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Abstract: With the increasing integration of wind and photovoltaic power, the security and stability
of the power system operations are greatly influenced by the intermittency and fluctuation of these
renewable sources of energy generation. The accurate and reliable short-term forecasting of renewable
energy generation can effectively reduce the impacts of uncertainty on the power system. In this
paper, we propose an adaptive, data-driven stacking ensemble learning framework for the short-term
output power forecasting of renewable energy. Five base-models are adaptively selected via the
determination coefficient (R2) indices from twelve candidate models. Then, cross-validation is used to
increase the data diversity, and Bayesian optimization is used to tune hyperparameters. Finally, base
modes with different weights determined by minimizing the cross-validation error are ensembled
using a linear model. Four datasets in different seasons from wind farms and photovoltaic power
stations are used to verify the proposed model. The results illustrate that the proposed stacking
ensemble learning model for renewable energy power forecasting can adapt to dynamic changes in
data and has better prediction precision and a stronger generalization performance compared to the
benchmark models.

Keywords: wind power forecast; photovoltaic power forecast; stacking ensemble; Bayesian
optimization

1. Introduction

With increasing global climatic warming and environmental issues, renewable energy
sources are receiving increasing attention, especially wind and solar power. Due to the
randomness and intermittency of wind and solar resources, the high penetration of wind
and photovoltaic (PV) power generation causes uncertainty in the power system. Accurate
and stable short-term forecasting for wind and PV output power is crucial to maintain the
balance between the supply and demand of power systems, optimize the configuration of
rotating reserve capacity, and make dispatching decisions in the power market environ-
ment [1,2]. Data-driven prediction models for wind and solar renewable energy combined
with artificial intelligence and machine learning technology are widely used, owing to their
strong ability to mine historical data [3].

For data-driven renewable energy generation prediction, a complex nonlinear map-
ping relationship between the input features and the output power usually needs to be
constructed. Traditional time series models such as regressive (AR), AR moving average
(ARMA), and AR integrative moving average only define a linear mapping relationship
between input and output, increasing the prediction error with each forecast interval [4].
Advanced machine learning methods are capable of building a strong nonlinear input–
output map through a black-box concept [5,6]. A number of regression models use black-
box mapping, e.g., artificial neural network (ANN) [7], and support vector machine re-
gression (SVR) [8]. ANNs simulate the biological neural network constituting the brain,
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consisting of a number of connected neurons that carry and transmit signals. Deep neu-
ral network methods, such as autoregressive neural networks [9], convolutional neural
networks [10], and long- and short-term memory neural networks [11,12], have been de-
veloped rapidly due to their strong feature-capturing ability with little prior knowledge.
Nevertheless, the network framework of deep learning is relatively complex, requiring
a large amount of training data, and cannot outperform other prediction models with a
small sample. SVR uses a kernel function to transform the original feature space to a high-
dimensional space, then constructs a linear map, overcoming the problem of dimensionality
and achieving effective results with a small sample dataset. Therefore, SVR is selected as
the candidate model in this paper.

In recent years, tree ensemble machine learning models [13,14], such as extreme gra-
dient boosting [15] and gradient boosting trees [16], have received increasing attention in
industry and academic research due to their open architecture, low computing cost, and
robustness. The authors of [17] compared the performance of random forest (RF), extreme
regression tree (ET) and support vector machine regression (SVR) for the prediction of
photovoltaic power; the ET model achieved the best performance in terms of forecasting
accuracy, calculation cost, and stability indices. The authors of [18] described the advan-
tages of tree ensemble learning models, including RF, gradient boosting trees (GBRTs),
and extreme gradient boosting (XGB), for wind speed and solar radiation prediction in
comparison with the SVR method. The authors of [19] evaluated the performance of XGB
and GBRT machine learning methods for solar irradiance prediction. The use of a single
model for forecasting renewable energy, as mentioned above, may cause low prediction
accuracy and insufficient generalizability when processing various non-stationary datasets.

