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Abstract: Smart energy networks provide an effective means to accommodate high penetrations of
variable renewable energy sources like solar and wind, which are key for the deep decarbonisation of
energy production. However, given the variability of the renewables as well as the energy demand,
it is imperative to develop effective control and energy storage schemes to manage the variable
energy generation and achieve desired system economics and environmental goals. In this paper,
we introduce a hybrid energy storage system composed of battery and hydrogen energy storage to
handle the uncertainties related to electricity prices, renewable energy production, and consumption.
We aim to improve renewable energy utilisation and minimise energy costs and carbon emissions
while ensuring energy reliability and stability within the network. To achieve this, we propose a
multi-agent deep deterministic policy gradient approach, which is a deep reinforcement learning-
based control strategy to optimise the scheduling of the hybrid energy storage system and energy
demand in real time. The proposed approach is model-free and does not require explicit knowledge
and rigorous mathematical models of the smart energy network environment. Simulation results
based on real-world data show that (i) integration and optimised operation of the hybrid energy
storage system and energy demand reduce carbon emissions by 78.69%, improve cost savings by
23.5%, and improve renewable energy utilisation by over 13.2% compared to other baseline models;
and (ii) the proposed algorithm outperforms the state-of-the-art self-learning algorithms like the
deep-Q network.

Keywords: deep reinforcement learning; multi-agent deep deterministic policy gradient; battery
and hydrogen energy storage systems; decarbonisation; renewable energy; carbon emissions;
deep-Q network

1. Introduction

Globally, the energy system is responsible for about 73.2% of greenhouse gas
emissions [1]. Deep reductions in greenhouse gas emissions in the energy system are
key for achieving a net-zero greenhouse gas future to limit the rise in global temperatures
to 1.5 °C and to prevent the daunting effects of climate change [2]. In response, the global
energy system is undergoing an energy transition from the traditional high-carbon to a low-
or zero-carbon energy system, mainly driven by enabling technologies like the internet of
things [3] and the high penetration of variable renewable energy sources (RES) like solar
and wind [4]. Although RESs are key for delivering a decarbonised energy system that is
reliable, affordable, and fair for all, the uncertainties related to their energy generation as
well as energy consumption remain a significant barrier, which is unlike the traditional
high-carbon system with dispatchable sources [5].
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Smart energy networks (SEN) (also known as micro-grids), which are autonomous
local energy systems equipped with RESs and energy storage systems (ESS) as well as vari-
ous types of loads, are an effective means of integrating and managing high penetrations of
variable RESs in the energy system [6]. Given the uncertainties with RES energy generation
as well as the energy demand, ESSs such as battery energy storage systems (BESS) have
been proven to play a crucial role in managing the uncertainties while providing reliable
energy services to the network [7]. However, due to low capacity density, BESSs cannot be
used to manage high penetration of variable RESs [8].

Hydrogen energy storage systems (HESS) are emerging as promising high-capacity
density energy storage carriers to support high penetrations of RESs. This is mainly due to
falling costs for electricity from RESs and improved electrolyser technologies, whose costs
have fallen by more than 60% since 2010 [9]. During periods of over-generation from the
RESs, HESSs convert the excess power into hydrogen gas, which can be stored in a tank.
The stored hydrogen can be sold externally as fuel such as for use in fuel-cell hybrid electric
vehicles [10] or converted into power during periods of minimum generation from the RES
to complement other ESSs such as the BESS.

The SEN combines power engineering with information technology to manage the
generation, storage, and consumption to provide a number of technical and economic
benefits, such as increased utilisation of RESs in the network, reduced energy losses and
costs, increased power quality, and enhanced system stability [11]. However, this requires
an effective smart control strategy to optimise the operation of the ESSs and energy demand
to achieve the desired system economics and environmental outcomes.

Many studies have proposed control strategies that optimise the operation of ESSs to
minimise utilisation costs [12–15]. Others have proposed control models for optimal sizing
and planning of the microgrid [16–18]. Other studies have modeled the optimal energy
sharing in the microgrid [19]. Despite a rich history, the proposed control approaches
are model-based, in which they require explicit knowledge and rigorous mathematical
models of the microgrid to capture complex real-world dynamics. Model errors and model
complexity make it difficult to apply and optimise the ESSs in real-time. Moreover, even if
an accurate and efficient model without errors exists, it is often a cumbersome and fallible
process to develop and maintain the control approaches in situations where uncertainties
of the microgrid are dynamic in nature [20].

In this paper, we propose a model-free control strategy based on reinforcement learning
(RL), a machine learning paradigm, in which an agent learns the optimal control policy
by interacting with the SEN environment [21]. Through trial and error, the agent selects
control actions that maximise a cumulative reward (e.g., revenue) based on its observation
of the environment. Unlike the model-based optimisation approaches, model-free-based
algorithms do not require explicit knowledge and rigorous mathematical models of the
environment, making them capable of determining optimal control actions in real-time
even for complex control problems like peer-to-peer energy trading [22]. Further, artificial
neural networks can be combined with RL to form deep reinforcement learning (DRL),
making model-free approaches capable of handling even more complex control problems
[23]. Examples of commonly used DRL-based algorithms are value-based algorithms such
as Deep Q-networks (DQN) [23] and policy-based algorithms such as the deep deterministic
policy gradient (DDPG) [24].

