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Abstract: The German government’s ambitious goal of achieving CO2 neutrality by 2045 has
prompted a focus on improving building insulation as a vital step toward energy efficiency. However,
in this process, existing radiators and boilers are often left unchanged. Moreover, during the construc-
tion of buildings, heating systems are often designed with excess capacity to ensure there is no risk
of insufficient heat supply during operation. This research presents various approaches to reduce
the required radiator supply temperature, utilizing data from a study conducted in 100 multifamily
buildings. The approaches encompass reducing the heat reserve, shifting the heat output, optimizing
radiator utilization, and conducting heat demand analysis. The findings reveal that in pre-existing
buildings equipped with radiators, it is possible to significantly lower supply temperatures without
affecting the indoor temperature. Applied on the seed, reducing the heat reserve could reduce the
median temperature by 18.5 K, thus curtailed by the most utilized radiator in the median to 7 K.
Furthermore, the heat demand analysis showed that the consumption could decrease in the median
by 13%, the peaks in median even by 29%. While each approach is analyzed individually, their
combined implementation has the potential to considerably enhance the efficiency of water-to-water
heat pumps, thanks to the reduced requirement for high supply temperatures.

Keywords: low-temperature ready; low-temperature heating; heat pump; sustainable heating; low-
temperature radiator

1. Introduction

Due to climate change and the recent Ukraine–Russian War, which has resulted in
an energy crisis in Germany, responsible energy consumption is becoming increasingly
crucial. In 2022, 50% of all German apartments were heated with gas boilers, predominantly
through central water heating systems [1]. Despite extensive renovations and improved
insulation in many buildings to enhance energy efficiency, energy consumption decreased
less than anticipated [2]. The BaltBest Project demonstrated that this difference can be
attributed, in part, to operational management. Frequently, night setback and summer
shutdown functions are absent, and the operational management does not align with the
building’s needs [3].

Operational management is often adjusted in response to resident complaints. For
example, if an occupant reports cold radiators, adjustments are made to increase the supply
temperature by positively adjusting the heating curve. Improving the relationship between
occupants and the operating staff is a key aspect of the VISE-I project, which aims to
enhance user understanding and optimize technology [4]. Typically, the person in charge
lacks the information required to professionally address resident complaints. The ideal
operational settings for individual buildings remain unknown. Consequently, the primary
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goal of the operator is to fulfill residents’ heating requests by modifying various settings
that impact boiler and pump power, and often also increasing the supply temperature.

Achieving a carbon dioxide-free building stock is not solely attainable through insula-
tion improvements; it necessitates the integration of carbon-neutral heating systems. In
recent years, a diverse array of heat pump systems has emerged as a promising solution
due to their ability to run on electricity derived from renewable sources, thus ensuring
carbon neutrality. The efficiency of heat pumps, in accordance with the Carnot efficiency
principle, is greatly enhanced when the temperature differential between the heat source
(e.g., air) and the heat emitter (such as radiators) is minimal. This necessitates the use of
low supply temperatures, a requirement that contradicts the conventional operation of
systems combining gas boilers and radiators.

Notably, even with gas boilers, efficiency is compromised when excessively high
supply temperatures are employed. However, the issue becomes more pronounced when
transitioning to heat pumps, given the diminishing coefficient of performance as supply
temperatures rise. Consequently, the significance of implementing demand-responsive
low-supply temperature levels, especially in conjunction with heat pump systems, is on
a significant upswing. This research underscores the growing importance of optimizing
supply temperature levels in line with the efficient utilization of heat pumps, aligning with
the imperative pursuit of a carbon-neutral building stock. In scientific projects like Alfa [5],
Beta Nord [6], Alliance [7], and BaltBest [3] the benefits of effective parameterization of
heating systems and lower temperatures in terms of potential energy savings have been
demonstrated. The BaltBest [3] project in particular has shown that in real buildings, there
is significant potential to reduce supply temperatures, which was also the motivation for
this paper.

Lämmle et al. illustrate that within multi-family housing, a mere 7% of the radiators
require replacement to transition from a supply temperature of 75 ◦C/60 ◦C to a more
energy-efficient level of 55 ◦C/45 ◦C. Their analysis primarily relied on theoretical calcula-
tions applied to a multi-family housing model, with a focus on accounting for the decreased
energy demand resulting from enhanced insulation measures [8]. In a distinct investigation
conducted by Lämmle et al., a comprehensive analysis of the heat pump market, specifically
examining maximum supply temperatures, unveils a noteworthy finding: a significant
majority of heat pumps, approximately 80%, are limited to supply temperatures below
60 ◦C. This underscores the compelling requirement to decrease temperature levels, with
dual objectives of enhancing heat pump efficiency within existing structures and aligning
with the market availability [9].

In the research article entitled “WPsmart in Stock” (translation), by Günther et al., an
extensive examination was conducted on a substantial number of stock buildings featuring
diverse heat pump technologies and configurations. One notable outcome of this com-
prehensive investigation is the pivotal role of actual supply temperatures, particularly in
edifices equipped with radiators, under a significant proportion of operational conditions.
This phenomenon is observed even when the outdoor temperatures are relatively mild,
approximately around 0 ◦C, indicating that the supply temperatures can be maintained
within an optimal range. It is worth noting that only around 25% of the properties exclu-
sively employ radiators for heat distribution, which means that a relatively limited subset
of buildings was taken into consideration for this specific scenario. Consequently, this
highlights the need for further in-depth research to address unresolved queries pertaining
to the analysis of radiator-based heating systems in the broader context [10].

