3.504)
ln
(
SpotPositive

t
)

0.079 *** (4.367) ln
(

FuturePositive
t

)
0.047 *** (3.499)

ln
(

SpotNegative
t

)
0.002 (0.146) ln

(
FutureNegative

t

)
0.032 ** (2.314)

ln
(

StoragePositive
t−1

)
−0.021 (−1.225) ln

(
StoragePositive

t−1

)
−0.018 (−1.203)

ln
(

StorageNegative
t−1

)
0.001 (0.086) ln

(
StorageNegative

t−1

)
−0.014 (−0.955)

∆ln
(

RigGas
t−1
)

0.385 (0.999) ∆ln
(

RigGas
t−1
)

0.404 (1.113)
∆ln

(
RigGas

t−2
)

−0.681 (−1.567) ∆ln
(

RigGas
t−2
)

−0.239 (−0.604)
∆ln

(
RigGas

t−3
)

0.594 ** (2.310) ∆ln
(

RigGas
t−3
)

0.306 (1.274)
∆ln

(
RigGas

t−4
)

−0.095 (−1.398) ∆ln
(

RigGas
t−4
)

−0.103 (−1.603)
n
∑

i=1
ρ̂i 0.201 (0.820)

n
∑

i=1
ρ̂i 0.367 (1.560)

∆ln(Spot)Positive
t 0.003 (0.104) ∆ln

(
FuturePositive

t

)
−0.034 (−0.659)

∆ln(Spot)Positive
t−1 −0.035 (−0.947) ∆ln

(
FuturePositive

t−1

)
−0.001 (−0.024)

∆ln(Spot)Positive
t−2 −0.004 (−0.096) ∆ln

(
FuturePositive

t−2

)
−0.072 (−1.382)

∆ln(Spot)Positive
t−3 0.031 (0.851) ∆ln

(
FuturePositive

t−3

)
0.075 (1.444)

∆ln(Spot)Positive
t−4 0.020 (0.561) ∆ln

(
FuturePositive

t−4

)
0.037 (0.729)
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m
∑

i=0
δ̂Positive

i
0.016 (0.160)

m
∑

i=0
δ̂Positive

i
0.005 (0.050)

∆ln(Spot)Negative
t 0.018 (0.496) ∆ln

(
FutureNegative

t

)
0.033 (0.613)

∆ln(Spot)Negative
t−1

0.031 (0.873) ∆ln
(

FutureNegative
t−1

)
0.008 (0.139)

∆ln(Spot)Negative
t−2 0.084 ** (2.338) ∆ln

(
FutureNegative

t−2

)
0.203 *** (3.651)

∆ln(Spot)Negative
t−3 0.015 (0.415) ∆ln

(
FutureNegative

t−3

)
−0.029 (−0.506)

∆ln(Spot)Negative
t−4

0.062 * (1.855) ∆ln
(

FutureNegative
t−4

)
0.049 (0.868)

m
∑

i=0
δ̂

Negative
i

0.208 *** (2.740)
m
∑

i=0
δ̂

Negative
i

0.264 *** (2.400)

∆ln (Storage)Positive
t −0.021 (−1.389) ∆ln

(
StoragePositive

t

)
−0.016 (−1.138)

∆ln (Storage)Positive
t−1 0.018 * (1.657) ∆ln

(
StoragePositive

t−1

)
0.014 (1.423)

∆ln (Storage)Positive
t−2 0.015 (1.557) ∆ln

(
StoragePositive

t−2

)
0.016 * (1.846)

∆ln (Storage)Positive
t−3 0.007 (0.567) ∆ln

(
StoragePositive

t−3

)
0.005 (0.486)

∆ln (Storage)Positive
t−4 0.019 (1.466) ∆ln

(
StoragePositive

t−4

)
0.021 (1.633)

m
∑

i=0
µ̂Positive

i
0.038 (1.320)

m
∑

i=0
µ̂Positive

i
0.040 (1.510)

∆ln (Storage)Negative
t 0.005 (0.332) ∆ln

(
StorageNegative

t

)
0.009 (0.611)

∆ln (Storage)Negative
t−1

0.005 (0.261) ∆ln
(

StorageNegative
t−1

)
0.007 (0.396)

∆ln (Storage)Negative
t−2 0.027 (1.417) ∆ln

(
StorageNegative

t−2

)
0.032 * (1.777)