1.1. Related Works

The application of DRL approaches for managing SENs has increased in the past
decade. However, much progress has been made for SENs having a single ESS (e.g., BESS)
[11,20,25–29]. With declining costs of RESs, additional ESSs like HESS are expected in SENs
to provide additional system flexibility and storage to support further deployment of RESs.
In this case, control approaches that can effectively schedule the hybrid operation of BESSs
and HESSs become imperative.
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Recent studies on the optimised control of SENs having multiple ESSs like a hybrid
of a BESS and a HESS are proposed in [8,30–33]. In [8,30], a DDPG-based algorithm is
proposed to minimise building carbon emissions in an SEN that includes a BESS, an HESS,
and constant building loads. Similarly, operating costs are minimised in [31] using DDPG
and in [32] using DQN. However, these studies use a single control agent to manage the
multiple ESSs. Energy management of an SEN is usually a multi-agent problem where
an action of one agent affects the actions of others, making the SEN environment non-
stationary from an agent’s perspective [22]. Single agents have been found to perform
poorly in non-stationary environments [34].

A multi-agent-based control approach for the optimal operation of hydrogen-based
multi-energy systems is proposed in [33]. Despite the approach addressing the drawbacks
of the single agent, the flexibility of the electrical load is not investigated. With the introduc-
tion of flexible loads like heat pumps which run on electricity in SENs [35], the dynamics
of the electrical load are expected to change the technical economics and the environmental
impacts of the SEN.

Compared with the existing works, we investigate an SEN that has a BESS, an HESS,
and a schedulable energy demand. We explore the energy cost and carbon emission
minimisation problem of such an SEN while capturing the time-coupled storage dynamics
of the BESS and the HESS, as well as the uncertainties related to RES, varying energy prices,
and the flexible demand. A multi-agent deep deterministic policy gradient (MADDPG)
algorithm is developed to reduce the system cost and carbon emissions and to improve
the utilisation of RES while addressing the drawbacks of a single agent in a non-stationary
environment. To the authors’ knowledge, this study is the first to comprehensively apply
the MADDPG algorithm to optimally schedule the operation of the hybrid BESS and HESS
as well as the energy demand in a SEN.

1.2. Contributions

The main contributions of this paper are on the following aspects:

• We formulate the SEN system cost minimisation problem, complete with a BESS, an
HESS, flexible demand, and solar and wind generation, as well as dynamic energy
pricing as a function of energy costs and carbon emissions cost. The system cost
minimisation problem is then reformulated as a continuous action-based Markov
game with unknown probability to adequately obtain the optimal energy control
policies without explicitly estimating the underlying model of the SEN and relying on
future information.

• A data-driven self-learning-based MADDPG algorithm that outperforms a model-
based solution and other DRL-based algorithms used as a benchmark is proposed
to solve the Markov game in real-time. This also includes the use of a novel real-
world generation and consumption data set collected from the Smart Energy Network
Demonstrator (SEND) project at Keele University [36].

• We conduct a simulation analysis of a SEN model for five different scenarios to
demonstrate the benefits of integrating a hybrid of BESS and HESS and scheduling
the energy demand in the network.

• Simulation results based on SEND data show that the proposed algorithm can increase
cost savings and reduce carbon emissions by 41.33% and 56.3%, respectively, compared
with other bench-marking algorithms and baseline models.

The rest of the paper is organised as follows. A description of the SEN environment
is presented in Section 2. Formulation of the optimisation problem is given in Section 3.
A brief background to RL and the description of the proposed self-learning algorithm
is presented in Section 4. Simulation results are provided in Section 5, with conclusions
presented in Section 6.
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2. Smart Energy Network

The SEN considered in this paper is a grid-connected microgrid with a RES (solar and
wind turbines), a hybrid energy storage system (BESS and HESS), and the electrical energy
demand as shown in Figure 1. The aggregated electrical demand from the building(s) is
considered to be a price-responsive demand i.e., the demand can be reduced based on
electricity price variations or shifted from the expensive price time slots to the cheap price
time slots. At every time slot t, solar and wind turbines provide energy to meet the energy
demand. Any excess generation is either used to charge the BESS and/or converted into
hydrogen by the electrolyser or exported to the main grid at a feed-in tariff πt. In the
event that energy generated from solar and wind turbines is insufficient to meet the energy
demand, the deficit energy is either supplied by the BESS and/or fuel cell or imported from
the main grid at a time-of-use (ToU) tariff λt.

In the following subsections, we present models of solar, wind, BESS, HESS (i.e.,
electrolyser, tank, and fuel cell), and flexible demand adopted in this paper.

Figure 1. Basic structure of the grid-connected smart energy network, which consists of solar, wind
turbines (WT), flexible energy demand, battery energy storage system (BESS), and hydrogen energy
storage system (HESS). The HESS consists of three main components, namely electrolyser (EL),
storage tank, and fuel cell (FC). Solid lines represent electricity flow. The dotted lines represent the
flow of hydrogen gas.

2.1. PV and Wind Turbine Model

Instead of using mathematical equations to model the solar and wind turbine, we use
real energy production data from the solar and the wind turbine, as these are undispatchable
under normal SEN operating conditions. Thus, at every time step t, power generated from
solar and wind turbines is modeled as Ppv,t and Pw,t, respectively.