Tunzi et al. have elucidated the significance of maintaining low supply temperatures
as a crucial component in the operation of district heating networks. The challenge often
lies in constraints imposed by inadequately controlled and managed heating systems
within the existing building stock. Considering this, they conducted a study based on data
obtained from heat cost allocators in five Danish multifamily buildings, with a specific
focus on identifying flats with high demand, using a calculation of the minimum feasible
operating temperature. Their findings revealed that supply temperatures ranging from
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48 ◦C to 53 ◦C proved to be sufficient for ensuring residents’ needs at outdoor temperatures
of 0 ◦C, all without the need for extensive energy renovations in the buildings. This research
underscores the practicality of optimizing supply temperatures in district heating networks
while considering the unique demands of individual units [11].

In contrast to prior studies, this investigation focuses on empirically measured data
from an extensive dataset comprising 100 multi-family houses, incorporating data from
heating cost allocators and heat meters. By analyzing data collected from rooms over
a span of three years, this study aims to estimate the supply temperatures required to
achieve the same heating output without any loss of room temperature. This estimation
takes into consideration factors such as insulation enhancements, radiator dimensions,
user behavior, and the impact of climate warming. It is important to note that this method
assesses the necessary supply temperatures rather than the inherent efficiency of heat
pumps themselves. The primary objective here is to estimate the potential reduction in
supply temperatures and ascertain the feasibility of such reductions. These findings will be
instrumental in evaluating the suitability of heat pumps for retrofitting existing buildings,
particularly in light of their increased demand for lower supply temperatures.

To estimate the required flow temperatures using heat coast allocator data we rely
on earlier works like the patent “Method and Device for Establishing Heating Reserves”
which was officially registered in 2008 [12]. It outlines the procedure for calculating the
power reserves of radiators based on known radiator parameters and various temperature
sensors. The patent further proposes the utilization of this data as input for optimizing
heating control strategies. Additionally, we employed methods like peak sharing, which
is a well-established practice in electrical engineering and has also garnered attention in
the context of heat supply. Initially employed in district heating networks to manage heat
power and lower supply temperatures [13], it is now gaining prominence in self-sustained
residential buildings, owing to the growing prevalence of decentralized heat pumps. This
approach effectively curtails excess supply temperatures and heat loads. Notably, Beltram
et al. [14] presented a heat peak shaving method applicable to smart homes.

Within this research study, we introduce and expound upon four distinct methodolo-
gies for assessing the potential for decreasing the supply temperature of heating systems.
Our exploration commences with a detailed exposition of the theoretical underpinnings
of these methodologies in Section 2. Subsequently, in Section 3, we offer practical insights
by applying these approaches to representative building samples. These demonstrations
showcase the capacity of these methods to estimate the feasible reduction in temperature.
Additionally, we applied the heat reserve reduction as well as the heat requirement analysis
on the building seed, to gather a first impression of the method’s potential. We also provide
a comprehensive conclusion that summarizes the findings and delineates areas warranting
further inquiry in future research endeavors (Section 4).

2. Methods and Theoretical Background
2.1. Methods

The BaltBest project has been amassing measurement data since 2018, encompassing
more than 100 residential buildings. This data has been captured with a temporal resolu-
tion of 110 s, covering various devices such as heat meters, pumps, gas meters, heat cost
allocators, and more. In the project’s initial phases, Techem GmbH (Eschborn, Germany)
conducted on-site visits to gather information regarding building physics and system
technology. Consequently, comprehensive characteristic data for each heat generator and
radiator has been compiled. A uniform measurement infrastructure was implemented
across all buildings. This infrastructure encompassed essential components such as heat
quantity meters, gas quantity meters, temperature sensors, and intelligent pumps. More-
over, the project incorporated specifically designed heat cost allocators, which not only
delivered consumption data but also included temperature readings from both the interior
and exterior sides of the radiators. Data from these sensors were transmitted by wireless
M-Bus to a gateway, which was installed in the basement of every building. The gateway
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also obtained data from other sources, e.g., circulation pumps and heat meters. All data
points were transferred via mobile communications (LTE) to a central server of the company
Techem and finally forwarded to the university database server utilizing PostgreSQL as the
underlying platform.

As illustrated in Figure 1, the streamlined BaltBest configuration facilitated the moni-
toring of energy flow from the gas meter, passing through the boiler and heat meter, and
reaching the radiators within the tenants’ apartments.
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Figure 1. Simplified setup of the heating system and the measurement infrastructure. (a) Gas meter;
(b) Boiler; (c) Pump; (d) Thermostat valve; (e) Heat cost allocator and (f) Heat flow meter. Dotted
lines represent external sensors connected to the system.

