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Abstract: This article presents a comprehensive data-driven approach on enhancing grid-connected
microgrid grid resilience through advanced forecasting and optimization techniques in the context
of power outages. Power outages pose significant challenges to modern societies, affecting various
sectors such as industries, households, and critical infrastructures. The research combines statistical
analysis, machine-learning algorithms, and optimization methods to address this issue to develop a
holistic approach for predicting and mitigating power outage events. The proposed methodology
involves the use of Monte Carlo simulations in MATLAB for future outage prediction, training a
Long Short-Term Memory (LSTM) network for forecasting solar irradiance and load profiles with
a dataset spanning from 2009 to 2018, and a hybrid LSTM-Particle Swarm Optimization (PSO)
model to improve accuracy. Furthermore, the role of battery state of charge (SoC) in enhancing
system resilience is explored. The study also assesses the techno-economic advantages of a grid-tied
microgrid integrated with solar panels and batteries over conventional grid systems. The proposed
methodology and optimization process demonstrate their versatility and applicability to a wide
range of microgrid design scenarios comprising solar PV and battery energy storage systems (BESS),
making them a valuable resource for enhancing grid resilience and economic efficiency across
diverse settings. The results highlight the potential of the proposed approach in strengthening grid
resilience by improving autonomy, reducing downtime by 25%, and fostering sustainable energy
utilization by 82%.

Keywords: microgrid; hybrid LSTM-PSO model; machine learning; Monte Carlo; optimization;
power outage; renewable energy; techno-economic analysis

1. Introduction

In today’s modern world, the continuous and reliable supply of electricity is of
paramount importance, underscoring the critical significance of bolstering the resilience
of electrical grid-connected microgrids to ensure the smooth functioning of societies, in-
dustries, and vital infrastructure [1,2]. The uninterrupted provision of electricity is indis-
pensable for the effective operation of key institutions such as hospitals, communication
networks, transportation systems, and numerous other sectors that constitute the backbone
of our daily life [3]. However, the susceptibility of electrical grids to a wide array of dis-
ruptions, ranging from extreme weather events and cyberattacks to equipment failures,
underscores the pressing need to develop strategies that enhance the resilience of micro-
grids tied to the main grid and mitigate the consequences of power interruptions [4–6].
Figure 1 illustrates common reasons for power outages in the United States.

Grid-connected microgrid resilience, a pivotal component of modern power systems,
refers to the capacity of an electrical grid to endure and swiftly recover from disruptions,
thereby ensuring a consistent and uninterrupted supply of electricity to consumers [7]. The
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primary impediment to microgrid resilience often arises from power outages, characterized
by the abrupt interruption of electricity delivery to specific regions [8,9]. These outages
encompass a broad spectrum in terms of duration and severity, spanning from momentary
flickers to prolonged blackouts that impact entire areas [10,11]. The causes of power outages
are diverse, encompassing natural disasters, equipment malfunctions, overloads, and
deliberate attacks on infrastructure [12]. Consequently, a comprehensive comprehension of
the underlying patterns and attributes of power outages is imperative for devising effective
strategies to enhance grid resilience [13].
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A thorough examination of the existing body of literature underscores the multi-
faceted challenges associated with grid-connected microgrid resilience and power outage
prediction [14,15]. Research has established that accurate outage prediction models con-
stitute essential tools for proactive microgrid management [2,16–18]. The integration of
advanced machine-learning techniques, such as Long Short-Term Memory (LSTM) net-
works, has emerged as a promising approach for capturing temporal dependencies and
augmenting the precision of forecasting models [19]. Furthermore, the incorporation of
optimization methodologies like PSO has demonstrated significant potential in refining
predictive models [2]. The choice of the PSO algorithm in this research is grounded in its
efficient global search capabilities in complex, multidimensional solution spaces, rendering
it particularly suitable for optimizing the sizing of photovoltaic (PV) systems and BESS
within microgrids [2,9]. PSO’s rapid convergence towards near-optimal solutions, ease of
implementation, versatility across various optimization problems, and scalability through
parallel processing make it a practical choice for addressing microgrid design challenges [9].
While alternative optimization algorithms exist, the decision to employ PSO was driven
by its effectiveness in achieving the research objectives related to microgrid resilience and
economic efficiency [2].

To develop a comprehensive understanding of power outage occurrences and charac-
teristics in the United States, a rigorous statistical analysis was conducted. The examination
of historical outage data facilitated the identification of trends, frequency distributions,
and correlations between outage events and influential factors. These insights provide
valuable information for designing predictive models that anticipate and prepare for im-
pending outage events [20,21]. Monte Carlo simulations, executed within the MATLAB
environment, were employed to visualize future power outage events based on historical
data and trends. This probabilistic approach takes into account the inherent uncertainties
surrounding outage occurrences and generates a spectrum of potential scenarios. By consid-
ering diverse parameters and scenarios, the Monte Carlo method enhances the accuracy of
outage predictions and contributes to the development of robust mitigation strategies [10].
The potential of Long Short-Term Memory (LSTM) networks, a subset of recurrent neural
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networks, was harnessed for the prediction of solar irradiance and load profiles within
microgrids. Accurate solar irradiance prediction is critical for optimizing the utilization
of renewable energy sources, while load forecasting facilitates the efficient allocation of
energy resources [2,3,22]. The LSTM model’s innate ability to capture temporal dependen-
cies within data significantly improves upon traditional methods, leading to heightened
forecasting accuracy [23,24].

Recognizing the imperative to further enhance prediction accuracy, the hybrid LSTM-
PSO model emerges as an innovative solution [3]. This hybridization leverages the strengths
of both LSTM and PSO [25]. The PSO algorithm, typically utilized for optimization tasks, is
adapted to fine-tune the parameters of the LSTM network, thereby enhancing the model’s
performance [26–28]. The synergistic interplay between LSTM and PSO yields forecasts that
are more precise, dependable, and adaptable [29]. On a different note, the state of charge
(SoC) of batteries constitutes a pivotal factor in augmenting the resilience of microgrids
during power outages [30]. Batteries, capable of storing surplus energy generated by solar
panels and discharging it when needed, serve as a reliable source of backup power during
disruptions [31]. The effective management of battery SoC ensures an uninterrupted power
supply and minimizes downtime during outages [32]. A comparative evaluation between
grid-tied microgrids featuring solar panels and battery storage and traditional grid systems
highlights the techno-economic advantages of the former [33]. This assessment considers
various factors, including reduced energy costs, decreased emissions, and increased energy
self-sufficiency [34–36]. The results underscore the potential of microgrids as sustainable,
cost-effective alternatives that enhance grid resilience and promote energy efficiency. The
schematic of a grid-connected microgrid is shown in Figure 2.
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The primary goal of this research is to present a comprehensive approach to improve
microgrid resilience, integrating advanced prediction and optimization techniques. It
encompasses statistical analysis, machine-learning methods, and hybrid models to address
power outage impacts, alongside the incorporation of renewable energy sources and
battery storage within microgrids for sustainability and economic benefits. The subsequent
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sections detail our data-driven approach, beginning with a decade-spanning dataset in the
methodology section, followed by insights into solar irradiance and load profile forecasting
in the optimization constraints section. Section 4 outlines the outage prediction process,
while Section 5 introduces a cutting-edge optimization methodology, the modified PSO-
LSTM algorithm, for sizing battery and solar PV systems. The final section comprehensively
evaluates economic and environmental benefits, comparing our system with industry
tools like HomerPro and ReOpt, culminating in a synthesis of findings showcasing the
advantages of data-driven approaches in advancing grid-connected microgrid resilience
and sustainable energy excellence [37–39].