2.2. BESS Model

The key property of a BESS is the amount of energy it can store at time t. Let Pc,t and
Pd,t be the charging and discharging power of the BESS, respectively. The BESS energy
dynamics during charging and discharging operations can be modeled as follows [37]:

Eb
t+1 = Eb

t +
(

ηc,tPc,t −
Pd,t

ηd,t

)
∆t, ∀t (1)

where ηc,t ∈ (0, 1] and ηd,t ∈ (0, 1] are dynamic BESS charge and discharge efficiency as
calculated in [38], respectively; Eb

t is the BESS energy (kWh), and ∆t is the duration of BESS
charge or discharge.

The BESS charge level is limited by the storage capacity of the BESS as

Emin ≤ Eb
t ≤ Emax (2)
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where Emin and Emax are lower and upper boundaries of the BESS charge level.
To avoid charging and discharging the BESS at the same time, we have

Pc,t · Pd,t = 0, ∀t (3)

That is, at any particular time t, either Pc,t or Pd,t is zero. Further, the charging and
discharging power is limited by maximum battery terminal power Pmax as specified by
manufacturers as

0 ≤ Pc,t, Pd,t ≤ Pmax, ∀t (4)

During operation, the BESS wear cannot be avoided due to repeated BESS charge and
discharge processes. The wear cost can have a great impact on the economics of the SEN.
The empirical wear cost of the BESS can be expressed as [39]

Ct
BESS =

Cca
b |E

b
t |

Lc × 2×DoD× Enom × (ηc,t × ηd,t)2 (5)

where Enom is the BESS nominal capacity, Cca
b is the BESS capital cost, DoD is the depth of

discharge at which the BESS is cycled, and Lc is the BESS life cycle.

2.3. HESS Model

In addition to the BESS, a HESS is considered in this study as a long-term energy
storage unit. The HESS mainly consists of an electrolyser (EL), hydrogen storage tank (HT),
and fuel cell (FC), as shown in Figure 1. The electrolyser uses the excess electrical energy
from the RESs to produce hydrogen. The produced hydrogen gas is stored in the hydrogen
storage tank and later used by the fuel cell to produce electricity whenever there is a deficit
in energy generation in the SEN.

The dynamics of hydrogen in the tank associated with the generation and consumption
of hydrogen by the electrolyser and fuel cell, respectively, is modeled as follows [12]:

Ht+1 = Ht +
(

rel,tPel,t −
Pf c,t

r f c,t

)
∆t, ∀t (6)

where Pel,t and Pf c,t are the electrolyser power input and fuel cell output power, respec-
tively; Ht (in Nm3) is the hydrogen gas level in the tank; rel,t (in Nm3/kWh) and r f c,t

(in kWh/Nm3) are the hydrogen generation and consumption ratios associated with the
electrolyser and fuel cell, respectively.

The hydrogen level is limited by the storage capacity of the tank as

Hmin ≤ Ht ≤ Hmax, ∀t (7)

where Hmin and Hmax are the lower and upper boundaries imposed on the hydrogen level
in the tank.

As the electrolyser and the fuel cell cannot operate at the same time, we have

Pel,t · Pf c,t = 0, ∀t (8)

Furthermore, power consumption and power generation, respectively associated with
the electrolyser and fuel cell, are restricted to their rated values as

0 ≤ Pel,t ≤ Pel
max, ∀t (9)

0 ≤ Pf c,t ≤ P f c
max, ∀t (10)

where Pel
max and P f c

max are the rated power values of the electrolyser and fuel cell, respectively.
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If the HESS is selected to store the excess energy, the cost of producing hydrogen
through the electrolyser and later becoming fuel cell energy is given as [40]

Cel− f c
t =

(Cca
el /Lel + Com

el ) + (Cca
f c/L f c + Com

f c )

η f c,tηel,t
(11)

where Cca
el and Cca

f c are electrolyser and fuel cell capital costs, Com
el and Com

f c are the operation
and maintenance costs of the electrolyser and the fuel cell, ηel,t and η f c,t are the electrol-
yser and fuel cell efficiencies, Lel and L f c are the electrolyser and the fuel cell lifetimes,
respectively.

The cost of meeting the deficit energy using the fuel cell with the hydrogen stored in
the tank as fuel is given as [13]

C f c
t =

Cca
f c

L f c
+ Com

f c (12)

The total cost of operating the HESS at time t can be expressed as follows:

Ct
HESS =


Cel− f c

t , if Pel,t > 0

C f c
t , if Pf c,t > 0

0, otherwise

(13)

2.4. Load Model

We assume that the total energy demand of the SEN has a certain proportion of flexible
energy demand that can be reduced or shifted in time due to the energy price. Thus, at
every time t, the actual demand may deviate from the expected total energy demand. Let
the total energy demand before energy reduction be Dt and the actual energy demand after
reduction be dt. Then, the energy reduction ∆dt can be expressed as

∆dt = Dt − dt ∀t (14)

As reducing the energy demand inconveniences the energy users, the ∆dt can be
constrained as follows:

0 ≤ ∆dt ≤ ζDt ∀tl (15)

where ζ (e.g., ζ = 30%) is a constant factor that specifies the maximum percentage of
original demand that can be reduced.

The inconvenience cost for reducing the energy demand can be estimated using a
convex function as follows:

Ct
inc. = αd

(
dt − Dt

)2
∀t (16)

where αd is a small positive number that quantifies the amount of flexibility to reduce the
energy demand, as shown in Figure 2. A lower value of αd indicates that less attention is
paid to the inconvenience cost and a larger share of the energy demand can be reduced
to minimise the energy costs. A higher value of αd indicates that high attention is paid to
the inconvenience cost, and the energy demand can be hardly reduced to minimise the
energy costs.
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Figure 2. Impact of αd parameter on the inconvenience cost of the energy demand, when Dt = 250 kW
and when dt takes values from 0 to 450 kW.