∆ln (Storage)Negative
t−3 0.021 (1.172) ∆ln( StorageNegative

t−3

)
0.015 (0.903)

∆ln (Storage)Negative
t−4

−0.007 (−0.429) ∆ln
(

StorageNegative
t−4

)
−0.007 (−0.431)

m
∑

i=1
µ̂

Negative
i

0.051 (0.790)
m
∑

i=1
µ̂

Negative
i

0.056 (0.940)

∆ln
(

RigOil
t
)

0.067 ** (2.027) ∆ln
(

RigOil
t
)

0.068 ** (2.065)
∆ln

(
ProductionGas

t
)

−0.037 (−0.756) ∆ln
(

ProductionGas
t
)

−0.084 * (−1.717)
ln(CDDt) 0.004 (0.472) ln(CDDt) −0.001 (−0.120)
ln(HDDt) 0.006 (0.952) ln(HDDt) 0.003 (0.469)

∆ln(Pipe Pricest) 0.146 (1.269) ∆ln(Pipe Pricest) 0.078 (0.650)
(Treasury Bond Rate)6−month

t 0.002 (1.114) (Treasury Bond Rate)6−month
t 0.001 (0.305)

εGas
t−1 0.129 (0.334) εGas

t−1 0.100 (0.274)
εGas

t−2 0.645 * (1.678) εGas
t−2 0.232 (0.638)

Monthly Fixed Effects Yes Monthly Fixed Effects Yes

Observations 276 Observations 313
F-statistic 10.98 *** F-statistic 10.84 ***

Asymmetry Statistics:

Variable
Long-term effect [+] (Positive Effects)

Variable
Long-term effect [+] (Positive Effects)

Coefficient F-statistic p-value Coefficient F-statistic p-value

ln
(
SpotGas

t
)

1.416 167.300 *** 0.000 ln
(

FutureGas
t

)
1.584 49.490 *** 0.000

ln (Storage)Gas
t −0.369 1.602 0.207 ln (Storage)Gas

t −0.598 1.335 0.249
Long-term effect [−] (Negative Effects) Long-term effect [−] (Negative Effects)

ln
(
SpotGas

t
)

−0.033 0.021 0.884 ln
(

FutureGas
t

)
−1.076 6.678 ** 0.010

Variable
Long-term effect [+] (Positive Effects)

Variable
Long-term effect [+] (Positive Effects)

Coefficient F-statistic p-value Coefficient F-statistic p-value

ln (Storage)Gas
t −0.025 0.007 0.931 ln (Storage)Gas

t 0.471 0.835 0.362
Long-term asymmetry Long-term asymmetry

ln
(
SpotGas

t
)

33.580 *** 0.000 ln
(

FutureGas
t

)
1.131 0.288

ln (Storage)Gas
t 41.140 *** 0.000 ln (Storage)Gas

t 2.079 0.150
Short-term asymmetry Short-term asymmetry

ln
(
SpotGas

t
)

1.908 0.169 ln
(

FutureGas
t

)
2.074 0.151

ln (Storage)Gas
t 0.035 0.851 ln (Storage)Gas

t 0.057 0.811

Note: t-statistics are shown in parentheses. *, **, and *** denote statistical significance at the levels of 10%, 5%, and
1%, respectively.
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Panel B of Table 1 presents the empirical results of the ARDL model for the natural gas market.
The results of Model (3) show that the coefficient estimates for the cumulative effects of both gas
spot price changes and gas storage changes are 0.202 (t = 4.700) and 0.042 (t = 1.780), respectively,
which are positive and statistically significant. However, the cumulative effects of gas rig changes
(∑n

i=0 ρ̂i) are insignificant at 0.382 (t = 1.580). In addition to the variable of oil rig changes, most
control variables appear insignificant when we include the cumulative effects of gas rig changes. The
results of Model (4) indicate that both the cumulative effects of future gas price changes (∑m

i=0 λ̂i) and
gas storage changes (∑m

i=0 µ̂i) are significantly and positively correlated with changes in the gas rig
count. However, the cumulative effects of gas rig changes (∑n

i=0 ρ̂i) remain insignificant.
Panel C of Table 1 presents the results of the NARDL model. Model (5) indicates that gas spot

prices and gas storage may have asymmetric long-term impacts on changes in gas rig counts. We