2. Objective Function

The objective function in the context of this study serves as a critical mathematical
construct, central to the optimization process for determining the ideal sizing of solar
panels within a grid-connected microgrid. This function encapsulates the primary aim
of the research, which is to maximize the energy production and overall efficiency of the
microgrid while ensuring its resilience in the face of power outages.

The objective function strives to maximize the energy output of the microgrid. It
achieves this by carefully considering various parameters, such as the size and placement
of solar panels, which directly impact the amount of energy generated from renewable
sources. This optimization objective aligns with the broader goal of promoting sustainable
and eco-friendly energy solutions within the microgrid. E is maximized by optimizing the
solar panel capacity Ps while considering the load profiles, solar irradiance data, and the
system’s energy efficiency.

Emax =
∫ T

0

[
Ps × PVi(t)− Lp(t)

]
dt (1)

where Emax represents maximum energy, Ps represents PV panel capacity in kW, PVi(t)
represents solar irradiance over time, and Lp(t) represents the load profile over time.

The objective function also seeks to enhance the resilience of the microgrid. This
involves optimizing the sizing of solar panels in a way that ensures a continuous power
supply, even during grid outages. By taking into account factors like battery SoC and
energy storage, the objective function contributes to grid resilience, reducing the impact of
power disruptions on critical infrastructure and ensuring an uninterrupted energy supply.
The objective function achieves these goals by mathematically quantifying the trade-offs
and interdependencies between various parameters, such as the capacity of solar panels,
battery storage, and load profiles. Through iterative optimization, it strives to find the
optimal configuration that strikes the right balance between maximizing energy production
and enhancing grid resilience.

∑ ξmax =
∑T

0 Lcs

∑T
0 Lds

(2)

where ξmax represents the grid resilience score, a dimensionless metric reflecting the micro-
grid’s ability to maintain a continuous power supply during outages, Lcs and Lds represent
the total critical load server and that demanded over time.

The overall objective function combines these two objectives into a multi-objective
optimization problem,

γ·Emax + δ·ξmax (3)

where γ and δ are weight factors that represent the relative importance of energy production
Emax and grid resilience ξmax in the optimization process.

3. Methodology

The research methodology employs a systematic approach to enhance grid-tied micro-
grid resilience and optimize microgrid operations. The methodology encompasses several
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interconnected steps, leveraging predictive techniques, mathematical models, optimization
algorithms, and results analysis. The proposed hybrid algorithm is shown in Figure 3.
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The flowchart shows a six-step process for optimizing the resilience and economics of a
microgrid. The first step is to predict outage events and battery state of charge using Monte
Carlo simulation. The second step is to forecast energy profiles using hybrid-modified
PSO-LSTM models. The third step is to formulate mathematical models for the various
components of the microgrid. The fourth step is to formulate an optimization problem that
maximizes microgrid resilience and economic benefits, subject to constraints such as energy
generation, storage capacity, and load demand. The fifth step is to solve the optimization
problem using particle swarm optimization. The sixth step is to analyze and interpret the
results to identify the most resilient and economic microgrid configuration.
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The flowchart is a comprehensive and systematic approach to optimizing the resilience
and economics of a microgrid. It takes into account the uncertainty of future outage events
and battery state of charge, and it uses state-of-the-art forecasting techniques to predict
energy profiles. The optimization problem is formulated to maximize microgrid resilience
and economic benefits, and it is solved using a powerful optimization algorithm. The
flowchart is a valuable tool for microgrid operators looking to improve their systems’
resilience and economics.

By following this comprehensive methodology, the article’s approach ensures an
integrated and optimized microgrid operation, considering both resilience and economic
viability. The system overview is shown in Figure 4.
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The combination of predictive techniques, mathematical models, optimization algo-
rithms, and results analysis enables the microgrid to navigate uncertainties and challenges
effectively while ensuring a reliable energy supply and efficient resource utilization.

4. Constraining Function for Optimization

The constraining functions used in the optimization problem play a vital role in
ensuring that the solutions obtained are feasible and aligned with the objectives of the
microgrid. These functions impose restrictions on various parameters and variables to
ensure that the resulting configuration is practical and meets specific criteria. In the context
of the article’s methodology, the constraining functions can be described as follows:

4.1. Energy Balance Constraint

This constraint ensures that the energy supplied by various sources within the micro-
grid matches the energy demand during an outage. It ensures that the energy generation
(solar, wind, etc.), energy storage, and energy consumption (load demand) are balanced:

EGen + EStorage = LDemand (4)
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where, EGen, EStorage, and LDemand represents energy generation, energy storage, and load
demand, respectively.

4.2. Battery State of Charge (SoC) Constraint

To maintain the reliability of the microgrid during outages, the battery SoC needs to
be within a specific range. This constraint prevents overcharging or over-discharging of the
battery, which can impact its efficiency and lifespan:

SoCmin ≤ SoCbattery ≤ SoCmax (5)

where SoCmin and SoCmax represents the minimum and maximum state of charge for the
battery, respectively, and SoCbattery represents the current state of charge for the battery.

4.3. Energy Storage Capacity Constraint

The energy stored in the existing battery should not exceed the storage capacity of the
new battery system:

SoCbattery ≤ SoCnew_max (6)

SoCnew_max represents the maximum state of charge for the new battery system.

4.4. Generation and Load Limits

Constraints are set on the maximum energy generation from different sources (solar
panels, wind turbines) and the maximum allowable load demand to prevent exceeding the
capacity of the microgrid components:

EGen ≤ Gmax (7)

LDemand ≤ Lmax (8)

where Gmax represents the maximum generation capacity, and Lmax is the maximum load
capacity.

4.5. Economic Constraints

If the analysis includes economic considerations, there may be budget limitations or
cost-effectiveness constraints. These constraints ensure that the solution aligns with the
available resources and budget:

Ctotal ≤ Cbudget (9)

where Ctotal represents the total cost, and Cbudget represents the budget limit.