2.5. SEN Energy Balance Model

Local RES generation and demand in the SEN must be matched at all times for the
stability of the energy system. Any energy deficit and excess must be imported and
exported to the main grid, respectively.

The power import and export at time t can be expressed as

Pg,t = dt + Pc,t + Pel,t − Ppv,t − Pw,t − Pd,t − Pf c,t (17)

where Pg,t is power import if Pg,t > 0, and power export otherwise. We assume that the
SEN is well-sized and that Pg,t is always within the allowed export and import power
limits.

Let πt and λt be the export and import grid prices at time t, respectively. As grid
electricity is the major source of carbon emissions, the cost of utilising the main grid to
meet the supply–demand balance in the SEN is the sum of both the energy cost and the
environmental cost due to carbon emissions as follows:

Ct
grid = ∆t

{
λtPg,t + µcPg,t, if Pg,t ≥ 0
−πt|Pg,t|, otherwise

(18)

where µc ∈ [0, 1] is the carbon emission conversion factor of grid electricity.

3. Problem Formulation

The key challenge in operating the SEN is how to optimally schedule the operation of
the BESS, the HESS, and the flexible energy demand to minimise energy costs and carbon
emissions as well as to increase renewable energy utilisation. The operating costs associated
with PV and wind generation are neglected for being comparatively smaller than those for
energy storage units and energy demand [12].

3.1. Problem Formulation

As the only controllable assets in the SEN considered in this paper are the BESS, the
HESS, and the flexible energy demand, the control variables can be denoted as a vector
vt = {Pc,t, Pd,t, Pel,t, Pf c,t, ∆dt}. Pg,t can be obtained according to (17). We formulate an over-
all system cost-minimising problem as a function of the energy cost and the environmental
cost as follows:

P1 :
min

vt
:

T

∑
t=1

(
Ct

BESS + Ct
HESS + Ct

inc. + Ct
grid

)
s.t.:(1)− (4) & (6)− (10) & (14), (15), (17)
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Solving this optimisation problem using model-based optimisation approaches suf-
fers from three main challenges, namely uncertainties of parameters, information, and
dimension challenges. The uncertainties are related to the RES, energy price, and energy
demand, which makes it difficult to directly solve the optimisation problem without statis-
tical information on the system. As expressed in (1) and (6), control of the BESS and HESS
is time-coupled, and actions taken at time t have an effect on future actions to be taken
at time t + 1. Thus, for optimal scheduling, the control policies should also consider the
future ‘unknown’ information of the BESS and the HESS. Moreover, the control actions
of the BESS and the HESS are continuous in nature and bounded, as given in (4), (9), (10),
which increases the dimension of the control problem.

In the following subsections, we overcome these challenges by first reformulating the
optimisation problem as a continuous action Markov game and later solving it using a
self-learning algorithm.

3.2. Markov Game Formulation

We reformulate P1 as a Markov decision process (MDP), which consists of a state space
S , an action space A, a reward functionR, a discount factor γ, and a transition probability
function P , as follows:

3.2.1. State Space

The state space S represents the collection of all the state variables of the SEN at every
time slot t, including RES variables (Ppv,t & Pw,t), energy prices (πt & λt), energy demand
Dt, and state of the ESSs (Eb

t & Ht). Thus, at time slot t, the state of the system is given as

st =
(

Ppv,t, Pw,t, Eb,t, Ht, Dn,t, πt, λt

)
, st ∈ S (19)

3.2.2. Action Space

The action space denotes the collection of all actions {Pc,t, Pd,t, Pel,t, Pf c,t, ∆dt}, which
are the decision values of P1 taken by the agents to produce the next state st+1 according
to the state transition function P . To reduce the size of the action space, action variables
for each storage system can be combined into one action. With reference to (3), the BESS
action variables {Pc,t, Pd,t} can be combined into one action Pb,t so that during charging
(i.e., Pb,t < 0), Pc,t = |Pb,t| & Pd,t = 0. Otherwise, Pd,t = Pb,t & Pc,t = 0. Similarly, the HESS
action variables {Pel,t, Pf c,t} can be combined into one action Ph,t. During electrolysis, (i.e.,
Ph,t < 0) , Pel,t = |Ph,t| & Pf c,t = 0. Otherwise, Pf c,t = Ph,t & Pel,t = 0. Thus, at time t, the
control actions of the SEN reduce to

at =
(

Pb,t, Ph,t, ∆dt

)
, at ∈ A (20)

The action values are bounded according to their respective boundaries given by (4),
(9), (10), and (15).

3.2.3. Reward Space

The collection of all the rewards received by the agents after interacting with the
environment forms the reward spaceR. The reward is used to evaluate the performance of
the agent based on the actions taken and the state of the SEN observed by the agents at that
particular time. The first part of the reward is the total energy cost and environmental cost
of the SEN:

r(1)t = −
(

Ct
BESS + Ct

HESS + Ct
inc. + Ct

grid

)
(21)
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As constraints given in (2) and (7) should always be satisfied, the second part of the
reward is a penalty for violating the constraints as follows:

r(2)t = −
{
K, if (2) or (7) is violated
0, otherwise

(22)

where K is a predetermined large number, e.g., K = 20.
The total reward received by the agent after interacting with the environment is

therefore expressed as
rt = r(1)t + r(2)t , rt ∈ R (23)

The goal of the agent is to maximise its own expected reward R:

R =
T

∑
t=0

γtrt (24)

where T is the time horizon and γ is a discount factor, which helps the agent to focus the
policy by caring more about obtaining the rewards quickly.