find that its negative partial sum ln
(

SpotNegative
t

)
is significant, with the coefficient of

m
∑

i=0
δ̂

Negative
i

as 0.208 with t = 2.740, unlike the positive one ln
(

SpotPositive
t

)
, with the coefficient of

m
∑

i=0
δ̂Positive

i

as 0.016 with t = 0.160. This suggests that in the long term gas spot prices affect changes in gas

rig counts asymmetrically. However, we find no significant evidence (∆ln
(

StoragePositive
t−i

)
and

∆ln
(

StorageNegative
t−i

)
) of asymmetric impacts of gas storage on gas rig counts. Based on these results,

we find only a long-term positive and significant effect of the gas spot price on changes in gas rigs,
confirming the significant long-term asymmetric effect of gas spot prices and storage on gas rigs,
while the short-term asymmetric effect on gas rigs is insignificant.

The findings of Model (6) present the long-term asymmetric effects of future gas prices and gas

storage on changes in gas rig counts. We report that its negative partial sum ∆ln
(

FutureNegative
t

)
is insignificant, with the coefficient of

m
∑

i=0
δ̂

Negative
i as 0.264 with t = 2.400, unlike the positive but

insignificant one ∆ln
(

SpotPositive
t

)
, with the coefficient of

m
∑

i=0
δ̂Positive

i as 0.005 with t = 0.050. This

evidence indicates that in the long term gas spot prices affect changes in gas rig counts asymmetrically.

However, we find no significant evidence (∆ln
(

StoragePositive
t−i

)
and ∆ln

(
StorageNegative

t−i

)
) of the

asymmetric impact of gas storage on the gas rig count. Based on these results, we merely find that
the long-term positive and negative effects of future gas prices on changes in gas rigs are statistically
significant, confirming the significant long-term asymmetric effect of future gas prices on gas rigs,
while the short-term asymmetric effect on gas rigs is insignificant.

5.2. Crude Oil Market
Panel A of Table 2 reports the empirical results of the baseline model for the crude oil market.

The estimated results of Model (7) indicate that the cumulative effect of spot oil price changes (∑m
i=1 δ̂i)

is 0.470 (t = 5.720), which is positive and statistically significant. Therefore, higher oil spot prices
economically promote the number of crude oil rigs. Furthermore, the cumulative effect for oil stock
changes (∑m

i=0 µ̂i) is −0.941 (t = −1.550), which is negative and statistically insignificant. In terms
of control variables, we find the coefficient of change in gas rigs to be 0.122 (t = 2.184). There is a
positive and statistically significant relationship between the change in gas rigs and the change in
oil rigs. We find a negative but insignificant association between the changes in steel pipe prices
and the changes in oil rigs. Further, the positive relationship between the one-year treasury bond
interest rate and the change in oil rigs is identified as insignificant. Finally, error autocorrelation
controlled with two lags (εNG

t−1 and εNG
t−2) is reported to be positive and significant as 0.482 (t = 6.057)

and 0.120 (t = 2.220), respectively. Additionally, the results estimated according to Model (8) indicate
that the cumulative effect of future gas price changes (∑m

i=1 λ̂i) is 0.479 (t = 5.690), which is positive
and statistically significant. Results for both gas spot prices (Model (7)) and future gas prices are
significantly different from zero, with the impact of the future price changes on decision making being
greater than that of the spot price changes. The cumulative effect of gas storage changes (∑m

i=1 µ̂i) is
−0.968 (t = −1.590), which is negative but insignificant. The results for other control variables are
similar to the findings of Model (7).
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Table 2. Crude oil rig activity and stocks.

Panel A: OLS Using Newey–West Heteroscedasticity—and Autocorrelation-Consistent Standard Errors

Variable
Dependent Variable =∆ln

(
RigOil

t

)
, i.e., Changes in the Natural Logarithm of Number of Crude Oil Drilling Rigs

Model (7) Model (8)

Coefficient (t-Statistic) Coefficient (t-Statistic)

Constant 0.020 (0.386) 0.027 (0.622)
∆ln

(
SpotOil

t
)

−0.005 (−0.143)
∆ln

(
SpotOil

t−1

)
0.235 *** (3.915)

∆ln
(
SpotOil

t−2

)
0.086 * (1.868)

∆ln
(
SpotOil

t−3

)
0.069 * (1.830)