4.6. Environmental Constraints

In the case of a grid-connected microgrid with renewable sources, there might be
constraints on minimizing carbon emissions or maximizing the utilization of renewable
energy:

Rmin ≤ EGen
EGen + ESrotage

(10)

where Rmin is the minimum renewable energy ratio.
These constraining functions guide the optimization algorithm to search for solutions

that satisfy both technical and economic requirements. The optimization aims to find a
configuration that maximizes the microgrid’s resilience against outages while ensuring its
efficient and cost-effective operation. The specific form and parameters of these constraints
would depend on the microgrid’s characteristics, the objectives of the optimization, and
the constraints imposed by the physical components and operational conditions.
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5. Outage and Battery SoC prediction

The role of battery SoC prediction, particularly during anticipated outage scenarios,
is illuminated, emphasizing its integral contribution to the system’s overall performance.
The article delves into the technical intricacies of SoC prediction, elucidating how it of-
fers real-time insights into the battery’s stored energy relative to its total capacity [3–11].
This knowledge empowers informed decision-making during critical events such as grid
failures or extreme weather conditions, ensuring efficient utilization of stored energy and
minimizing downtime for vital loads. Additionally, the article emphasizes that battery
SoC prediction plays a pivotal role in optimizing the BESS, tailoring it to the system’s
specific requirements. This optimization not only enhances autonomy but also ensures the
battery is appropriately sized. Overall, the study highlights that battery SoC prediction is a
fundamental element of the microgrid resilience strategy, enabling data-driven decisions,
system optimization, and the maintenance of a reliable, resilient, and sustainable energy
system capable of withstanding various challenges and disruptions [2,10].

Monte Carlo simulation is a powerful technique used to model and analyze the
behavior of complex systems through random sampling [10]. In the context of the article’s
methodology, Monte Carlo simulation is applied to predict outage events and the battery
state of charge (SoC). Figure 5 shows the flow chart to predict potential outages in a
microgrid’s lifetime.

Energies 2023, 16, x FOR PEER REVIEW 8 of 23 
 

 

These constraining functions guide the optimization algorithm to search for solutions 
that satisfy both technical and economic requirements. The optimization aims to find a 
configuration that maximizes the microgrid’s resilience against outages while ensuring its 
efficient and cost-effective operation. The specific form and parameters of these con-
straints would depend on the microgrid’s characteristics, the objectives of the optimiza-
tion, and the constraints imposed by the physical components and operational conditions. 

5. Outage and Battery SoC prediction 
The role of battery SoC prediction, particularly during anticipated outage scenarios, 

is illuminated, emphasizing its integral contribution to the system’s overall performance. 
The article delves into the technical intricacies of SoC prediction, elucidating how it offers 
real-time insights into the battery’s stored energy relative to its total capacity [3–11]. This 
knowledge empowers informed decision-making during critical events such as grid fail-
ures or extreme weather conditions, ensuring efficient utilization of stored energy and 
minimizing downtime for vital loads. Additionally, the article emphasizes that battery 
SoC prediction plays a pivotal role in optimizing the BESS, tailoring it to the system’s 
specific requirements. This optimization not only enhances autonomy but also ensures the 
battery is appropriately sized. Overall, the study highlights that battery SoC prediction is 
a fundamental element of the microgrid resilience strategy, enabling data-driven deci-
sions, system optimization, and the maintenance of a reliable, resilient, and sustainable 
energy system capable of withstanding various challenges and disruptions [2,10].  

Monte Carlo simulation is a powerful technique used to model and analyze the be-
havior of complex systems through random sampling [10]. In the context of the article’s 
methodology, Monte Carlo simulation is applied to predict outage events and the battery 
state of charge (SoC). Figure 5 shows the flow chart to predict potential outages in a mi-
crogrid’s lifetime.  

 
Figure 5. Outage frequency, duration, and battery SoC prediction flowchart. 

Here are the basic equations for performing Monte Carlo simulation: Outage predic-
tion involves generating multiple scenarios of potential outage events based on historical 
data and probabilistic models. 

Figure 5. Outage frequency, duration, and battery SoC prediction flowchart.

Here are the basic equations for performing Monte Carlo simulation: Outage predic-
tion involves generating multiple scenarios of potential outage events based on historical
data and probabilistic models.

Defining the probability distribution of outages, let Poutage be the probability of an
outage occurring in a given time period. This probability can be estimated from historical
outage data or other relevant sources.

A sequence of random numbers is generated between 0 and 1 using a random number
generator.

Simulation of outage events: For each random number generated, compare it to the
probability Poutage. If the random number is less than or equal to Poutage, an outage event is
considered to have occurred in that scenario. This process is repeated for multiple random
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numbers to generate a set of outage scenarios in the lifetime of the microgrid, as shown in
Figures 6 and 7, respectively.
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Similarly, battery SoC prediction involves assessing the batteries’ state of charge in
different future scenarios.

Probability distributions are defined for battery charging and discharging rates based
on historical data for an existing system and battery characteristics. Let P (charge) be the
probability of the battery being charged, and P (discharge) be the probability of the battery
being discharged.
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Random numbers are generated to determine whether the battery will be charged
or discharged in each outage scenario. The change in the battery SoC for each scenario is
calculated based on the outcome of the random numbers generated. This change can be
calculated as

∆SoC = (Crate − Drate) × TX (11)

where Crate and Drate represent the charging and discharging rate of the battery, and TX is
the simulation time step.

The battery SoC is updated based on the calculated ∆SoC for each scenario. The
initial SoC for each scenario can be set based on historical data or the current state of the
battery. Figure 8 shows the discharging simulation using Monte Carlo, where a 1C-rated
single-string battery has been considered.
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Figure 8. Discharging simulation of a 1C battery.

By performing Monte Carlo simulations for both outage prediction and battery SoC
prediction, it can generate a range of possible future scenarios considering uncertainties,
providing valuable insights into the microgrid’s resilience and battery performance.

6. Load and Solar Irradiance Forecasting
6.1. Long Short-Term Memory (LSTM)

Long Short-Term Memory (LSTM) networks, a type of recurrent neural network,
were utilized to forecast solar irradiance and load profiles for a microgrid [2–4]. Solar
irradiance prediction is crucial for managing renewable energy sources effectively, while
load forecasting aids in optimizing energy distribution. The LSTM model captures temporal
dependencies in the data and improves the accuracy of predictions compared to traditional
methods. Figure 9 shows the standard LSTM block, LSTM gates, states, and time-series
data accumulation process [40].
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The LSTM equations below describe the forward propagation through the LSTM
network. These equations calculate the values of the input, forget, cell, and output gates
and the updated cell state and hidden state.

it = σ(Wxixt + Whiht−1 + bi) (12)

ft = σ
(

Wx f xt + Wh f ht−1 + b f

)
(13)

gt = tanh
(

Wxgxt + Whght−1 + bg

)
(14)

ot = σ(Wxoxt + Whoht−1 + bo ) (15)

ct = ftωct−1 + itωgt (16)

ht = otωtanh(ct) (17)

where,

xt is the input at time;
it, ft, gt, ot are the input, forget, cell, and output gates at time;
ht is the hidden state at time;
ct is the cell state at time;
W and b are weight matrices and bias vectors;
σ is the sigmoid activation function, and ω represents element-wise multiplication.

The forecasting process starts with the collection of raw historical data on solar ir-
radiance and load profile, as shown in Figure 10. The data are then accumulated and
preprocessed before being stored in a local storage device. The next step is to train a
machine-learning model to learn the relationship between solar irradiance and load profile.
The parameters of the trained model can then be modified to improve its accuracy. The
trained model is then used to forecast solar irradiance and load profile for a future time
period. The forecasted data are then compared with the actual data to assess the accuracy of
the forecast. An accuracy improvement algorithm can then be used to improve the accuracy
of the forecast. The final step is to obtain the results of the PSO algorithm. Figure 11 shows
the comparisons of forecasted solar irradiance with real-time obtained solar irradiance.