As electricity prices, RES energy generation, and demand are volatile in nature, it is
generally impossible to obtain with certainty the state transition probability function P
required to derive an optimal policy π(st|at) needed to maximise R. To circumvent this
difficulty, we propose the use of RL as discussed in Section 4.

4. Reinforcement Learning
4.1. Background

An RL framework is made up of two main components, namely the environment
and the agent. The environment denotes the problem to be solved. The agent denotes the
learning algorithm. The agent and environment continuously interact with each other [21].

At every time t, the agent learns for itself the optimal control policy π(st|at) through
trial and error by selecting control actions at based on its perceived state st of the environ-
ment. In return, the agent receives a reward rt and the next state st+1 from the environment
without explicitly having knowledge of the transition probability function P . The goal
of the agent is to improve the policy so as to maximise the cumulative reward R. The
environment has been described in Section 3. Next, we describe the learning algorithms.

4.2. Learning Algorithms

In this section, we present three main learning algorithms considered in this paper,
namely DQN (a single-agent and value-based algorithm), DPPG (a single-agent and policy-
based algorithm), and the proposed multi-agent DDPG (a multi-agent and policy-based
algorithm).

4.2.1. DQN

The DQN algorithm was developed by Google DeepMind in 2015 [23]. It was de-
veloped to enhance a classic RL algorithm called Q-Learning [21] through the addition
of deep neural networks and a novel technique called experience replay. In Q-learning,
the agent learns the best policy π(st|at) based on the notion of an action-value Q-function
as Qπ(s, a) = Eπ [R|st = s, at = a]. By exploring the environment, the agent updates the
Qπ(s, a) estimates using the Bellman equation as an iterative update as follows:

Qi+1(st, at)← Qi(st, at) + αh (25)

where α ∈ (0, 1] is the learning rate and h is given by

h =
[
rt + γmax

a
Qπ(st+1, a)−Qi(st, at)

]
(26)
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Optimal Q-function Q∗ and policy π∗ are obtained when Qi(st, at)→ Q∗(st, at) as i→
∞. As Q-learning represents the Q-function as a table containing values of all combinations
of states and actions, it is impractical for most problems. The DQN algorithm addresses this
by using a deep neural network with parameters θ to estimate the optimal Q-values, i.e.,
Q(st, at; θ) ≈ Q∗(st, at) by minimising the following loss function L(θ) at each iteration i:

Li(θi) = E
[(

yi −Q(st, at; θi)
)2
]

(27)

where yt = rt + γmax
a

Q(st+1, at; θi−1) is the target for iteration i.
To improve training and for better data efficiency, at each time step t, an experience,

et = 〈st, at, rt, st+1〉, is stored in a replay buffer D. During training, the loss and its gradient
are then computed using a minibatch of transitions sampled from the replay buffer. How-
ever, DQN and Q-learning both suffer from an overestimation problem as they both use
the same action value to select and evaluate the Q-value function, making them impractical
for problems with continuous action spaces.

4.2.2. DDPG

The DDPG algorithm is proposed to [24] to handle control problems with continuous
action spaces, which otherwise are impractical to be handled by Q-learning and DQN. The
DDPG consists of two independent neural networks: an actor and a critic network. The
actor network is used to approximate the policy π(st|at). The input to the actor network
is the environment state st and the output is the action at. The critic network is used to
approximate the Q-function Q(st, at) and is only used to train the agent, and the network
is discarded during the deployment of the agent. The input to the critic network is the
concatenation of the state st and the action at from the actor network, and the output is the
Q-function Q(st, at).

Similar to the DQN, the DDPG stores an experience, et = 〈st, at, rt, st+1〉, in a replay
buffer D at each time step t to improve training and for better data efficiency. To add more
stability to the training, two target neural networks, which are identical to the (original)
actor network and (original) critic network are also created. Let the network parameters of
the original actor network, original critic network, target actor network, and target critic

network be denoted as θµ, θQ, θµ
′
, and θQ

′
, respectively. Before training starts, θµ and θQ

are randomly initialised, and the θµ
′

and θQ
′

are initialised as θµ
′
← θµ and θQ

′
← θQ.

To train the original actor and critic networks, a minibatch of B experiences 〈sj
t, aj

t, rj
t, sj

t+1〉
∣∣∣B

j=1
,

are randomly sampled from D, where j ∈ B is the sample index. The original critic network
parameters θQ are updated through gradient descent using the mean-square Bellman
error function:

L
(

θQ
)
=

1
B

B

∑
j=1

(
yj −Q

(
sj

t, aj
t; θQ

))2
(28)

where Q
(

sj
t, aj

t; θQ
)

is the predicted output of the original critic network and yj is its target
value expressed as

yj = rj
t + γQ

′
(

sj
t+1, µ

′
(sj

t+1; θµ
′
); θQ

′
)

(29)

where µ
′
(sj

t+1; θµ
′
) is the output (action) from the target actor-network and

Q
′
(

sj
t+1, µ

′
(sj

t+1; θµ
′
); θQ

′)
is the output (Q-value) from the target critic network.
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At the same time, parameters of the original actor network are updated by maximising
the policy objective function J(θµ):

∇θµ J(θµ) =
1
B

B

∑
j=1
∇θµ µ(s; θµ)∇aQ

(
s, a; θQ

)
(30)

where s = sj
t, a = µ(sj

t; θµ) is the output (action) from the original actor network and
Q
(
s, a; θQ) is the output (Q-value) from the original critic network.