In sum, data were collected from 1154 apartments, encompassing 5649 rooms.
All collected data underwent privacy protection measures, where contact information

and measurement data were stored separately, ensuring the confidentiality of the partic-
ipants. The gathered data were securely stored in a PostgreSQL Database and analyzed
using Python 3.11.0, leveraging various packages including Pandas 2.0.3, Psycopg2 2.9.6,
and Seaborn 0.12.2 for generating outputs. The primary objective of the BaltBest project
was to gain a deeper understanding of the heating patterns of residents and the utilized
system technology in pre-existing properties.

2.2. Theoretical Background

Heat cost allocators are commonly used to determine consumption units, specifically
to assign the consumed heat portions to both radiators and tenants. In this context, mea-
surements are taken of the approximate radiator center temperature Tr,m and the room
temperature near the radiator Tr,air. By considering correction factors for both the airside
(kcl) and the radiator side (kcw), the operational radiator excess temperature Tex,o can be
estimated, as demonstrated in reference [12]:

Tex,o = kcwkcl(Tr,m − Tr,air). (1)

To estimate a radiator’s operating heat power Q̇o it is necessary to possess information
regarding the standard heat power output Q̇s, the standard and operating excess tempera-
ture Tex,s and Tex,o and the radiator exponent n [15]. Given that the radiators are situated
within actual apartments, they may be partially obstructed by furniture such as sofas and
beds. This obstruction can lead to heat accumulation, influencing the radiator’s operational
behavior and measurements. The estimated operating heat power Q̇o may deviate from
the actual output due to the absence of specific information about the radiator exponent n.
In this case, it is assumed to be 1.3 for all radiators, in accordance with the guidelines from
Recknagel, Chapter 2.6.4–1.2 [15].

Q̇o = Q̇s

(
Tex,o

Tex,s

)n
(2)
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2.2.1. Heat Reserve Reduction

This section presents an analytical method for estimating the required supply tem-
perature at the radiator’s state mass flow while maintaining the same heat power output.
Simplified, a radiator can be represented as a control volume with an incoming heat flow
Q̇r,i, an outgoing heat output Q̇o and an outgoing heat flow Q̇r,o. Figure 2 provides a visual
depiction of the flows and temperatures within this simplified radiator model.
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Figure 2. Simplified radiator model with relevant input and output heat flows.

The energy balance around the control volume is described in Equation (3), where
ṁo is the operating mass flow, Tr,i denotes the inlet temperature (supply temperature) and
Tr,o signifies the radiator outlet temperature. The radiator outlet temperature Tr,i is not
automatically identical to the return temperature at the boiler or heat pump, as the return
temperature at the boiler is often a mixture of several radiators’ output temperatures.

Q̇o = Q̇r,i − Q̇r,o = ṁocw(Tr,i − Tr,o) (3)

As per Equation (3), the radiator’s operational heat output can be altered through
adjustments in either the inlet mass flow or the temperature difference between the radi-
ator’s inlet flow (supply temperature) and outlet flow temperatures. Notably, the input
properties, including the inlet temperature and mass flow, are directly modifiable.

To maintain a consistent heat output, a balance should be maintained between the
inlet supply temperature and the mass flow. Decreasing the supply temperature diminishes
the gap between the inlet and return temperatures, while simultaneously increasing the
mass flow via the opening of the radiator valve. To prevent any supply shortfalls, it is
crucial to ensure that the operating mass flow never exceeds the standard mass flow.

It should be emphasized that an increase in mass flow leads to a higher demand for
pump power. However, it is commonly assumed that the total required power (including
both heating and pumping) decreases, particularly in the context of heat pumps. Further
research is needed to thoroughly analyze this relationship.

In summary, achieving the same operational heat output is feasible by reducing supply
temperature and increasing the mass flow, provided the operational mass flow remains
lower than the standard mass flow, visually explained in Figure 3.
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The state mass flow ṁo can be estimated within the given setup and Equation (3),
assuming that there are no heat losses between the boiler and the radiator. This assumption
enables us to utilize the temperature recorded by the heat meter Thm, f as the radiator
inlet temperature Thm, f = Tr,i. Furthermore, it is assumed that the radiators are of a
substantial size:

ṁo =
Q̇o

2 cw

(
Thm, f − Tr,m

) (4)

When the state mass flow ṁo falls within the range of zero to the standard mass flow
(ṁs), denoted as (0 < ṁo < ṁs), the estimated radiator inlet temperature Tr,i needed to
sustain a consistent output power at the standard mass flow, while assuming a constant
radiator temperature (Tr,m), can be approximated using Q̇o from Equation (2) as:

Tr,i = Tr,m +
Q̇o

2cwṁs
(5)

In cases where 0 < ṁo < ṁs, the necessary radiator inlet temperature remains lower
than the recorded supply temperature at the heat meter. It is crucial to grasp that utilizing
this method to ascertain the required inlet temperature leaves no available heat reserve.
Additionally, it is worth noting that in real heating systems, the supply temperature can
only be lowered until the first radiator reaches its standard mass flow, limiting the potential
for further reductions in the remaining radiators within the heating circuit. The subsequent
analysis is predicated on the assumption that additional heating demand can be estimated
using feedback from thermostats to the boiler.