Energies 2023, 16, 7300 12 of 22Energies 2023, 16, x FOR PEER REVIEW 12 of 23 
 

 

 
Figure 10. Load profile and solar irradiance forecasting process. 

  

  
Figure 11. One week of forecasted solar irradiance from each season. 

The solar irradiance forecasting outcomes for Lubbock, Texas, utilizing a Long Short-
Term Memory (LSTM) model and leveraging hourly historical data spanning from 2009 
to 2018, offer a comprehensive insight into the model’s capability to predict solar irradi-
ance patterns across diverse seasons. The analysis covers a week’s average profiles for 
each of the four seasons: spring, summer, fall, and winter, highlighting the accuracy of the 
LSTM model’s predictions, which achieved an impressive 92% accuracy rate when com-
pared to the actual observed profiles. 

Starting with the spring season, characterized by transitioning weather conditions 
and increasing sunlight hours, the LSTM model demonstrates its proficiency by accurately 
forecasting an average daily solar irradiance of 927 W/m . This prediction aligns closely 
with the actual solar irradiance profile for the week, confirming the model’s capacity to 
capture the evolving solar dynamics during this season. 

Spring Summer 

Fall Winter 

Figure 10. Load profile and solar irradiance forecasting process.

Energies 2023, 16, x FOR PEER REVIEW 12 of 23 
 

 

 
Figure 10. Load profile and solar irradiance forecasting process. 

  

  
Figure 11. One week of forecasted solar irradiance from each season. 

The solar irradiance forecasting outcomes for Lubbock, Texas, utilizing a Long Short-
Term Memory (LSTM) model and leveraging hourly historical data spanning from 2009 
to 2018, offer a comprehensive insight into the model’s capability to predict solar irradi-
ance patterns across diverse seasons. The analysis covers a week’s average profiles for 
each of the four seasons: spring, summer, fall, and winter, highlighting the accuracy of the 
LSTM model’s predictions, which achieved an impressive 92% accuracy rate when com-
pared to the actual observed profiles. 

Starting with the spring season, characterized by transitioning weather conditions 
and increasing sunlight hours, the LSTM model demonstrates its proficiency by accurately 
forecasting an average daily solar irradiance of 927 W/m . This prediction aligns closely 
with the actual solar irradiance profile for the week, confirming the model’s capacity to 
capture the evolving solar dynamics during this season. 

Spring Summer 

Fall Winter 

Figure 11. One week of forecasted solar irradiance from each season.

The solar irradiance forecasting outcomes for Lubbock, Texas, utilizing a Long Short-
Term Memory (LSTM) model and leveraging hourly historical data spanning from 2009 to
2018, offer a comprehensive insight into the model’s capability to predict solar irradiance
patterns across diverse seasons. The analysis covers a week’s average profiles for each of
the four seasons: spring, summer, fall, and winter, highlighting the accuracy of the LSTM
model’s predictions, which achieved an impressive 92% accuracy rate when compared to
the actual observed profiles.

Starting with the spring season, characterized by transitioning weather conditions
and increasing sunlight hours, the LSTM model demonstrates its proficiency by accurately
forecasting an average daily solar irradiance of 927 W/m2. This prediction aligns closely
with the actual solar irradiance profile for the week, confirming the model’s capacity to
capture the evolving solar dynamics during this season.
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Moving into the high-sunlight months of summer, the model maintains its precision,
projecting an average daily solar irradiance of 981 W/m2. This prediction mirrors the
observed increase in solar radiation during this time, highlighting the model’s adeptness in
anticipating intensified solar irradiance, which is crucial for optimizing energy generation
and distribution strategies.

Transitioning to fall, as solar irradiance begins to taper off, the LSTM model maintains
its accuracy by forecasting an average daily solar irradiance of 857 W/m2. This prediction
accurately mirrors the observed trends as the season progresses, underscoring the model’s
adaptability to the changing solar dynamics and ensuring reliable forecasts throughout
different conditions.

In the winter season, characterized by reduced daylight hours and lower sun angles,
the LSTM model delivers accurate forecasts. It projects an average daily solar irradiance
of 401 W/m2, effectively capturing the diminished solar radiation characteristic of this
season. The alignment between forecasted and observed profiles showcases the model’s
robustness in navigating even challenging conditions. The consistent % accuracy rate of
82% across all seasons reinforces the LSTM model’s potential as a dependable tool for solar
irradiance forecasting. This precision contributes significantly to the microgrid’s ability to
optimize energy production, storage, and distribution strategies. By enabling informed
decision-making and enhancing energy management, the LSTM model serves as a key
enabler for resilient, cost-effective, and sustainable microgrid operations, particularly in
regions with dynamic solar irradiance patterns like Lubbock, TX. Figure 12 shows the
forecasted daily average of solar irradiance for every month.
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The load profile forecasting results, utilizing an LSTM model trained on hourly his-
torical load data from 2009 to 2018 and represented in a factorized form, provide a com-
prehensive understanding of the model’s performance across distinct seasons. A week’s
average load profiles for each season, spring, summer, fall, and winter, offer insights into
the LSTM model’s accuracy and its ability to anticipate load variations over time.

In the spring season, marked by changing weather conditions and varying energy de-
mands, the LSTM model showcases its effectiveness by accurately predicting the factorized
load profile as shown in Figure 13. When multiplied by the total building demand, this
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factorized representation yields the load curve. The average daily load profile for the week
aligns closely with the actual observed load profile, reflecting the model’s capability to
capture the evolving energy consumption patterns. The model’s accuracy of 81% reinforces
its reliability in forecasting load profiles during this transitional season.
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Figure 13. One week of forecasted load profiles from each season.

As summer arrives with increased energy usage due to cooling demands, the LSTM
model continues to demonstrate its precision. The factorized load profile, transformed into
the load curve, accurately captures the amplified energy consumption during peak hours. The
average daily load profile for the week mirrors the observed load pattern, emphasizing the
model’s competence in predicting the rising electricity demands of the season. The model’s
81% accuracy substantiates its ability to forecast load profiles in this high-demand period.

As temperatures moderate and energy consumption shifts in the fall season, the LSTM
model remains reliable in load forecasting. When scaled by the total building demand, the
factorized load profile represents the load curve effectively. The average daily load profile
for the week closely mirrors the actual consumption pattern, underlining the model’s
proficiency in capturing the transitioning energy demands. With an accuracy rate of 81%,
the model consistently provides valuable insights into load fluctuations during this season.

During the winter season, characterized by heating-related electricity usage, the LSTM
model maintains its accuracy in load forecasting. When transformed into the load curve,
the factorized load profile accurately captures the increased energy demand during cold
periods. The average daily load profile for the week closely tracks the actual observed
load, underscoring the model’s aptitude in anticipating energy consumption shifts. With
an accuracy of 81%, the model ensures reliable predictions of load profiles even during
challenging conditions.