A hybrid model based on ensemble learning can combine the advantages of different
models to improve prediction accuracy and stability performance. Such models are more
robust than a single model and are widely applied in energy generation prediction. The
authors of [20] proposed a hybrid model combining ET with a deep neural network for
the prediction of hourly solar irradiance. The authors of [21] combined a long short-term
memory neural network with a convolutional neural network to predict solar irradiance.
The authors of [22] adopted a stacking fusion framework based on RF regression tree,
adaptive boosting (ADA), and XGB for the prediction of photovoltaic power and achieved
improved prediction accuracy. The authors of [23,24] built a new hybrid model based on
multiple deep learning methods for wind power prediction. The methods mentioned above
use a combined model, improving the prediction accuracy and stability on some levels but
ignoring the complex changing dynamic characteristics of the datasets. The factors affecting
wind and PV output power are complicated, and the collected meteorological and historical
data are high-dimensional and heterogeneous. Therefore, the ensemble learning framework
adaptively selects optimal basis models according to data characteristics, representing a key
technology to improve the accuracy and generalization performance of prediction models.

In this paper, we propose an adaptive, data-driven stacking ensemble learning frame-
work for predicting renewable energy output power through the deep mining of historical
data. Twelve diverse regression models that have been successfully used to mine informa-
tion hidden in the raw datasets of renewable forecasts are applied as candidate forecast
models [25–27]. To reduce the negative effects of uncertainty hidden in the historical data
and to enhance the generalization performance, an adaptive ensemble framework is de-
veloped, which can adaptively select five optimal models based on measurement indices.
The optimal hyperparameters of each base-model are tuned using Bayesian optimization,
and a linear regression method is employed as a meta-model to combine the five selected
base-models. The weight of each base-model can be adaptively obtained according to the
principle of cross-validation. Various case studies based on actual data from a wind farm
and PV station located in Middle China verify the effectiveness of the proposed adaptive
stacking ensemble learning model for renewable energy output power forecasting. In
summary, the key contributions of this paper are as follows:
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(1) A novel, data-driven, adaptive stacking ensemble learning framework is developed
for the output power forecasting of renewable energy. The stacking structure and
different base-models deeply explore the information hidden in the raw data, thereby
boosting the regression ability for multi-dimensional heterogeneous datasets.

(2) Twelve independent candidate regression models, including bagging, boosting, linear,
K nearest neighbor and SVR methods, are comprehensively compared. Then, five
better models are determined adaptively to integrate the stacking ensemble structure.
The diversity among the different base-models can ensure the excellent stability and
generalization performance of the stacking model.

(3) A meta-model is constructed using the linear regression method. The weights of
base-models are determined via minimizing the cross-validation risk of the base-
models estimator.

(4) The hyperparameters of base-models and meta-model are tuned and optimized using
the Bayesian global optimization method, which further enhances the forecasting
accuracy of the proposed model.

2. Adaptive Ensemble Learning Framework for Renewable Energy Forecast

Twelve methods with good performance for renewable energy power prediction in
the current literature are used as candidate models, including boosting algorithms such
as adaptive boosting (ADA), GBRT, XGB and light gradient boosting machine (LGBM)
methods; bagging algorithms such as decision tree (DT), bagging, RF, extreme tree; linear
regression (LR), K-nearest neighbor regression (KNN), elastic net regression (ELAN) and
SVR algorithm.

Algorithms with different principles and structures can measure data from different
perspectives, complementing each other. The diversity and excellent forecasting ability
of the base-model is crucial to enhance the generalization and regression performance
of the stacking ensemble learning framework. Generally, the first layer of the stacking
learning framework selects three to five base learners. Too few learners have little effect
on the performance of the integrated model; too many learners will cause redundancy
of the model structure and an increase in computing cost, which is not conducive to the
improvement of prediction accuracy. In this paper, 12 candidate models are trained and
tested on the same dataset, and 5 models with better prediction performance in terms of
the R2 evaluation index are selected as base learners. The base-models adaptively selected
may vary for different datasets as the module of base-model selection in Figure 1.