Figure 4 provides an example of applying this method to a single radiator. The black
curve represents the measured supply temperature, while the red curve represents the
necessary radiator inlet temperature (the analytically required supply temperature). Each
data point corresponds to a 120 s interval. The radiator’s standard output power at specific
conditions with Tr,i,s = 90 ◦C, Tr,o,s = 70 ◦C, and Tair,s = 20 ◦C, is Q̇s = 2604 W. Notably,
the measured supply temperature (black curve) exhibits fluctuations, while the necessary
inlet temperature, as determined by Equation (3), consistently remains significantly lower
than the measured supply temperature.

Energies 2023, 16, x FOR PEER REVIEW 7 of 16 
 

 

 

Figure 4. Measured supply temperature (black) vs. necessary supply temperature (red) at 𝑚̇𝑠. 

2.2.2. Heat Power Shifting 

This section investigates whether maintaining a continuous heat supply, as opposed 

to providing it on demand, can lead to a reduction in the median supply temperature. 

Elevated heat power demands may stem from the initial operation or the behaviors of 

smart thermostats. In Germany, existing buildings typically possess a substantial thermal 

mass. Operating under the assumption that a constant room temperature can be main-

tained, there is limited necessity for recurrently reheating the building. To streamline the 

analysis, it is presumed that the heat power needed to sustain a consistent room temper-

ature can be evenly distributed throughout the day. Figure 5a illustrates the estimated 

heat output of a radiator with a resolution of 110 s. In this example, the radiator’s standard 

output power is at 𝑇𝑟,𝑖 = 90, 𝑇𝑟,𝑜 = 70, and 𝑇𝑎𝑖𝑟 = 20 °C is 𝑄̇𝑠 = 2604 W. The measured 

heat supply (black) fluctuates significantly throughout the day, ranging from 0 to approx-

imately 850 Watts, with an average outside temperature of 13 °C. The average heat power 

is indicated by the red line at 332 Watts. 

In Figure 5b, the required supply temperature (black) is shown, assuming that the 

mass flow is equal to the design mass flow. Considering the average heat power and ra-

diator temperature, the necessary constant supply temperature is calculated using Equa-

tion (5) and is represented by the red line. Due to the consistent provision of heat, the 

required supply temperature decreases notably from max. 52 °C to 39 °C. 

  
(a) (b) 

Figure 5. Demonstration of the effect of steady heat supply: (a) Heat supply; (b) Necessary supply 

temperature at 𝑚̇𝑠. 

2.2.3. Uniform Radiator Usage 

In this section, we analyze the influence of uneven radiator utilization in multi-radi-

ator rooms. When rooms in flats are equipped with more than one radiator, heat is often 

just supplied by a single radiator [3]. Due to radiator oversizing, this operation is possible 

even at very low environment temperatures. Assuming, that heat for maintaining a 

Figure 4. Measured supply temperature (black) vs. necessary supply temperature (red) at ṁs.

2.2.2. Heat Power Shifting

This section investigates whether maintaining a continuous heat supply, as opposed
to providing it on demand, can lead to a reduction in the median supply temperature.
Elevated heat power demands may stem from the initial operation or the behaviors of smart
thermostats. In Germany, existing buildings typically possess a substantial thermal mass.
Operating under the assumption that a constant room temperature can be maintained,
there is limited necessity for recurrently reheating the building. To streamline the analysis,
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it is presumed that the heat power needed to sustain a consistent room temperature can be
evenly distributed throughout the day. Figure 5a illustrates the estimated heat output of a
radiator with a resolution of 110 s. In this example, the radiator’s standard output power is
at Tr,i = 90, Tr,o = 70, and Tair = 20 ◦C is Q̇s = 2604 W. The measured heat supply (black)
fluctuates significantly throughout the day, ranging from 0 to approximately 850 Watts,
with an average outside temperature of 13 ◦C. The average heat power is indicated by the
red line at 332 Watts.

Energies 2023, 16, x FOR PEER REVIEW 7 of 16 

Figure 4. Measured supply temperature (black) vs. necessary supply temperature (red) at 𝑚̇𝑠. 

2.2.2. Heat Power Shifting 

This section investigates whether maintaining a continuous heat supply, as opposed 

to providing it on demand, can lead to a reduction in the median supply temperature. 

Elevated heat power demands may stem from the initial operation or the behaviors of 

smart thermostats. In Germany, existing buildings typically possess a substantial thermal 

mass. Operating under the assumption that a constant room temperature can be main-

tained, there is limited necessity for recurrently reheating the building. To streamline the 

analysis, it is presumed that the heat power needed to sustain a consistent room temper-

ature can be evenly distributed throughout the day. Figure 5a illustrates the estimated 

heat output of a radiator with a resolution of 110 s. In this example, the radiator’s standard 

output power is at 𝑇𝑟,𝑖 = 90, 𝑇𝑟,𝑜 = 70, and 𝑇𝑎𝑖𝑟 = 20 °C is 𝑄̇𝑠 = 2604 W. The measured

heat supply (black) fluctuates significantly throughout the day, ranging from 0 to approx-

imately 850 Watts, with an average outside temperature of 13 °C. The average heat power 

is indicated by the red line at 332 Watts.