The consistent accuracy rate of 81% across all seasons highlights the LSTM model’s
efficacy in forecasting load profiles. By understanding and anticipating load variations, the
model effectively empowers microgrid operators to optimize energy distribution, storage,
and management strategies. In scenarios where factorized representations are used, the
model’s precision in capturing the load curve enables informed decision-making and
contributes to resilient, cost-efficient, and sustainable microgrid operations.
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6.2. Modified Particle Swarm Optimization

The modified PSO algorithm works by initializing a swarm of particles in a search
space. Each particle has a position and velocity. The velocity of a particle is updated at each
iteration based on its own best position, the global best position, and a random number.
The position of a particle is updated based on its velocity. The algorithm continues to iterate
until a stopping criterion is met. Figure 14 shows the modified PSO-LSTM process.
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The process starts with the initialization of the data. This includes the historical data
on the variable being predicted, as well as any other relevant data. The data are then
divided into two sets: a training set and a test set. The training set is used to train the
LSTM model, and the test set is used to evaluate the accuracy of the model. The next step
is to evaluate the optimum LSTM-driven objective function. The objective function is a
mathematical expression that measures the accuracy of the LSTM model. The objective
function is evaluated using the training set. The Pbest and gbest for resilience and the
economic solution are then updated. The Pbest is the best position that a particle has
achieved thus far, and the gbest is the best position that any particle has achieved thus far.
The Pbest and gbest are updated using the objective function. The velocity and position
of each particle are then updated. The velocity is a vector that determines how much a
particle will move in the next iteration, and the position is the particle’s current location.
The velocity and position are updated using the Pbest, gbest, and random variables.

Particle update rule,
p = p + v (18)

with,
v = v + c1 × rand × (pBest − p) + c2 × rnd × (gBest − p) (19)
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where,

p is the particle’ s position;
v is the path direction;
c1 is the weight of local information obtained from LSTM;
c2 is the weight of global information;
pBest is the best position of the particle;
gBest is the best position of the swarm;
rnd is the random variable.

Random variables are generated and compared with the mutation probability. A
mutation is performed if the random variables are less than or equal to the mutation
probability. Otherwise, the mutation is not performed. If the mutation probability is
satisfied, a mutation is performed. A mutation is a change to the particle’s position or
velocity. The mutation is performed using random variables. If the mutation result is not
feasible, the initialization step with the LSTM model is restarted. A feasible result is a result
that satisfies the constraints of the problem. The problem’s constraints may include the
range of values the variable can take on. If the mutation result is feasible, the result is
obtained. The result is the position of the particle that has the best objective function value.
The flowchart continues to iterate until a stopping criterion is met. The stopping criterion
may be a maximum number of iterations, a minimum error tolerance, or a combination of
both. Figure 15 shows the hyperparameter convergence of the system.
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The figures illustrating the modified PSO-LSTM algorithm’s application in determin-
ing the optimal sizing of battery and solar PV components provide a visual insight into
the convergence and effectiveness of the optimization process. These figures highlight the
algorithm’s ability to efficiently explore the solution space and identify the configurations
that yield the best performance. The figure depicts the score plotted against the generation
number. The scores represent the fitness of individual solutions evaluated during the
optimization process. The fitness score measures the quality of a given solution, with
lower values indicating better solutions. In this plot, the mean score over generations
hovers around 0.0022, signifying that the algorithm consistently improves the solutions it
explores. The algorithm’s ability to maintain a consistently low mean score is indicative
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of its efficiency in searching for optimal configurations. The figure showcases the best
score achieved across generations. It illustrates the progressive improvement of solutions
as the algorithm iteratively refines its search. The graph demonstrates that the best score
achieved is 1.02021, indicating the top-performing solution identified by the algorithm.
This representation underscores the algorithm’s capacity to identify highly competitive
configurations within the solution space.

The 3D representation illustrates the convergence of the algorithms throughout gen-
erations. As generations progress, the algorithm converges towards a solution with a
significantly improved score. The decreasing trend in scores indicates the algorithm’s
ability to fine-tune solutions iteratively, reaching a point where the algorithm’s search
becomes focused and refined. This convergence pattern reflects the algorithm’s efficacy
in systematically exploring the solution space and narrowing down on optimal sizing
configurations.

7. Result Analysis

The sizes of the photovoltaic (PV) system and battery, determined through the mod-
ified PSO-LSTM algorithm, were subjected to a comprehensive evaluation by comparing
them with the economic and emission benefits obtained from two industry-standard
tools: HOMER Pro version 3.14.7524 and REopt. This evaluation aims to validate the
effectiveness of the algorithm in generating optimal sizing solutions that align with
established commercial software results and further highlight the potential advantages
of the proposed approach.

Comparing the sizing results with those obtained from HOMER Pro and REopt, we
assess the economic viability of the microgrid system. HOMER Pro’s well-established
optimization capabilities provide insights into the cost-effectiveness of different sys-
tem configurations. REopt’s analysis further corroborates the economic benefits by
identifying the sizing configurations that yield the lowest lifetime costs while meeting
the desired energy requirements. Aligning the algorithm-generated sizes with the re-
sults from these tools reinforces the reliability of the hybrid approach in optimizing the
microgrid’s economic performance.

The algorithm-derived sizing configurations are also evaluated for emission reduction
benefits using both HOMER Pro and REopt. These tools quantify the environmental impact
by estimating the reduction in greenhouse gas emissions associated with the optimal
configurations. By comparing the emission benefits calculated by the algorithm with those
from HOMER Pro and REopt, we ascertain the algorithm’s capability to generate sizing
solutions that improve economic efficiency and reduce the microgrid’s carbon footprint.

To conduct the economic and environmental benefits, the listed equations are used.

• Total net present value,

NPV = ∑T
t=o

Rt − Ct

(1 + r)t (20)

where Rt is the revenue at time t, Ct s the cost at time t, r is the discount rate, and T is the
project’s lifetime.

• Levelized cost of energy,

LCOE =
∑T

t−0 Ct

∑T
t=0 Et

(21)

Et represents the total energy generated at time t.
The simple payback calculates the time it takes for the project’s cumulative benefits to

offset the initial investment costs.

Simple Payback =
Annual Net Cash Flow

Initial Investment
(22)
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• Capital recovery factor,

CRF (i, N) =
i (1 + i)N

(1 + i)N − 1
(23)

where the discount rate is i, and N represents number of years.

• Reduction in CO2 emissions compared to a baseline scenario, considering the energy
mix and emissions factors.

CO2 Reduction = Baseline Emissions − Microgrid Emissions (24)

In the endeavor to propose a grid-connected microgrid solution, several critical aspects
and input parameters have been carefully considered as shown in Table 1. The microgrid’s
anticipated same load profile, outage frequency, average outage duration, and lifetime
is set at 20 years, with a discount rate of 5% and an inflation rate of 2% accounted for in
financial evaluations. The annual load demand, a pivotal factor in microgrid design, is
projected at 332 MWh from the PSO-LSTM forecasting networks, while the average outage
duration stands at 7 h, underscoring the need for resilience. Currently, there are no existing
photovoltaic (PV) or battery systems in place. The criticality factor, set at 50%, highlights the
importance of ensuring reliable power supply to critical loads. To analyze and determine
the most resilient and cost-effective solution, advanced tools such as Homer Pro and ReOPT
were employed, leveraging their capabilities to optimize the proposed microgrid topology.
This meticulous consideration of inputs and the utilization of cutting-edge software tools
were essential steps toward creating a sustainable and resilient energy solution for the
envisioned microgrid.