∆ln
(
SpotOil

t−4

)
0.084 ** (2.525)

∑m
i=0 δ̂i 0.470 *** (5.720)

∆ln
(

FutureOil
t

)
0.002 (0.064)

∆ln
(

FutureOil
t−1

)
0.233 *** (3.841)

∆ln
(

FutureOil
t−2

)
0.086 * (1.845)

∆ln
(

FutureOil
t−3

)
0.070 * (1.837)

∆ln
(

FutureOil
t−4

)
0.088 *** (2.665)

∑m
i=0 λ̂i 0.479 *** (5.690)

∆ln
(
StocksOil

t
)

−0.011 (−0.036) −0.028 (−0.091)
∆ln

(
StocksOil

t−1

)
−0.142 (−0.436) −0.151 (−0.466)

∆ln
(
StocksOil

t−2

)
−0.523 (−1.524) −0.538 (−1.565)

∆ln
(
StocksOil

t−3

)
−0.407 (−1.073) −0.404 (−1.067)

∆ln
(
StocksOil

t−4

)
0.142 (0.443) 0.154 (0.475)

∑m
i=0 µ̂i −0.941 (−1.550) −0.968 (−1.590)

∆ln
(

RigGas
t
)

0.122 ** (2.184) 0.122 ** (2.166)
∆ln

(
ProductionOil

t
)

0.096 (1.160) 0.097 (1.161)
ln(CDDt) −0.001 (−0.159) −0.001 (−0.140)
ln(HDDt) −0.003 (−0.458) −0.002 (−0.428)

∆ln(Pipe Pricest) −0.012 (−0.077) −0.013 (−0.087)
(Treasury Bond Rate)6−month

t −0.002 (−1.603) −0.002 (−1.623)
εOil

t−1 0.482 *** (6.057) 0.482 *** (6.047)
εOil

t−2 0.120 ** (2.220) 0.119 ** (2.193)

Monthly Fixed Effects Yes Yes

Observations 388 388
F-statistic 14.32 *** 14.49 ***

Panel B: Autoregressive Distributed Lag (ARDL)

Variable
Dependent Variable =∆ln

(
RigOil

t

)
, i.e., Changes in the Natural Logarithm of Number of Crude Oil Drilling Rigs

Model (9) Model (10)

Coefficient (t-Statistic) Coefficient (t-Statistic)

Constant −0.002 (−0.034) −0.003 (−0.063)
∆ln(Rig)Oil

t−1 0.469 *** (8.643) 0.469 *** (8.637)
∆ln(Rig)Oil

t−2 0.742 (0.922) 0.747 (0.926)
∆ln(Rig)Oil

t−3 −0.318 (−1.046) −0.330 (−1.083)
∆ln(Rig)Oil

t−4 0.177 (1.416) 0.182 (1.453)
∑n

i=0 ρ̂i 1.070 * (1.910) 1.067 * (1.900)
∆ln

(
SpotOil

t
)

−0.001 (−0.048)
∆ln

(
SpotOil

t−1

)
0.242 *** (6.750)

∆ln
(
SpotOil

t−2

)
0.099 ** (2.562)

∆ln
(
SpotOil

t−3

)
0.094 ** (2.437)

∆ln
(
SpotOil

t−4

)
0.102 ** (2.578)

∑m
i=0 δ̂i 0.537 *** (7.120)

∆ln
(

FutureOil
t

)
0.005 (0.172)

∆ln
(

FutureOil
t−1

)
0.239 *** (6.635)

∆ln
(

FutureOil
t−2

)
0.100 ** (2.536)

∆ln
(

FutureOil
t−3

)
0.096 ** (2.444)

∆ln
(

FutureOil
t−4

)
0.106 *** (2.648)

∑m
i=0 λ̂i 0.546 *** (7.180)

∆ln
(
StocksOil

t
)

0.022 (0.072) 0.003 (0.011)
∆ln

(
StocksOil

t−1

)
−0.157 (−0.530) −0.170 (−0.571)

∆ln
(
StocksOil

t−2

)
−0.370 (−1.232) −0.388 (−1.291)

∆ln
(
StocksOil

t−3

)
−0.257 (−0.847) −0.255 (−0.841)

∆ln
(
StocksOil

t−4

)
0.290 (0.943) 0.302 (0.982)

∑m
i=0 µ̂i −0.473 (−0.810) −0.508 (−0.870)

∆ln
(

RigGas
t
)

0.101 * (1.846) 0.101 * (1.835)
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Table 2. Cont.