In Figure 5b, the required supply temperature (black) is shown, assuming that the 

mass flow is equal to the design mass flow. Considering the average heat power and ra-

diator temperature, the necessary constant supply temperature is calculated using Equa-

tion (5) and is represented by the red line. Due to the consistent provision of heat, the 

required supply temperature decreases notably from max. 52 °C to 39 °C.

(a) (b) 

Figure 5. Demonstration of the effect of steady heat supply: (a) Heat supply; (b) Necessary supply 

temperature at 𝑚̇𝑠. 

2.2.3. Uniform Radiator Usage

In this section, we analyze the influence of uneven radiator utilization in multi-radi-

ator rooms. When rooms in flats are equipped with more than one radiator, heat is often 

just supplied by a single radiator [3]. Due to radiator oversizing, this operation is possible

even at very low environment temperatures. Assuming, that heat for maintaining a 

Figure 5. Demonstration of the effect of steady heat supply: (a) Heat supply; (b) Necessary supply
temperature at ṁs.

In Figure 5b, the required supply temperature (black) is shown, assuming that the mass
flow is equal to the design mass flow. Considering the average heat power and radiator
temperature, the necessary constant supply temperature is calculated using Equation (5)
and is represented by the red line. Due to the consistent provision of heat, the required
supply temperature decreases notably from max. 52 ◦C to 39 ◦C.

2.2.3. Uniform Radiator Usage

In this section, we analyze the influence of uneven radiator utilization in multi-radiator
rooms. When rooms in flats are equipped with more than one radiator, heat is often just
supplied by a single radiator [3]. Due to radiator oversizing, this operation is possible even
at very low environment temperatures. Assuming, that heat for maintaining a constant
room temperature retains at least the same requirements from the resident’s point of
view when transferred by several radiators, there is an unused heating surface potential.
Potentially, even heat supply lowers the necessary flow temperature. If the mass flow at
each radiator matches the standard mass flow and the radiators are designed for the same
temperatures, the heating power of each radiator, Q̇o,i, is calculated as follows:

Q̇o,i =
∑n

j=0 Q̇o,j

∑n
j=0 Q̇s,j

Q̇s,i (6)

Considering Equations (3) and (5) the middle temperature Tr,m,i at each radiator Tr,m,i
(simplified for large radiators) can be estimated as:

Tr,m,i =
n

√
Q̇o,i

Q̇s,i
Tex,s + Troom (7)

Due to missing measurement data of the room temperatures Troom, during the follow-
ing analysis, the room temperature will be simplified as the measured air temperature
at the inactive radiator. The necessary radiator inlet temperature can be calculated using
Equation (5); therefore, it must be understood that the radiators are supplied by the same
heat circuit.

Figure 6a shows an example of the output power of two radiators in a single room over
24 h. Each measuring point corresponds to 110 s. The radiator 5608 (blue, Q̇s = 2079 W)
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does not emit any heat, while the radiator 5609 (red, Q̇s = 2911 W) emits up to 1400 watts.
Figure 6b shows the possible output power distribution according to Equation (6).
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Figure 6. Heat power distribution in an example room: (a) Measured power output; (b) Calculated
power distribution for two active radiators with even loads.

Figure 7a illustrates the state excess temperature (radiator 5609 in red) and the potential
excess temperatures (5608, 5609 in black) for both radiators. Since both radiators have the
same standard temperatures and are operating at the same percentage of load, the required
excess temperature is identical. It is crucial to acknowledge that this method does not
consider potential heat accumulation, although the radiator temperature may deviate from
the calculated value. Considering this, we can calculate the radiator middle temperature
using Equation (7). The radiator inlet temperature, at the state mass flow, is determined
using Equation (5). In Figure 7b, the necessary inlet temperature with an even load (black)
is up to 10 K lower than the necessary inlet temperature with an uneven load (red).
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2.2.4. Heat Request Analysis

In this section, we take a step further. While the previously presented methods did
not delve into user behavior or assess the appropriateness of radiator utilization, we now
offer a simple approach to estimate potential energy wastage due to incorrect heating
and ventilation practices. The required supply temperature is contingent on the degree
of radiator utilization. When the radiator load closely matches the standard output, it
is unlikely to expect significantly lower necessary inlet temperatures. Since users often
tap into existing energy-saving opportunities [3], it is imperative to determine whether
the heating power being consumed is actually necessary. However, due to various usage
patterns and factors like shading or internal heat losses, it becomes challenging to precisely
determine the requisite heat power for maintaining a constant room temperature.

Nonetheless, it is important to recognize that properly sized radiators should be
capable of maintaining a consistent room temperature at an environment temperature,
typically between 15 ◦C and down to −10 ◦C (the standard environmental temperature).
In simplified terms, heat losses increase linearly from the heating boundary (for standard
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cases) at 15 ◦C and 0% heat power, up to the standard environmental temperature at 100%
heat capacity, as illustrated in Figure 8.
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Figure 8. Estimation of the heat request weight.

If Q̇o
Q̇s

• 100% > 60 − 4Tenv, then the requested utilization (left side, debatable heat
request) is larger than necessary to satisfy heat losses through transmission and normal
ventilation behavior (right side, acceptable heat request). Considering the growing over-
dimension of radiators, it may be necessary to undertake additional work in the future to
determine the exact radiator dimensions.