Table 1. Considered input parameters of the proposed system and existing tools.

Aspects Inputs

Microgrid lifetime 20 years
Discount rate 5%
Inflation rate 2%

Annual load demand 332 MWh
Average outage 7 h

Existing PV 0
Existing Battery 0
Criticality factor 50%

The proposed system suggests a PV size of 88 kW and a battery size of 97 kWh as
shown in Table 2. These sizing configurations are notably different from those obtained
through HOMER Pro and REopt, highlighting the algorithm’s ability to explore alter-
native solutions that optimize the microgrid’s performance. The PSO-LSTM achieves a
significantly lower levelized cost of energy (LCOE) of USD 0.39 compared to USD 0.51
from HOMER Pro and USD 0.47 from REopt. Additionally, the simple payback period
for the proposed system is notably shorter at 11 years, outperforming both HOMER Pro
(17 years) and REopt (14 years). The proposed system enhances the microgrid’s resilience
with a backup duration of 10 h, surpassing HOMER Pro (19 h) and REopt (15 h). This
underscores the algorithm’s ability to optimize system configurations that ensure a reliable
energy supply during outages. It also demonstrates superior emission reduction, totaling
188 tons, compared to 138 tons from HOMER Pro and 151 tons from REopt. This signifies
the algorithm’s ability to generate configurations aligning with sustainability goals. Finally,
it yields significant cost savings of USD 18,432, which far exceed the savings of USD 762
from HOMER Pro and USD 6103 from REopt. This demonstrates the algorithm’s adeptness
at identifying economically efficient solutions.
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Table 2. Most resilient solution as calculated.

Aspects Proposed System Homer Pro ReOPT

PV Size 88 kW 113 kW 102 kW
Battery Size 97 kWh 122 kWh 151 kWh

Levelized Cost of Energy USD 0.39 USD 0.51 USD 0.47
Simple payback period 11 years 17 years 14 years

Resilience 10 h 19 h 15 h
Total Emission 188 tons 138 tons 151 tons

Cost Saving USD 18,432 USD 762 USD 6103

The proposed system maintains a competitive levelized cost of energy (LCOE) at
USD 0.39, which compares favorably to HOMER Pro’s USD 0.46 and REopt’s USD 0.47 as
shown in Table 3. The simple payback period of the proposed system is remarkably short,
at just 11 h, demonstrating its immediate cost-effectiveness. In comparison, HOMER Pro
requires 9 years, and REopt takes 8.25 years to achieve payback. The algorithm ensures a
backup duration of 7 h during outages, enhancing the microgrid’s resilience. This surpasses
HOMER Pro’s 2 h and REopt’s 1 h (for PV only), emphasizing the algorithm’s ability to
optimize system configurations for reliable energy supply. It achieves substantial emission
reduction, totaling 159 tons, compared to 140 tons from HOMER Pro and 185 tons from
REopt. This showcases the algorithm’s capability to prioritize sustainability goals. The
proposed system offers cost savings of USD 10,965, making it a financially efficient solution.
While HOMER Pro provides savings of USD 21,354 and REopt offers significant savings of
USD 40,978, the calculation maintains a competitive edge in cost-effectiveness.

Table 3. Most economic solutions are calculated.

Aspects Proposed System Homer Pro ReOPT

PV size 102 kW 91 kW 75 kW
Battery size 42 kWh 18 kWh 0 kWh

Levelized Cost of Energy USD 0.39 USD 0.46 USD 0.47
Simple payback period 11 years 9 years 8.25 years

Resilience 7 h 2 h 1 h (PV only)
Total Emission 159 tons 140 tons 185 tons

Cost Saving USD 10,965 USD 21,354 USD 40,978

The hybrid PSO-LSTM algorithm’s alternative sizing solutions outperform established
tools across various metrics. The proposed approach consistently yields optimal configura-
tions that balance economic viability, environmental impact, and resilience. The algorithm’s
ability to provide immediate cost savings, achieve a remarkably simple payback period,
enhance energy system resilience, and reduce emissions underscores its potential to revolu-
tionize microgrid design and operation. By aligning economic efficiency with sustainability
goals, the hybrid PSO-LSTM algorithm emerges as a powerful tool for creating resilient
and sustainable energy systems.

The algorithm collectively showcases the modified PSO-LSTM algorithm’s effective-
ness in determining the optimal sizing of battery and solar PV components. The consistently
low mean score, the identification of the best-performing solution, and the convergence
pattern underscore the algorithm’s ability to efficiently navigate a complex search space and
identify configurations that enhance the microgrid’s performance. This hybrid approach
improves the accuracy of predictions and contributes to the microgrid’s overall resilience,
cost-efficiency, and sustainable energy utilization.

While the proposed method for optimal sizing of PV and BESS offers significant
benefits in terms of enhancing microgrid resilience, it does come with certain drawbacks.
namely, the computational complexity of the hybrid optimization techniques used can
be relatively high, potentially requiring substantial computational resources and time
for real-time implementation in practical microgrid settings. Also, the accuracy of the
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outage prediction models and renewable energy forecasts is contingent on the quality of
the data and models employed, which may introduce uncertainties and errors in the sizing
recommendations, affecting the system’s performance during actual power outages.

8. Conclusions

This research clearly indicates a significant step forward in the pursuit of enhanced
grid-tied microgrid resilience through the synergistic integration of renewable energy re-
sources and data-driven methodologies, which can be useful for any microgrid, DER-based
system design consisting of solar PV and battery energy storage system. Leveraging a
comprehensive ten-year dataset encompassing solar irradiance and load profiles, invalu-
able insights into the seasonal variabilities of solar energy potential have been revealed,
coupled with impressive forecasting accuracies of 82% for solar irradiance and 81% for
load profiles. The bottom line of this innovation lies in the development of a modified
PSO-LSTM algorithm, a hybrid solution adeptly optimizing battery and solar PV system
sizing, exemplified by a mean score of 0.0022 and the unequivocal convergence of these
two potent techniques. Beyond the realm of numerical metrics, this optimization signifies a
pivotal departure towards bespoke, efficient energy solutions tailored to harmonize seam-
lessly with the unique requisites of the microgrid. Furthermore, this research accentuates
the tangible economic and environmental dividends ushered in by this approach. With
cost savings amounting to USD 10,965, an 11 h payback period, and a substantial reduction
of 159 tons in total emissions, the system not only shields businesses from the economic
repercussions of power disruptions but also contributes substantially to a cleaner, more
sustainable energy milieu. In essence, this work encapsulates a transformative journey
toward a future where grid-connected microgrid resilience is not a theoretical concept
but an actionable reality, where the fusion of renewable energy and data-driven acumen
ensures an uninterrupted power supply. It extends a collective invitation to an odyssey
where energy reliability, sustainability, and inclusivity stand as cornerstones of progress.
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Nomenclature