K-fold cross-validation is applied to prevent meta-model overfitting of the training
data and enhance the generalization performance of the model. Cross-validation is a
resampling method used to evaluate machine learning models, and K-fold means that
a given data is spilt into K separate folds. One-fold is used to train the model, and K-1
folds are used to validate, and then an individual estimation is obtained by averaging
the results of K evaluations [28]. The model can be trained and validated on each fold
data, increasing the model’s fitness. That is to say, the input data to the meta-model is the
out-of-fold predictions from multiple base-models. The overall framework of the proposed
ensemble model for renewable energy output power forecasting is displayed in Figure 1;
the procedure can be summarized as follows:

(1) Twelve candidate models are trained and tested to select five base-models by evaluat-
ing the R2 index.
For each base-model:

a. Select a 5-fold split of the training dataset;
b. Evaluate using 5-fold cross-validation;
c. Tune hyperparameters using the Bayesian optimal method;
d. Store all out-of-fold predictions.

(2) Fit a meta-model on the out-of-fold predictions by linear regression.
(3) Evaluate the model on a holdout prediction dataset.
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3. Methodology

Ensemble learning is a machine learning method that combines a series of base learners
according to certain rules to obtain a strong learner, presenting a more robust performance
than a single model. Ensemble techniques, including bagging, boosting and stacking, are
popular and widely used in renewable energy generation prediction and load forecast-
ing [29–31].

3.1. Regression Method Based on Boosting Learning

The boosting learning methods fit multiple weak learners on different versions of
the training dataset, and then combines the predictions of the weak learners sequentially
with different weights until a suitable strong learner is achieved [32]. Tree-based boosting
methods mainly include ADA, GBRT, XGB and LGBM.

AdaBoost uses the Cart tree as the base learner and conducts multiple iterations of
learning to minimize the loss by changing the weights of base learners in each iterative
step [27,32]. GBRT uses a gradient boosting algorithm based on ADA and follows a
shrinkage and regularization approach, which effectively improves the accuracy and
stability of the prediction [27,33].

The XGB method adds several optimizations and refinements to the original GBRT,
making the creation ensembles more straightforward and more generative. The details of
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XGB can be found in [20,22,27]. LGBM is a modified XGB algorithm proposed by Microsoft
in 2017. Gradient-based one-sided sampling (GOSS) and exclusive feature bundling (EFB)
are used to enhance its histogram algorithm and decision tree growth strategy, improving
the computing speed, stability, and robustness without reducing accuracy [18].

Taking LGBM as an example, a given dataset D = {(xi, yi) : i = 1 · · ·N}, the input
timeseries xi, and the output yi, constructing the nonlinear mapping y = f (x). Denoting
the loss function L(y, f (x)) = (y− f (x))2, the objective of model training is to find the
function f *(x) = argmin

f
Ey,xL(y, f (x)). The LGBM algorithm (Algorithm 1) steps can be

written as follows:

Algorithm 1 LGBM Regression

(1) Input: Training data D = {(xi, yi) : i = 1 · · ·N}, iteration number M, loss function
L(y, f (x)) = (y− f (x))2;

(2) Output: fM(x) =
M
∑

m=1
δmT(x; Θm);

(3) Initialize f0(x) = argmin
δ

N
∑

i=1
L(yi, δ);

For m = 1 to M

(a) For i = 1, 2, · · · , N, calculating gm(xi) = −
[

∂L(yi , f (xi))
∂ f (xi)

]
f (x)= fm−1(x)

(b) Fit a regression tree T(x; Θm) to gm(xi);

(c) Find the better (δm, Θm) through argmin
δ,Θ

N
∑

i=1
L(yi, fm−1(xi) + δT(xi; Θ)) , and

calculate Θm = argmin
Θ,δ

N
∑

i=1
[−gm(xi)− δT(xi; Θ)]2;

(d) Calculate the optimal weight for each regression tree T(x; Θm),

δm = argmin
δ

N
∑

i=1
L[yi, fm−1(xi) + δT(xi, Θm);

(e) Update model: fm(x) = fm−1(x) + δmT(x; Θm)

end for
(4) Output fm(x).

where initial f0(x) = δ, δ = 1
N

N
∑

i=1
yi, presenting the initial weight of the regression tree; and

Θ is the parameters of the regression tree.