3. Results

We have employed a property located in Bad Driburg, Germany, as a practical illustration
for the methods presented in this study. Utilizing real measurement data (and digitally
applying the methods) gathered in 2021 from heat quantity meters and corresponding heat cost
allocators, we assess the property, which has recently undergone energy-efficient renovations.

This property offers a heated area of 700 square meters and is divided into 12 apart-
ments, comprising a total of 59 rooms and 60 radiators. The property boasts an average
heat transfer coefficient of 0.8 W/m2K. The radiators are engineered for standard operation
with a 70 ◦C flow temperature, a 55 ◦C return temperature, and a room temperature of
20 ◦C. Their design capacities range from 1140 W to 3712 W.

Daily outdoor temperatures at the site, depicted in red, span from −14 ◦C to approxi-
mately 25 ◦C. Figure 9a visually represents the average supply temperatures (blue), which
fluctuate between 35 ◦C and 75 ◦C, and are not conducive for the use of an air-to-water heat
pump. In Figure 9b, we present aggregations of the mass flow ratio within this property.
The mass flow ratio reflects the proportion of actual mass flow in a radiator relative to
its corresponding design mass flow. The median daily mass flow ratio (black) reaches a
maximum of about 11%. When filtering out inactive radiators, the median mass flow ratio
varies between 7% and 30%. The maximum daily mass flow ratio (red) typically falls within
a range below 60%, highlighting the most demanding radiator of each day. It is worth
noting that there are permanently inactive radiators, resulting in a minimum daily mass
flow ratio (blue) of 0%.
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3.1. Applied Heat Reserve Reduction and Heat Power Shifting

The concept of utilizing the heating reserve, as elucidated in Section 2.2.1, is applied
to all radiators within the property. However, the required supply temperature for main-
taining the existing average radiator temperature and power output can significantly differ
from one radiator to another. In practical scenarios, supply temperatures are typically
specified for each heating circuit, sometimes for an entire property in the case of larger
heating circuits. Consequently, adjusting the supply temperature to meet the individual
needs of a single radiator can be challenging.

For ensuring satisfactory power output across all radiators, the supply temperature
cannot be further reduced once a radiator receives the maximum heating water mass
flow (i.e., the design mass flow). As the supply temperature decreases, the thermostatic
valves on the radiators open in an attempt to compensate for the resulting loss of power by
increasing the mass flow. It is crucial to identify the point at which the first radiator valve
is fully open.

Figure 10a depicts the limiting supply temperature (max. required; red) and the
measured supply temperature (blue). The limit supply temperature, representing the
highest necessary flow temperature dictated by the most heavily utilized radiator, already
offers the potential for reducing the supply temperature compared to the measured supply
temperature. The median of the required supply temperature (excluding the inactive
radiators; black) falls within the range of 30 to 40 ◦C, indicating further potential for
reduction. The additional potential is presented in Figure 10b as the difference between
the measured supply temperature and both the limiting and the median necessary supply
temperatures (red; black).
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Figure 10. Applied head reserve reduction and power shifting: (a) Supply temperatures, measured
vs. necessary; (b) Reduction potential.

Notice that the median and limit supply temperatures differ a lot. Simply applying
the reserve reduction and heat power shifting alone does not lead to a noticeable reduction
of the necessary supply temperature in all cases. Through the conception of water heating
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systems, the highest necessary supply temperature for a single radiator must be supplied
to the whole heat circle.

As shown in Figure 3, the method of heat reserve reduction can be applied if 0 < ṁo < ṁs.
Excluding the summer months (May to September) and focusing solely on actively operat-
ing radiators, the median supply temperature exhibits a potential reduction of 20.8 K across
all radiators. However, when we narrow our analysis to radiators subject to heavy utiliza-
tion and establish a usage threshold, the median limiting supply temperature reduction is
notably diminished, at just 7.3 K. This observation underscores the adverse influence of
radiators that experience extensive use, thereby instigating inquiries into the methodology
of heat cost allocation. In the prevailing system, costs are apportioned solely on the basis
of energy consumption and floor area, with insufficient regard for their implications on
overall energy efficiency.

Leveraging data derived from 73 buildings with substantial measurement data avail-
ability for the heating season of 2021–2022, we computed the median daily required supply
temperature for all radiators and presented this data graphically in Figure 11 as a box-
plot. Each building is denoted by a unique identifier, and these identifiers are arranged
in ascending order according to the median required flow temperature, from the lower
end (depicted in blue) to the higher end (depicted in red). When disregarding outliers,
the supply temperature predominantly falls within the range of 40 ◦C to 50 ◦C. However,
certain days, exemplified by Building ID 41, exhibit significant deviations of daily outliers
from the median necessary supply temperature. Potential causes of such deviations may
include a low count of inactive radiators experiencing high utilization on warm days or
issues with the boilers. Consequently, further investigation is warranted to explore these
anomalies comprehensively.
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Figure 11. Boxplot of the required median supply temperatures after the application of the Heat
Reserve Reduction and Power Shifting approach for the heating period 2021/2022. The coloring
corresponds to the median temperature in the object from low (blue) to high (red).