∆ln
(

ProductionOil
t
)

0.082 (1.462) 0.082 (1.464)
ln(CDDt) 0.002 (0.429) 0.003 (0.451)
ln(HDDt) −0.000 (−0.085) −0.000 (−0.049)

∆ln(Pipe Pricest) −0.100 (−0.604) −0.101 (−0.609)
(Treasury Bond Rate)6−month

t −0.001 (−1.188) −0.001 (−1.199)
εGas

t−1 −0.964 (−1.191) −0.970 (−1.197)
εGas

t−2 −0.336 (−0.842) −0.327 (−0.820)

Monthly Fixed Effects Yes Yes

Observations 387 387
F-statistic 17.68 *** 17.58 ***

Panel C: Nonlinear Autoregressive Distributed Lag (NARDL)

Dependent Variable =∆ln
(
RigOil

t

)
, i.e., Changes in the Natural Logarithm of Number of Crude Oil Drilling Rigs

Variable
Model (11)

Variables
Model (12)

Coefficient (t-Statistic) Coefficient (t-Statistic)

Constant 0.085 (1.346) Constant 0.074 (1.261)
ln
(

RigOil
t−1

)
−0.015 ** (−2.412) ln

(
RigOil

t−1

)
−0.014 ** (−2.338)

ln
(
SpotPositive

t
)

0.036 *** (2.991) ln
(

FuturePositive
t

)
0.033 *** (2.908)

ln
(

SpotNegative
t

)
0.012 (0.659) ln

(
FutureNegative

t

)
0.015 (0.781)

ln
(

StoragePositive
t−1

)
0.008 (0.067) ln

(
StoragePositive

t−1

)
0.027 (0.226)

ln
(

StorageNegative
t−1

)
0.203 ** (2.380) ln

(
StorageNegative

t−1

)
0.189 ** (2.193)

∆ln
(

RigOil
t−1

)
0.406 *** (7.471) ∆ln

(
RigOil

t−1

)
0.407 *** (7.482)

∆ln
(

RigOil
t−2

)
−0.164 (−0.196) ∆ln

(
RigOil

t−2

)
−0.141 (−0.168)

∆ln
(

RigOil
t−3

)
−0.041 (−0.133) ∆ln

(
RigOil

t−3

)
−0.059 (−0.190)

∆ln
(

RigOil
t−4

)
0.111 (0.905) ∆ln

(
RigOil

t−4

)
0.117 (0.951)

n
∑

i=1
ρ̂i 0.313 (0.530)

n
∑

i=1
ρ̂i (0.550) (0.550)

∆ln(Spot)Positive
t −0.026 (−0.413) ∆ln

(
FuturePositive

t

)
−0.016 (−0.256)

∆ln(Spot)Positive
t−1 0.102 (1.440) ∆ln

(
FuturePositive

t−1

)
0.092 (1.277)

∆ln(Spot)Positive
t−2 −0.106 (−1.518) ∆ln

(
FuturePositive

t−2

)
−0.097 (−1.370)

∆ln(Spot)Positive
t−3 0.006 (0.093) ∆ln

(
FuturePositive

t−3

)
0.011 (0.156)

∆ln(Spot)Positive
t−4 0.046 (0.670) ∆ln

(
FuturePositive

t−4

)
0.040 (0.570)

m
∑

i=0
δ̂Positive

i
0.023 (0.160)

m
∑

i=0
δ̂Positive

i
0.029 (0.200)

∆ln(Spot)Negative
t 0.010 (0.189) ∆ln

(
FutureNegative

t

)
0.013 (0.235)

∆ln(Spot)Negative
t−1

0.221 *** (3.515) ∆ln
(

FutureNegative
t−1

)
0.226 *** (3.527)

∆ln(Spot)Negative
t−2 0.209 *** (3.270) ∆ln

(
FutureNegative

t−2

)
0.204 *** (3.077)

∆ln(Spot)Negative
t−3 0.106 (1.593) ∆ln

(
FutureNegative

t−3

)
0.105 (1.539)