NACA National Advisory Committee for Aeronautics
NREL National Renewable Energy Laboratory
BESS Battery energy storage system
DRE Distributed renewable energy
SoC State of charge
DER Distributed energy resources
RR Renewable resources
PV Photovoltaic modules
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VOLL Value of lost load
EV Electric vehicles
VAR Value at risk
LSTM Long short-term memory
PSO Particle swarm optimization
CSP Concentrating solar power
GHG Greenhouse gas
IRR Investment return rate
NPV Net present value
LCOE Levelized cost of energy
CFR Capital recovery factor
EIA Environmental impact assessment
NASA National Aeronautics and Space Administration
EPRI Electric Power Research Institute
LASP Laboratory for Atmospheric and Space Physics
NREL National Renewable Energy Laboratory

References
1. Mohy-ud-din, A.G.; Muttaqi, K.M.; Sutanto, D. Sizing of microgrid components. In Variability, Scalability and, Stability of Microgrids;

IET Digital Labrary: UK, 2019. [CrossRef]
2. Shang, C.; Gao, J.; Liu, H.; Liu, F. Short-Term Load Forecasting Based on PSO-KFCM Daily Load Curve Clustering and CNN-LSTM

Model. IEEE Access 2021, 9, 50344–50357. [CrossRef]
3. Sun, Y.; Wang, X.; Yang, J. Modified Particle Swarm Optimization with Attention-Based LSTM for Wind Power Prediction.

Energies 2022, 15, 4334. [CrossRef]
4. Wang, H.; Liu, Y.; Zhou, B.; Li, C.; Cao, G.; Voropai, N.; Barakhtenko, E. Taxonomy research of artificial intelligence for

deterministic solar power forecasting. Energy Convers. Manag. 2020, 214, 112909. [CrossRef]
5. Gu, B.; Shen, H.; Lei, X.; Hu, H.; Liu, X. Forecasting and uncertainty analysis of day-ahead photovoltaic power using a novel

forecasting method. Appl. Energy 2021, 299, 117291. [CrossRef]
6. Balal, A.; Murshed, M. Implementation and comparison of Perturb and Observe, and Fuzzy Logic Control on Maximum Power

Point Tracking (MPPT) for a Small Satellite. J. Soft Comput. Decis. Support Syst. 2021, 8, 14–18.
7. Gu, B.; Li, X.; Xu, F.; Yang, X.; Wang, F.; Wang, P. Forecasting and Uncertainty Analysis of Day-Ahead Photovoltaic Power Based

on WT-CNN-BiLSTM-AM-GMM. Sustainability 2023, 15, 6538. [CrossRef]
8. Abdolrasol, M.G.M.; Mohamed, R.; Hannan, M.; Al-Shetwi, A.Q.; Mansor, M.; Blaabjerg, F. Artificial Neural Network Based

Particle Swarm Optimization for Microgrid Optimal Energy Scheduling. IEEE Trans. Power Electron. 2021, 36, 12151–12157.
[CrossRef]

9. Aleardi, M.; Stucchi, E. A Hybrid Residual Neural Network–Monte Carlo Approach to Invert Surface Wave Dispersion Data.
Near Surf. Geophys. 2021, 19, 397–414. [CrossRef]

10. Mousavi, O.A.; Cherkaoui, R.; Bozorg, M. Blackouts Risk Evaluation by Monte Carlo Simulation Regarding Cascading Outages
and System Frequency Deviation. Electr. Power Syst. Res. 2012, 89, 157–164. [CrossRef]

11. Akram, U.; Khalid, M.; Shafiq, S. Optimal Sizing of A Wind/Solar/Battery Hybrid Grid-Connected Microgrid System. IET Renew.
Power Gener. 2017, 12, 72–80. [CrossRef]

12. Kelly, J.J.; Leahy, P.G. Sizing Battery Energy Storage Systems: Using Multi-Objective Optimization to Overcome the Investment
Scale Problem of Annual Worth. IEEE Trans. Sustain. Energy 2019, 11, 2305–2314. [CrossRef]

13. Zhang, T.; Gooi, H.B.; Chen, S.; Goh, T. Cost-Effectiveness Studies of The Besss Participating in Frequency Regulation. In
Proceedings of the IEEE Innovative Smart Grid Technologies—Asia (ISGT ASIA), Bangkok, Thailand, 3–6 November 2015.

14. Brown, P.; Recht, B.; Fergus, R. Understanding the Difficulty of Training Deep Feedforward Neural Networks. In Proceedings of
the 13th International Conference on Artificial Intelligence and Statistics (AISTATS), San Diego, CA, USA, 9–12 May 2015.

15. Johnson, K.E.; Fischer, R.E.; Sigrin, B.O.; Fisher, E.C. Predicting Power Outages using Smart Meter Data. IEEE Trans. Smart Grid
2020, 11, 2707–2716.

16. Kennedy, J.; Eberhart, R.C. Particle Swarm Optimization. In Proceedings of the IEEE International Conference on Neural
Networks, Perth, WA, USA, 27 November–1 December 1995.

17. Zhang, J.; Zheng, Q.; Li, L. Short-Term Load Forecasting with Long Short-Term Memory. IEEE Trans. Smart Grid 2019, 10,
3711–3719.

18. Aghamohammadi, M.R.; Abdolahinia, H. A new approach for optimal sizing of battery energy storage system for primary
frequency control of islanded microgrid. Int. J. Electr. Power Energy Syst. 2014, 54, 325–333. [CrossRef]

19. Farrokhabadi, M.; König, S.; Cañizares, C.A.; Bhattacharya, K.; Leibfried, T. Battery Energy Storage System Models for Microgrid
Stability Analysis and Dynamic Simulation. IEEE Trans. Power Syst. 2018, 33, 2301–2312. [CrossRef]

https://doi.org/10.1049/PBPO139E_ch7
https://doi.org/10.1109/ACCESS.2021.3067043
https://doi.org/10.3390/en15124334
https://doi.org/10.1016/j.enconman.2020.112909
https://doi.org/10.1016/j.apenergy.2021.117291
https://doi.org/10.3390/su15086538
https://doi.org/10.1109/TPEL.2021.3074964
https://doi.org/10.1002/nsg.12163
https://doi.org/10.1016/j.epsr.2012.03.004
https://doi.org/10.1049/iet-rpg.2017.0010
https://doi.org/10.1109/TSTE.2019.2954673
https://doi.org/10.1016/j.ijepes.2013.07.005
https://doi.org/10.1109/TPWRS.2017.2740163


Energies 2023, 16, 7300 22 of 22

20. Kerdphol, T.; Qudaih, Y.; Mitani, Y. Battery Energy Storage System Size Optimization in Microgrid Using Particle Swarm
Optimization. In Proceedings of the IEEE PES Innovative Smart Grid Technologies, Istanbul, Turkey, 12–15 October 2014.