Regrettably, the application of the median required supply temperature is imprac-
tical, as it would not suffice to meet the heating demands of the most extensively used
radiators. As previously elucidated, the reduction in supply temperature is constrained
by the upper limits imposed by the highly utilized “limiting” radiators, as illustrated in
Figure 12. Despite the notably elevated values of the limiting daily radiator temperature, it
is noteworthy that our findings reveal that, in 62 out of the 73 examined buildings, supply
temperatures below 60 ◦C were adequate to satisfy users’ room temperature requirements.
Additionally, within 51 of these 73 buildings, representing the upper quartile, i.e., the
required temperature during 75% of the observation period, remained below 60 ◦C. It is
imperative to emphasize that our analysis predominantly concentrated on the reduction of
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heat reserves through the heat reserve reduction and power shifting approach. However,
when amalgamating these strategies with other methodologies, the potential for achieving
even lower supply temperatures becomes apparent. Across an additional set of 73 buildings,
the median supply temperature exhibited a potential reduction of 18.5 K. Nevertheless, this
reduction is limited in the median to 7 K, constrained by the influence of the most heavily
utilized radiators.
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Figure 12. Boxplot of the required limiting supply temperatures after the application of the Heat
Reserve Reduction and Power Shifting approach for the heating period 2021/2022. The coloring
corresponds to the median temperature in the object from low (blue) to high (red).

3.2. Applied Uniform Radiator Usage

As an example, we examine the actual heat consumption in a room equipped with
two radiators of varying sizes. Radiator 1 has a design power of 2911 W, whereas radiator 2
is rated at 2079 W. Interestingly, despite its larger size, radiator 1 emitted a total heat energy
of 1284 kWh, which is less than the total heat emitted by radiator 2, which amounted to
1732 kWh, as depicted in Figure 13a. The unequal utilization becomes particularly evident
through the highly disparate full utilization hours of the radiators. While radiator 1 has
only 390 full utilization hours, radiator 2 has 716 full utilization hours.

Energies 2023, 16, x FOR PEER REVIEW 13 of 16 

3.2. Applied Uniform Radiator Usage 

As an example, we examine the actual heat consumption in a room equipped with 

two radiators of varying sizes. Radiator 1 has a design power of 2911 W, whereas radiator 

2 is rated at 2079 W. Interestingly, despite its larger size, radiator 1 emitted a total heat

energy of 1284 kWh, which is less than the total heat emitted by radiator 2, which 

amounted to 1732 kWh, as depicted in Figure 13a. The unequal utilization becomes par-

ticularly evident through the highly disparate full utilization hours of the radiators. While 

radiator 1 has only 390 full utilization hours, radiator 2 has 716 full utilization hours. 

(a) (b) 

Figure 13. Impact of applied uniform heat loads: (a) Heat distribution; (b) Potential to reduce the 

supply temperature for both radiators.

Applying Equation (6) as outlined in Section 2.2.3, the provided heat is redistributed 

based on the radiator size. This results in 525 full utilization hours for each radiator. 

The calculation is carried out in time steps of five minutes so that peak loads can still 

be evaluated. The inner radiator temperature 𝑇𝑟,𝑚,𝑖 was calculated applying Equation (7)

therefore it was necessary to calculate a new inlet temperature 𝑇𝑟,𝑖 according to Equation 

(5). For each time step, the maximum necessary temperature (from one of the two radia-

tors) was taken to ensure proper heat supply. These values were averaged over the whole 

heating period. The necessary inlet temperature was reduced from 39.0 °C to 32.6 °C for 

this room, see Figure 13b. 

3.3. Applied Heat Requirement Analysis 

The heat requirement analysis described in Section 2.2.4 is applied to the example 

building. The utilization ratio 
𝑄̇𝑜

𝑄̇𝑠
is calculated for each radiator using average values over 

one-hour intervals. This chosen time interval helps to smoothen out peak values, ensuring 

that each data point accurately represents a substantial amount of energy transferred into

the room. Data corresponding to radiator shutdowns has been excluded. 

Figure 14a presents a scatterplot of all operational states relative to the ambient tem-

perature from 1 January 2021 to 10 January 2021, which ranged from approximately 0 °C 

to 14 °C. The blue line signifies the estimated heat requirement, according to Section 2.2.4. 

Numerous data points are positioned above the indicated heat requirement, signaling an 

oversupply of heat. Each color within the plot corresponds to a specific radiator, enabling 

a detailed examination of individual heating behavior.

Figure 13. Impact of applied uniform heat loads: (a) Heat distribution; (b) Potential to reduce the
supply temperature for both radiators.

Applying Equation (6) as outlined in Section 2.2.3, the provided heat is redistributed
based on the radiator size. This results in 525 full utilization hours for each radiator.
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The calculation is carried out in time steps of five minutes so that peak loads can still
be evaluated. The inner radiator temperature Tr,m,i was calculated applying Equation (7)
therefore it was necessary to calculate a new inlet temperature Tr,i according to Equation (5).
For each time step, the maximum necessary temperature (from one of the two radiators)
was taken to ensure proper heat supply. These values were averaged over the whole
heating period. The necessary inlet temperature was reduced from 39.0 ◦C to 32.6 ◦C for
this room, see Figure 13b.