After the parameters of the original actor network and original critic network are
updated, the parameters of the two target networks are updated through the soft update
technique as {

θQ
′
← τθQ + (1− τ)θQ

′

θµ
′
← τθµ + (1− τ)θµ

′ (31)

where τ is the learning rate.
To ensure that the agent explores the environment, a random process [41] is used to

generate a noise Nt, which is added to every action as follows:

at = µ(st; θµ) +Nt (32)

However, as discussed in [34], the DDPG algorithm performs poorly in non-stationary
environments.

4.3. The Proposed MADDPG Algorithm

Each controllable asset of the SEN (i.e., BESS, HESS, and flexible demand) can be
considered an agent, making the SEN environment a multi-agent environment, as shown
in Figure 3. With reference to Section 3, the state and action spaces for each agent can be
defined as follows. The BESS agent’s state and action as s1

t = (Ppv,t, Pw,t, Eb,t, Dn,t, πt, λt) and
a1

t = (Pb,t), respectively. The HESS agent’s state and action as s2
t = (Ppv,t, Pw,t, Dn,t, Ht, πt, λt)

and a2
t = (Ph,t), respectively, and the flexible demand agent’s state and action as

s3
t = (Ppv,t, Pw,t, Dn,t, πt, λt) and a3

t = (∆dt), respectively. All the agents coordinate to
maximise the same cumulative reward function given by (24).

With the proposed MADDPG algorithm, each agent is modelled as a DDPG agent,
where, however, states and actions are shared between the agents during training, as shown
in Figure 4. During training, the actor-network uses only the local state to calculate the
actions, while the critic network uses the states and actions of all agents in the system
to evaluate the local action. As the actions of all agents are known by each agent’s critic
network, the entire environment is stationary during training. During execution, critic
networks are removed and only actor networks are used. This means that with MADDPG,
training is centralised while execution is decentralised.

A detailed pseudocode of the proposed algorithm is given in Algorithm 1.



Energies 2023, 16, 6770 12 of 20

Algorithm 1 MADDPG-based Optimal Control of an SEN

1: Initialise shared replay buffer D
2: for each agent k = 1, · · · , 3 do
3: Randomly initialise (original) actor and critic networks with parameters θµ and θQ,

respectively

4: Initialise (target) actor and critic networks as θµ
′
← θµ and θQ

′
← θQ respectively

5: end for
6: for each episode eps = 1, 2, · · · , M do
7: for each agent k = 1, · · · , 3 do
8: Initialise a random process Nt for exploration
9: Observe initial state sk

t from the environment
10: end for
11: for each time step t = 1, 2, · · · , T do
12: for each agent k = 1, · · · , 3 do
13: Select an action according to (32)
14: end for
15: Execute joint action at = 〈a1

t , a2
t , a3

t 〉
16: for each agent k = 1, · · · , 3 do
17: Collect reward rk

t and observe state sk
t+1

18: Store
〈

ak
t , sk

t , rk
t , sk

t+1

〉
into D

19: Update sk
t ← sk

t+1

20: Randomly sample minibatch of B transitions
〈

aj
t, sj

t, rj
t, sj

t+1

〉∣∣∣B
j=1

from D
21: Update (original) critic network by (28)
22: Update (original) actor network by (30)
23: Update target networks by (31)
24: end for
25: end for
26: end for

Figure 3. The multi-agent environment structure of the smart energy network.
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Figure 4. MADDPG structure and training process. The BESS agent and demand agent have the
same internal structure as the HESS agent.

5. Simulation Results
5.1. Experimental Setup

In this paper, real-world RES (solar and wind) generation and consumption data,
which are obtained from the Smart Energy Network Demonstrator (SEND), are used for
the simulation studies [36]. We use the UK’s time-of-use (ToU) electricity price as grid
electricity buying price, which is divided into peak price 0.234 GBP/kWh (4 pm–8 pm), flat
price 0.117 GBP/kWh (2 pm–4 pm and 8 pm–11 pm), and the valley price 0.07 GBP/kWh
(11 pm–2 pm). The electricity price for selling electricity back to the main grid is a flat price
πt = 0.05 GBP/kWh, which is lower than the ToU to avoid any arbitrage behaviour by the
BESS and HESS. A carbon emission conversion factor µc = 0.23314 kg CO2/kWh, is used to
quantify the carbon emissions generated for using electricity from the main grid to meet the
energy demand in the SEN [42]. We set the initial BESS state of charge and hydrogen level
in the tank as E0 = 1.6 MWh and H0 = 5 Nm3, respectively. Other technical–economic
parameters of the BESS and HESS are tabulated in Table 1. A day is divided into 48 time
slots, i.e., each time slot is equivalent to 30 min.

Table 1. BESS and HESS simulation parameters.