∆ln(Spot)Negative
t−4

0.128 * (1.924) ∆ln
(

FutureNegative
t−4

)
0.140 ** (2.080)

m
∑

i=0
δ̂

Negative
i

0.674 *** (5.750)
m
∑

i=0
δ̂

Negative
i

0.688 *** (5.780)

∆ln(Stocks)Positive
t −0.618 (−1.180) ∆ln(Stocks)Positive

t −0.658 (−1.257)
∆ln(Stocks)Positive

t−1 −1.040 * (−1.957) ∆ln(Stocks)Positive
t−1 −1.070 ** (−2.013)

∆ln(Stocks)Positive
t−2 −1.157 ** (−2.057) ∆ln(Stocks)Positive

t−2 −1.199 ** (−2.129)
∆ln(Stocks)Positive

t−3 −0.251 (−0.459) ∆ln(Stocks)Positive
t−3 −0.244 (−0.446)

∆ln(Stocks)Positive
t−4 −0.075 (−0.131) ∆ln(Stocks)Positive

t−4 −0.095 (−0.164)
m
∑

i=0
µ̂Positive

i
−3.141 ** (−2.420)

m
∑

i=0
µ̂Positive

i
−3.266 ** (−2.520)

∆ln(Stocks)Negative
t 0.442 (0.812) ∆ln(Stocks)Negative

t 0.449 (0.823)
∆ln(Stocks)Negative

t−1
0.604 (1.116) ∆ln(Stocks)Negative

t−1
0.612 (1.129)

∆ln(Stocks)Negative
t−2 0.085 (0.155) ∆ln(Stocks)Negative

t−2 0.098 (0.178)

∆ln(Stocks)Negative
t−3 −0.168 (−0.299) ∆ln(Stocks)Negative

t−3 −0.171 (−0.304)

∆ln(Stocks)Negative
t−4

0.789 (1.434) ∆ln(Stocks)Negative
t−4

0.808 (1.467)
m
∑

i=1
µ̂

Negative
i

1.752 (1.400)
m
∑

i=1
µ̂

Negative
i

1.796 (1.430)

∆ln
(

RigGas
t
)

0.090 (1.640) ∆ln
(

RigGas
t
)

0.068 ** (2.065)
∆ln

(
ProductionOil

t
)

0.077 (1.397) ∆ln
(

ProductionOil
t
)

−0.084 * (−1.717)
ln(CDDt) 0.006 (1.084) ln(CDDt) −0.001 (−0.120)
ln(HDDt) 0.005 (0.876) ln(HDDt) 0.003 (0.469)

∆ln(Pipe Pricest) −0.108 (−0.645) ∆ln(Pipe Pricest) 0.078 (0.650)
(Treasury Bond Rate)6−month

t 0.000 (0.190) (Treasury Bond Rate)6−month
t 0.001 (0.305)

εOil
t−1 −0.064 (−0.076) εOil

t−1 0.100 (0.274)
εOil

t−2 −0.015 (−0.037) εOil
t−2 0.232 (0.638)
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Table 2. Cont.

Monthly Fixed Effects Yes Monthly Fixed Effects Yes

Observations 387 Observations 313
F-statistic 12.43 *** F-statistic 12.33 ***

Asymmetry Statistics:

Variable
Long-term effect [+] (Positive Effects)

Variable
Long-term effect [+] (Positive Effects)

Coefficient F-statistic p-value Coefficient F-statistic p-value

ln
(
SpotOil

t
)

2.397 4.455 ** 0.036 ln
(

FutureOil
t

)
2.323 4.026 ** 0.046

ln(Stocks)Oil
t 0.548 0.005 0.946 ln(Stocks)Oil

t 1.886 0.054 0.816
Long-term effect [−] (Negative Effects) Long-term effect [−] (Negative Effects)

ln
(
SpotOil

t
)

−0.822 0.444 0.506 ln
(

FutureOil
t

)
−1.030 0.634 0.426

ln(Stocks)Oil
t −13.675 4.506 ** 0.034 ln(Stocks)Oil

t −13.104 3.706 * 0.055
Long-term asymmetry Long-term asymmetry

ln
(
SpotOil

t
)

0.805 0.370 ln
(

FutureOil
t

)
0.518 0.472

ln(Stocks)Oil
t 1.159 0.282 ln(Stocks)Oil

t 0.808 0.369
Short-term asymmetry Short-term asymmetry

ln
(
SpotOil

t
)

10.200 *** 0.002 ln
(

FutureOil
t

)
10.210 *** 0.002

ln(Stocks)Oil
t 4.755 ** 0.030 ln(Stocks)Oil

t 5.083 ** 0.025

Note: t-statistics are shown in parentheses. *, **, and *** denote statistical significance at the levels of 10%, 5%, and
1%, respectively.