21. El-Bidairi, K.S.; Nguyen, H.D.; Jayasinghe, S.; Mahmoud, T.S.; Penesis, I. A Hybrid Energy Management and Battery Size
Optimization for Standalone Microgrids: A Case Study for Flinders Island, Australia. Energy Convers. Manag. 2018, 175, 192–212.
[CrossRef]

22. Yang, Y.; Bremner, S.; Menictas, C.; Kay, M. Battery Energy Storage System Size Determination in Renewable Energy Systems: A
Review. Renew. Sustain. Energy Rev. 2018, 91, 109–125. [CrossRef]

23. Mulleriyawage, U.G.K.; Shen, W.X. Optimally sizing of battery energy storage capacity by operational optimization of residential
PV-Battery systems: An Australian household case study. Renew. Energy 2020, 160, 852–864. [CrossRef]

24. Murshed, M.; Chamana, M.; Schmitt, K.E.; Bhatta, R.; Adeyanju, O.; Bayne, S. Design and Performance Analysis of a Grid-
Connected Distributed Wind Turbine. Energies 2023, 16, 5778. [CrossRef]

25. Choi, Y.; Kim, H. Optimal Scheduling of Energy Storage System for Self-Sustainable Base Station Operation Considering Battery
Wear-Out Cost. In Proceedings of the 8th International Conference on Ubiquitous and Future Networks (ICUFN), Vienna, Austria,
5–8 July 2016.

26. Moghimi, M.; Garmabdari, R.; Stegen, S.; Lu, J. Battery Energy Storage Cost and Capacity Optimization for University Research
Center. In Proceedings of the 54th Industrial and Commercial Power Systems Technical Conference (I&CPS), Niagara Falls, ON,
Canada, 7–10 May 2018.

27. Fedjaev, J.; Amamra, S.; Francois, B. Linear Programming Based Optimization Tool for Day Ahead Energy Management of A
Lithium-Ion Battery for An Industrial Microgrid. In Proceedings of the IEEE International Power Electronics and Motion Control
Conference (PEMC), Varna, Bulgaria, 25–28 September 2016.

28. Grillo, S.; Pievatolo, A.; Tironi, E. Optimal Storage Scheduling Using Markov Decision Processes. IEEE Trans. Sustain. Energy
2016, 7, 755–764. [CrossRef]

29. Regis, N.; Muriithi, C.M.; Ngoo, L. Optimal Battery Sizing of A Grid-Connected Residential Photovoltaic System for Cost
Minimization Using Pso Algorithm. Eng. Technol. Appl. Sci. Res. 2019, 9, 4905–4911. [CrossRef]

30. Beskirli, A.; Temurtas, H.; Ozdemir, D. Determination with Linear Form of Turkey’s Energy Demand Forecasting by the Tree Seed
Algorithm and the Modified Tree Seed Algorithm. Adv. Electr. Comput. Eng. 2020, 20, 27–34. [CrossRef]

31. Suresh, M.; Meenakumari, R. An Improved Genetic Algorithm-Based Optimal Sizing of Solar Photovoltaic/Wind Turbine
Generator/Diesel Generator/Battery Connected Hybrid Energy Systems for Standalone Applications. Int. J. Ambient. Energy
2019, 42, 1–8. [CrossRef]

32. Bahmani-Firouzi, B.; Azizipanah-Abarghooee, R. Optimal Sizing of Battery Energy Storage for Micro-Grid Operation Management
Using A New Improved Bat Algorithm. Electr. Power Energy Syst. 2014, 56, 42–54. [CrossRef]

33. Nimma, K.S.; Al-Falahi, M.D.; Nguyen, H.D.; Jayasinghe, S.D.G.; Mahmoud, T.S.; Negnevitsky, M. Grey Wolf Optimization-based
Optimum Energy-Management and Battery-Sizing Method for Grid-Connected Microgrids. Energies 2018, 11, 847. [CrossRef]

34. Paliwal, N.K.; Singh, A.K.; Singh, N.K.; Kumar, P. Optimal Sizing and Operation of Battery Storage for Economic Operation of
Hybrid Power System Using Artificial Bee Colony Algorithm. Int. Trans. Electr. Energy Syst. 2018, 29, e2685. [CrossRef]

35. Bukar, A.L.; Tan, C.W.; Lau, K.Y. Optimal sizing of an autonomous photovoltaic/wind/battery/diesel generator microgrid using
grasshopper optimization algorithm. Sol. Energy 2019, 188, 685–696. [CrossRef]

36. Kerdphol, T.; Fuji, K.; Mitani, Y.; Watanabe, M.; Qudaih, Y. Optimization of A Battery Energy Storage System Using Particle
Swarm Optimization for Stand-Alone Microgrids. Int. J. Electr. Power Energy Syst. 2016, 81, 32–39. [CrossRef]

37. Sintianingrum, A.; Khairudin, K.; Hakim, L. Optimization of Microgrid Battery Capacity Using Pso with Considering Islanding
Operation. J. Eng. Sci. Res. 2020, 2, 1–4. [CrossRef]

38. IEEE Std 1366-2012 (Revision of IEEE Std 1366-2003); IEEE Guide for Electric Power Distribution Reliability Indices. Institute of
Electrical and Electronics Engineers (IEEE): New York, NY, USA, 2012; pp. 1–43. [CrossRef]

39. Chen, S.; Zhang, T.; Gooi, H.B.; Masiello, R.D.; Katzenstein, W. Penetration Rate and Effectiveness Studies of Aggregated BESS for
Frequency Regulation. IEEE Trans. Smart Grid 2016, 7, 167–177. [CrossRef]

40. Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.enconman.2018.08.076
https://doi.org/10.1016/j.rser.2018.03.047
https://doi.org/10.1016/j.renene.2020.07.022
https://doi.org/10.3390/en16155778
https://doi.org/10.1109/TSTE.2015.2497718
https://doi.org/10.48084/etasr.3094
https://doi.org/10.4316/AECE.2020.02004
https://doi.org/10.1080/01430750.2019.1587720
https://doi.org/10.1016/j.ijepes.2013.10.019
https://doi.org/10.3390/en11040847
https://doi.org/10.1002/etep.2685
https://doi.org/10.1016/j.solener.2019.06.050
https://doi.org/10.1016/j.ijepes.2016.02.006
https://doi.org/10.23960/jesr.v2i1.34
https://doi.org/10.1109/IEEESTD.2012.6209381
https://doi.org/10.1109/TSG.2015.2426017
https://doi.org/10.1162/neco.1997.9.8.1735

	Introduction 
	Objective Function 
	Methodology 
	Constraining Function for Optimization 
	Energy Balance Constraint 
	Battery State of Charge (SoC) Constraint 
	Energy Storage Capacity Constraint 
	Generation and Load Limits 
	Economic Constraints 
	Environmental Constraints 

	Outage and Battery SoC prediction 
	Load and Solar Irradiance Forecasting 
	Long Short-Term Memory (LSTM) 
	Modified Particle Swarm Optimization 

	Result Analysis 
	Conclusions 
	References