ESS Parameter and Value

BESS
Enom = 2 MWh, Pmax = 102 kW, DoD = 80%
Emin = 0.1 MWh, Emax = 1.9 MWh, Lc = 3650
Cca

b = £210,000, ηc,t = ηd,t = 98%

HESS

Hmin = 2 Nm3, Hmax = 10 Nm3, Pel
max = 3 kW

P f c
max = 3 kW, η f c,t = 50%, ηel,t = 90%

L f c = Lel = 30,000 h, r f c,t = 0.23 Nm3/kWh
rel,t =1.32 kWh/Nm3, Com

el = Com
f c = £0.174/h

Cca
el = £60,000, Cca

f c= £22,000

The actor and critic networks for each MADDPG agent are designed using hyper-
parameters tabulated in Table 2. We use the rectified linear unit (ReLU) as an activation
function for the hidden layers and the output of the critic networks. A Tanh activation
function is used in the output layer of each actor-network. We set the capacity of the
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replay buffer to be K = 1× 106 and the maximum training steps in an episode to be T = 48.
Algorithm 1 is developed and implemented in Python using PyTorch framework [43].

Table 2. Hyperparameters for each actor and critic network.

Hyperparameter Actor Network Critic Network

Optimiser Adam Adam
Batch size 256 256
Discount factor 0.95 0.95
Learning rate 1× 10−4 3× 10−4

No. of hidden layers 2 2
No. of neurons 500 500

5.2. Benchmarks

We verify the performance of the proposed MADDPG algorithm by comparing it with
other three bench-marking algorithms:

• Rule-based (RB) algorithm: This is a model-based algorithm that follows the standard
practice of wanting to meet the energy demand of the SEN using the RES generation
without guiding the operation of the BESS, HESS, and flexible demands towards
periods of low/high electricity price to save energy costs. In the event that there is
surplus energy generation, the surplus is first stored in the short-term BESS, followed
by the long-term HESS, and any extra is sold to the main grid. If the energy demand
exceeds RES generation, the deficit is first provided by the BESS followed by the HESS,
and then the main grid.

• DQN algorithm: As discussed in Section 4, this is a value-based DRL algorithm, which
intends to optimally schedule the operation of the BESS, HESS, and flexible demand
using a single agent and a discretised action space.

• DDPG algorithm: This is a policy-based DRL algorithm, which intends to optimally
schedule the operation of the BESS, HESS, and flexible demand using a single agent
and a continuous action space, as discussed in Section 4.

5.3. Algorithm Convergence

We analyse the convergence of the MADDPG algorithm by training the agents with
5900 episodes, with each episode having 48 training steps. In Figure 5, the average rewards
obtained for each episode are plotted against the episodes and compared to the DRL-based
bench-marking algorithms.

Figure 5. Training processes of the DQN, DDPG, and MADDPG algorithms.
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As shown in Figure 5, all algorithms achieve convergence after 2000 episodes. The
DQN reaches convergence faster than MADDPG and DDPG due to the DQN’s discretised
and low-dimensional action space, making the determination of the optimal scheduling
policy relatively easier and quicker than the counterpart algorithms with continuous and
high-dimensional action spaces. As a discretised action space cannot accurately capture the
complexity and dynamics of the SEN energy management, the DQN algorithm converges
to the worst optimal policy given by the lowest average reward value (−16,572.5). On the
other hand, the MADDPG algorithm converges to a high average reward value (−6858.1),
which is slightly higher than the reward value (−8361.8) for the DDPG, mainly due to
enhanced cooperation between the operation of the controlled assets.

5.4. Algorithm Performance

In this section, we demonstrate the effectiveness of the proposed algorithm for op-
timally scheduling the BESS, the HESS, and the flexible demand to minimise the energy
and environmental costs. Figure 6 shows the scheduling results in response to the SEN net
demand for a period of 7 days, i.e., T = 336 h. As shown in Figure 6, the BESS and HESS ac-
curately charge (negative power) and discharge (positive power) whenever the net demand
is negative (i.e., RES generation exceeds energy demand) and positive (i.e., energy demand
exceeds RES generation), respectively. Similarly, the scheduled demand is observed to be
high and low whenever the net demand is negative and positive, respectively.

Figure 6. Control action results (for a 7-day period) by BESS, HESS, and flexible demand agents in
response to net demand.

Figure 7 shows that in order to minimise the multi-objective function given by P1, the
algorithm prioritises the flexible demand agent to aggressively respond to price changes
compared to the BESS and HESS agents. As shown in Figure 7, the scheduled demand
reduces sharply whenever the electricity price is the highest, and increases when the price
is lowest compared to the actions by the BESS and HESS.

Together, Figures 6 and 7 demonstrate how the algorithm allocates different priorities
to the agents to achieve a collective goal: minimise carbon costs, energy, and operational
costs. In this case, the BESS and HESS agents are trained to respond more aggressively to
changes in energy demand and generation, and maximise the benefits thereof like minimum
carbon emissions. On the other hand, scheduling the flexible demand guides the SEN
towards low energy costs.



Energies 2023, 16, 6770 16 of 20

Figure 7. Control action results (for a 7-day period) by BESS, HESS, and flexible demand agents with
response to ToU.

5.5. Improvement in Cost Saving and Carbon Emission

To demonstrate the economic and environmental benefits of integrating the BESS
and the HESS in the SEN, the MADDPG algorithm was tested on different SEN models
as shown in Table 3. The SEN models differ based on whether the SEN has any of the
controllable assets; BESS, HESS, and flexible demand or not. For example, the SEN model
that only has HESS and flexible demand as controllable assets is denoted as ‘No BESS’. The
total cost savings and carbon emissions for each model were obtained as a sum of the cost
savings and carbon emissions obtained half-hourly for 7 days.