Panel B of Table 2 presents the empirical results of the ARDL model for the crude oil market.
The results of Model (9) show that the coefficient estimate for the cumulative effect of oil spot price
changes is 0.537 (t = 7.120), which is positive and statistically significant. However, the cumulative
effect of oil rig changes (∑n

i=1 ρ̂i) is significant at 1.070 (t = 1.910). In addition to the variable of gas rig
changes, most control variables appear insignificant when we include the cumulative effect of oil
rig changes. The results of Model (10) indicate that the cumulative effect of future oil price changes
(∑m

i=1 λ̂i) is significantly and positively correlated with the changes in the oil rig count. However, the
cumulative effects of oil rig changes (∑n

i=1 ρ̂i) remain significant.
Panel C of Table 2 presents the results of the NARDL model. Model (11) indicates that oil spot

prices and oil stocks may have asymmetric long-term impacts on changes in oil rig counts. We find

that its negative partial sum ∆ln
(

SpotNegative
t

)
is significant, with the coefficient of

m
∑

i=0
δ̂

Negative
i as

0.674 with t = 5.750, unlike the positive but insignificant one ∆ln
(

SpotPositive
t

)
, with the coefficient of

m
∑

i=0
δ̂Positive

i as 0.023 with t = 0.160. This suggests that in the long term the oil spot price affects changes

in oil rig counts asymmetrically. However, we only find significant evidence ∆ln
(

StoragePositive
t−i

)
of

the positive impacts of oil stocks on oil rig counts. Based on these results, we find a long-term positive
(negative) and significant effect of the oil spot price (oil stocks) on changes in oil rigs, confirming
the significant short-term asymmetric effect of oil spot prices and oil stocks on oil rigs, while the
long-term asymmetric effect on oil rigs is insignificant.

The findings from Model (12) indicate the long-term asymmetric effects of future oil prices and

oil stocks on changes in oil rig counts. We report that its negative partial sum ∆ln
(

FutureNegative
t

)
is significant, with the coefficient of

m
∑

i=0
δ̂

Negative
i as 0.688 with t = 5.780, unlike the positive but

insignificant one ∆ln
(

SpotPositive
t

)
, with the coefficient of

m
∑

i=0
δ̂Positive

i as 0.029 with t = 0.200. This

evidence indicates that oil spot prices asymmetrically affect changes in oil rig counts in the long term.

However, we only find significant evidence ∆ln
(

StoragePositive
t−i

)
of the positive impacts of oil stocks

on oil rig counts. According to these results, we find that the long-term positive effects of future oil
prices and negative effects of oil stocks on changes in oil rigs are statistically significant, confirming
the significant short-term asymmetric effects of future oil prices and oil stocks on oil rigs, while the
future oil prices and oil stocks show insignificant long-term asymmetric effects on oil rigs.
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5.3. Asymmetric Dynamic Multipliers for Rig Counts
The analysis of the dynamic influences of the gas spot prices, future gas prices, and gas storage

on gas rigs can be visualized using dynamic multipliers. Figure 5 demonstrates the cumulative
dynamic multipliers generated from Models (5) and (6). These multipliers demonstrate the adjustment
pattern of the gas rig count to its new long-term equilibrium due to unitary shocks in each variable.
The dynamic multipliers are estimated based on the best-suited NARDL models reported in Table 1.
For a given period, the positive (dashed blue line) and negative (dashed red line) change curves
correspond to the adjustment of the gas rigs to positive and negative shocks, respectively. The
asymmetrical curve (black line) reflects the differences in the dynamic multipliers associated with
positive and negative shocks of each explanatory variable (δPositive

i , δ
Negative
i , λPositive

i , and λ
Negative
i ).
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Figure 5. Dynamic multipliers for natural gas spot prices, future natural gas prices, and storage with
respect to gas rig shocks.