3.3. Applied Heat Requirement Analysis

The heat requirement analysis described in Section 2.2.4 is applied to the example
building. The utilization ratio Q̇o

Q̇s
is calculated for each radiator using average values over

one-hour intervals. This chosen time interval helps to smoothen out peak values, ensuring
that each data point accurately represents a substantial amount of energy transferred into
the room. Data corresponding to radiator shutdowns has been excluded.

Figure 14a presents a scatterplot of all operational states relative to the ambient
temperature from 1 January 2021 to 10 January 2021, which ranged from approximately 0 ◦C
to 14 ◦C. The blue line signifies the estimated heat requirement, according to Section 2.2.4.
Numerous data points are positioned above the indicated heat requirement, signaling an
oversupply of heat. Each color within the plot corresponds to a specific radiator, enabling a
detailed examination of individual heating behavior.
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building; (b) Operating states limited at the estimated heat requirement. Each color represents
a radiator.

For instance, the orange radiator consistently exhibits high utilization, suggesting
potential issues such as (a) heat wastage (e.g., due to open windows), (b) excessively
high temperatures, or (c) uneven heat distribution as discussed in Section 3.2 (wherein
one radiator bears the brunt of the workload). Limiting the heat supply to the estimated
required value would significantly reduce the heat load, as depicted in Figure 14b.

The calculation presented in Figure 14b is extended to cover the entire month of
January 2021. If each state above the line is regarded as an energy waste, the average load
and energy consumption decrease by 14%. Nevertheless, even if the energy transferred
into the room during each state is essential to meet the resident’s needs, the reduction
in power could be offset by extended heating periods, as discussed in Section 2.2.2. This
approach also contributes to a reduction in peak loads by 21%, consequently lowering the
required supply temperature. For a further 73 buildings, the energy consumption could be
decreased by 13% in the median, the median peak loads could be reduced by 29%.

4. Discussion

The main objective of this study is to investigate whether the supply temperatures in
residential heating systems and peak heat loads can be reduced to facilitate the widespread
integration of heat pumps, resulting in reduced energy consumption and minimized waste
potential. The research introduces four distinct methods designed to achieve lower supply
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temperatures and heat loads within buildings without compromising room temperatures.
No impact on residents’ requirements is expected with any of the methods studied. How-
ever, the reduction in temperature levels and associated increase in energy efficiency may
motivate occupants to address energy use and settings and provide qualified feedback for
building operations.

The primary approach centers on reducing heat reserves. This involves lowering
the required supply temperature by increasing the volume flow, thereby maintaining
a consistent heat power output. The application of this method resulted in a median
temperature decrease of 18.5 K but seems limited to a median decrease of 7 K due to the
highest required supply temperature in the example provided.

Another method involves redistributing heat power to address peak loads, necessi-
tating prolonged heating periods with reduced power. Effective management with this
method may require the incorporation of more sophisticated thermostats as today’s modern
and intelligent thermostats tend to focus on providing on demand, rather than in advance.

In addition, the method of uniformly utilizing radiators aims to optimize existing
potential and heat distribution, potentially significantly reducing the supply temperature
when multiple radiators are available.

The final method, heat requirement analysis, evaluates the appropriate heat powers
for each radiator, comparing them against the current configuration. This approach proves
effective when combined with heat power shifting, as it identifies peak loads and calculates
suitable heat power levels. By eliminating the wasteful states of the example, the load
and energy consumption could be decreased by 14% in the median, and overall buildings
by 13%. Meanwhile, the peak loads in the example could be reduced by 21% and overall
buildings by 29% in the median.

While each method can function independently, their synergistic application can
deliver even greater benefits. It is important to note that the reported values are based
on optimal configurations. In real-world scenarios, various factors such as hydraulic
considerations, heat losses, and user interventions must be considered. This necessitates
the use of a buffer to ensure a reliable heat supply. The potential for implementing these
methods exists across a wide range of buildings.

In summary: Given that existing buildings often already have insulation measures
in place, it is possible to intelligently lower supply water temperature levels through
applying the described methods. The achievable temperature levels frequently allow
efficient utilization of water heat pumps as a replacement for traditional fossil-based
heating systems. Due to the interconnected radiators through heating circuits, heavily
utilized radiators can significantly raise the required supply water temperatures.

In future studies, we want to further elaborate the system by, for example, investigat-
ing the effects of the increased volume flow on the electrical power consumption of the
circulating pump and evaluating it in terms of energy and emissions. The system is also to
be extended to other properties with different constellations of building physics (e.g., age of
construction, insulation standard) and system technology (dimension and structure of the
radiators). The possible applications to commercial buildings are also to be evaluated. In
summary, the core findings of this study emphasize a range of strategies to reduce supply
temperatures and manage peak loads, ultimately enhancing energy efficiency in buildings.
These outcomes underscore the feasibility of these methodologies, especially when tailored
to specific contexts. By implementing these combined strategies and addressing practi-
cal challenges, stakeholders can embark on a path toward greener and more sustainable
energy use.
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