3.2. Regression Method Based on Bagging Learning

The bagging ensemble uses bootstrap replicates to obtain multiple different samples
of the same training dataset as new training sets, and fits a decision tree on each new set.
Due to perturbed training, the predictions for all of the created decision trees can reduce
variance. Then, the predictions are combined, which can improve accuracy and prevent
overfitting of the bagging method [34,35].

Random forest RF is an extension of bagging technology, which also uses bootstrap
sampling to build a large number of training sample sets and fit different decision trees.
Unlike bagging, to make the individual decision trees differ, RF estimates the input feature
and then selects a number of samples as split candidates at each node [35]. Out-of-bag
(OOB) error estimation is employed to construct the forest, which can ensure unbiasedness
and reduce forecast variance [36,37].

An extra regression tree (ET) is developed as an extension of the RF approach, which
employs a classical top-down procedure to construct an ensemble of unpruned regression
trees. As well as RF, a subset of features is randomly selected to train each base estimator.
Unlike RF, ET randomly selects the best feature with the corresponding value to split the
node. Additionally, ET employs the total training dataset to train each regression tree in
the forest [36]. These differences are likely to reduce overfitting, as interpreted in [38].
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3.3. Other Regression Models

Linear regression is widely used in statistics to quantitatively analyze the dependence
relationship between two or more variables. Basic linear regression is used to describe
the linear relationship between variables. The least-square method is a commonly used
algorithm to train the linear regression model. Elastic net is developed as an extension of
linear regression. It adds L1 and L2 regularization parameters, which integrate the benefits
of the least absolute shrinkage, selection operator (lasso) and ridge, resulting in a better
performance for prediction [39].

K-nearest neighbor regression (KNN) carries out prediction by measuring the distance
of a sample’s nearest neighbor. KNN finds the K-nearest neighbors of a sample and assigns
the mean value of some features of these neighbors to the sample. In other words, the
mean value is the prediction value of the sample. The time series for wind power and PV
power has a specific correlation in the time dimension. Theoretically, the KNN method is
suitable for wind and PV power forecasting, and has been applied to renewable energy
forecasting [40–42].

Support vector regression (SVR) is used to solve regression problems by adopting
kernel functions to construct non-linear mapping. That is to say, the input space is mapped
into a higher dimensional feature space, and a linear regression is performed in the feature
space. The traditional empirical risk minimization principle only minimizes the training
error. In contrast, SVR uses the structure risk minimization principle to minimize an upper
boundary of the total generalization error with a certain confidence level. SVR is highly
effective in solving non-linear problems, even with small sample events, and is popular in
wind and PV power forecasting [36,43].

3.4. Stacking Ensemble

Stacking ensemble trains different base-models on the same dataset. Then, it uses
a meta-model to combine the predictions generated via the base-models to achieve the
ultimate predictions [44]. The two-layer stacking ensemble learning framework is displayed
in Figure 2. The first layer consists of multiple different basic learner models, and the input
is the original data training set. The second layer is called the meta learner; the prediction
from the first layer model is fed to the meta-model to make the ultimate prediction. The
meta learner integrates the prediction ability of the basic learner model to improve the
performance of stacking ensemble learning.
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Given the input dataset D = (x1, · · · , xi, · · · , xm), the dataset is divided into the
training dataset, test dataset and validation dataset. Zh is the h-th base-model of the
first layer. The prediction output of the Zh model on the validation set is Zh(xi), and the
prediction result of the Zh model on validation dataset is presented using Z∗h(xi). The
output Zh(xi) of the first layer model as a new training set is fed to the meta-model Z,
and Z∗h(xi) as a test of the meta-model. The ultimate forecasting result can be written
as follows:

yi = Z(Z1(xi)/Z∗1(xi), · · · , Zh(xi)/Z∗h(xi), · · · , Zn(xi)/Z∗n(xi)) (1)

3.5. Bayesian Hyperparameters Optimization

Bayesian optimization is derived from the famous Bayes theorem, which uses a
probabilistic surrogate model to fit the objective function and selects the most “potential”
evaluation point via the maximum acquisition function. The procedure of parameter
optimization can reduce unnecessary sampling and make full use of the complete historical
information to improve the search efficiency, and then obtain a global approximate optimal
solution with low evaluation cost [45,46]. Traditional optimization algorithms, such as grid
search, particle swarm optimization, simulated annealing, etc., are not suitable for machine
learning methods with large-scale parameters due to their expensive computing costs [46].