Due to the asymmetric effect of gas spot prices on gas rigs, short-term adjustments have a
negative inclination, as the magnitude of the negative effect of gas spot prices is greater than that of
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the positive effect, while long-term adjustments have lower asymmetry. Next, we find significant
asymmetry regarding the asymmetric effect of future gas price on gas rigs, which tends toward a
negative effect. Accordingly, the negative impact of future gas prices is greater than the positive one.
In contrast with the gas spot and future prices, we find that the asymmetry of gas storages inclines
toward the positive side. For crude oil rigs, Figure 6 illustrates the significant asymmetry caused by
the negative effect of oil spot prices, future oil prices, and oil stocks. Specifically, the positive and
negative effects are reversed in the long term, causing an obvious deviation in the asymmetry.
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6. Conclusions
Our study fills a gap in research on producers’ investment decisions by examining the corre-

lation between drilling activity and prices. As developers consider all factors to reach the optimal
investment decision, we consider a series of stop–go problems. Firms wait for a signal to start
development (drilling). Upon receiving the signal, firms move into an irreversible process. Often,
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these signals change with changing technologies; this is particularly true for oil and natural gas,
where development and drilling costs change depending on the type of system developed and the
type of technology used by the firm. To the best of our knowledge, there are few empirical studies
that have tested whether the real option theory can be applied to production field development.
Additionally, our work highlights the most practically important issues concerning the development
of optimal energy sources in the US and provides additional insights into the dynamic relationship
between E&P activities and prices.

This paper empirically investigates the asymmetric effects of spot (future) prices and storage
(stocks) on rig counts from January 1986 to May 2020 by focusing on the US natural gas and crude oil
market. The NARDL model Shin et al. (2014) is used and provides a flexible and efficient framework
by quantifying the transmission of positive and negative shocks in each of these variables to rig
counts, and is able to model possible asymmetries in both short-term and long-term horizons [39].

Our empirical findings indicate that for the natural gas market there exist significant long-term
asymmetric influences of gas spot (future) prices and storage on gas rigs, while for the crude oil
market we observe significant short-term asymmetric effects of gas spot (future) prices and oil stocks
on oil rigs. These findings suggest that oil companies are more sensitive to the price changes and
associated costs than gas companies, and that when prices exceed a certain level companies are able
to drill in areas where initial large wells were drilled. Furthermore, the assumption holds true in our
findings that when more rigs are used for natural gas exploration the number of rigs used for oil
exploration decreases, and vice versa. This finding is consistent with the supposition that companies
have a fixed budget for lump sum drilling investment.

The cumulative effect of changes in future natural gas prices is significantly positively corre-
lated with changes in the number of gas drilling rigs, implying that higher natural gas spot prices
economically increase the number of natural gas drilling rigs. Furthermore, the cumulative effect
of changes in natural gas storage is positive and statistically significant. It is confirmed that larger
natural gas storage contributes significantly to changes in the use of natural gas drilling rigs. In
contrast, the cumulative effect of oil rig changes remains significant. In addition, we find that oil
spot prices and oil inventories have a long-term asymmetric effect on the number of oil rigs. From
a long-term perspective, the oil spot price asymmetrically affects the changes in the number of oil
rigs, while the long-term asymmetry between oil spot prices and oil rigs is not significant. Thus, a
policy implication is that the nonlinear (asymmetric) effects of spot (future) prices and storage on rig
counts in the US natural gas and crude oil markets should be taken into consideration during risk
management in the context of rig drilling activity in the energy industry.

The interest rate significantly impacts both oil and gas drilling activities, confirming again that
producers are more discreet in considering costs in their investment decision-making. In measuring
the impact of weather conditions, which cause seasonal changes in drilling activity, it is surprising
that the impact is not found to be significant overall. This may be due to our focus on the demand
side. It would be more feasible to test whether extreme weather conditions, such as hurricanes and
extreme temperatures, exert impacts on drilling construction.

The findings of this study are anticipated to help investors, market participants, and regulators
clarify the critical factors to be considered in drilling activity. Moreover, the research findings obtained
in this study can be used as a tool for forecasting and evaluation when predicting US crude oil and
natural gas prices. The factors presented in this study can help decision-makers to more effectively
predict the volatility of crude oil and natural gas prices, reduce investment risks, and obtain better
returns. Future research could investigate how our models perform in other regions, and could
include other relevant factors that may influence E&P activities in the industry, such as firms’ financial
performance and capacity utilization.
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