Table 3. Cost savings and carbon emissions for different SEN models. A tick (X) indicates that a
model is considered and a cross (×) indicates that a model is not considered.

Models Proposed No BESS No HESS No Flex. Demand No Assets

BESS X × X X ×
HESS X X × X ×
Flex. Demand X X X × ×
Cost Saving (£) 1099.60 890.36 1054.58 554.01 451.26

Carbon Emission (kg CO2e) 265.25 1244.70 521.92 1817.37 2175.66

As shown in Table 3, integrating BESS and HESS in the SEN as well as scheduling the
energy demand achieves the highest cost savings and reduction in carbon emission. For
example, the cost savings and carbon emissions are 23.5% and 78.69% higher and lower,
respectively, than those for the SEN model without BESS (i.e., the ‘No BESS’ model), mainly
due to improved RES utilisation for the proposed SEN model.

5.6. Improvement in RES Utilisation

To demonstrate improvement in RES utilisation as a result of integrating the BESS
and the HESS in the SEN as well as scheduling energy demand, we use self-consumption
and self-sufficiency as performance metrics. Self-consumption is defined as a ratio of RES
generation used by the SEN (i.e., to meet the energy demand and to charge the BESS
and HESS) to the overall RES generation [44]. Self-sufficiency is defined as the ratio of
the energy demand that is supplied by the RES, BESS, and HESS to the overall energy
demand [45].

Table 4 shows that integrating the BESS and the HESS in the SEN as well as scheduling
energy demand improves RES utilisation. Overall, the proposed SEN model achieved
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the highest RES utilisation, with 59.6% self-consumption and 100% self-sufficiency. This
demonstrates the potential of integrating HESS in future SENs for absorbing more RES,
thereby accelerating the rate of power system decarbonisation.

Table 4. Self-consumption and self-sufficiency for different SEN models. A tick (X) indicates that a
model is considered and a cross (×) indicates that a model is not considered.

Models Proposed No BESS No HESS No Flex. Demand No Assets

BESS X × X X ×
HESS X X × X ×
Flex. Demand X X X × ×
Self-consumption 59.6% 48.0% 39.2% 46.0% 50.0%

Self-sufficiency 100% 85.3% 95.2% 78.8% 73.4%

5.7. Algorithm Evaluation

The performance of the proposed MADDPG algorithm was evaluated by comparing
it to the bench-marking algorithms for cost savings, carbon emissions, self-consumption,
and self-sufficiency, as shown in Figure 8.

(a) (b)
Figure 8. Performance of the MADDPG algorithm compared to the bench-marking algorithms for
(a) cost savings and carbon emissions; (b) self-consumption and self-sufficiency.

The MADDPG algorithm obtained the most stable and competitive performance in all
the performance metrics considered, i.e., cost savings, carbon emissions, self-consumption,
and self-sufficiency. This is mainly due to its multi-agent feature, which ensures a better
learning experience in the environment. For example, the MADDPG improved the cost
savings and reduced carbon emissions by 41.33% and 56.3%, respectively, relative to the RB
approach. The rival DDPG algorithm achieved the highest cost savings at the expense of
carbon emissions and self-sufficiency. As more controllable assets are expected in future
SENs due to the digitisation of power systems, multi-agent-based algorithms are therefore
expected to play a key energy management role.

5.8. Sensitivity Analysis of Parameter αd

The parameter αd quantifies the amount of flexibility to reduce the energy demand. A
lower value of αd indicates that less attention is paid to the inconvenience cost, and a larger
share of the energy demand can be reduced to minimise the energy costs. A higher value
of αd indicates that high attention is paid to the inconvenience cost and the energy demand
can be hardly reduced to minimise the energy costs. With the change in αd values, the cost
savings and carbon emission results are compared in Figure 9.

As shown in Figure 9, the cost savings and carbon emissions reduce and increase,
respectively, as αd takes values from 0.0001 to 0.001, which means that the energy demand’s
sensitivity to price reduces with increased inconvenience levels as given by (16). Thus,
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having an energy demand that is sensitive to electricity prices is crucial for reducing carbon
emissions and promoting the use of RESs.

Figure 9. Cost savings and carbon emissions for different αd parameters.

6. Conclusions

In this paper, we investigated the problem of minimising energy costs and carbon
emissions as well as increasing renewable energy utilisation in a smart energy network
(SEN) with BESS, HESS, and schedulable energy demand. A multi-agent deep deterministic
policy gradient algorithm was proposed as a real-time control strategy to optimally schedule
the operation of the BESS, HESS, and schedulable energy demand while ensuring that
the operating constraints and time-coupled storage dynamics of the BESS and HESS are
achieved. Simulation results based on real-world data showed increased cost savings,
reduced carbon emissions, and improved renewable energy utilisation with the proposed
algorithm and SEN. On average, the cost savings and carbon emissions were 23.5% and
78.69% higher and lower, respectively, with the proposed SEN model than baseline SEN
models. The simulation results also verified the efficacy of the proposed algorithm to
manage the SEN outperforming other bench-marking algorithms, including DDPG and
DQN algorithms. Overall, the results have shown great potential for integrating HESS in
SENs and using self-learning algorithms to manage the operation of the SEN.
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