In this paper, the hyperparameters of the base-models and meta-model are tuned
using Bayesian optimization, as shown in Figure 3. Firstly, a hyperparameter space
Θ ∈ Λ, such as leaf nodes of the tree, and learning depth are defined. Given the
dataset D = { (x0, y0), · · · , (xi−1, yi−1)} , Bayesian global optimization can be described as
Θ∗ ∈ argmaxΘ∈ΛF(Θ), where Θ∗ is the optimal hyperparameter and F(Θ) is the objective
function, indicating the loss of validation of the model with the hyperparameters. Assum-
ing that F(Θ) cannot be observed directly, we can only obtain this by noise observations
Y(Θ) = F(Θ) + ε, ε ∼ N(0, σ2

noise). The construction of a surrogate function and the
selection of an acquisition function are critical technologies for Bayesian optimization. A
surrogate function is built to express assumptions about the function to be optimized, and
an acquisition function is selected to determine the next evaluation point. In this paper,
the tree Parzen estimator (TPE) is employed to model the densities using a kernel density
estimator, instead of directly modeling the objective function F by a probabilistic model
p( f |D ) [47,48]. More details about Bayesian optimization are discussed in [45–48].
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4. Results and Discussions
4.1. Data

Wind speed (WS) and direction (WD), as the main meteorological features affecting
wind output power, are selected as the inputs for the wind power prediction model, and
wind power (WP) as the output. Data was collected from the SCADA system of a wind
farm, located in central China. The installed capacity of the wind farm is 200 MW, and
the rated power of each wind turbine is 2 MW. The historical data covers the whole year
of 2020 with a 15-min time resolution, divided into four datasets depending on different
seasons with 8832 samples in each season. Figure 4 gives an example of the historical
dataset in Spring.
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In the PV power model, the main meteorological features affecting PV output power
are selected as the inputs of the prediction model, which include total irradiance (T_irr),
normal vertical irradiance (V_irr), horizontal irradiance (H_irr) and temperature (Tem).
The data is derived from a PV power station with 130 MW located in central China. Due to
the characteristics of PV output power, the historical data from 07:00 to 18:00 is defined
as effective, which consists of the whole year of 2020 with a 15-min time resolution. The
dataset of each season contains 4095 time points. An example of the historical data for
spring is shown in Figure 5.

From Figures 4 and 5, we can see that there are some differences between the charac-
teristics of wind power and solar power. The time series of wind power is random, whereas
the solar power time series has specific rules to follow. During the day, PV power can be
generated only when the PV cells are radiated by the sun. At night, the output power
from the PV station is 0. The diversity between the two datasets can be used to verify the
model’s universality.
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4.2. Data Standardization and Evaluation Indices

To reduce interference from outliers and differences from different data dimensions
and ensure fairness of the forecast, the principle of maximum and minimum is applied for
normalization to (0, 1). It can be written as follows:

x̃ij =
xij − ximin

ximax − ximin
(i = 1, 2, · · · , I; j = 1, 2, · · · , J) (2)

where: xij is the j-th sample of the variable i-th, and x̃ij is the corresponding normalization
value; xi.max and xi.min represent the maximum and minimum values of i-th variable,
respectively.

Root-mean-square error (RMSE), mean absolute error (MAE) and determination co-
efficient R2 are usually selected as the evaluation indices of the prediction model [49,50].
The smaller the RMSE and MAE values, the smaller the prediction error will be. The deter-
mination coefficient R2 measures the similarity between the actual and predicted values.
The larger the value, the better the model fitting effect. These indices can be described
as follows:

RMSE =

√√√√ 1
N

N

∑
i=1

(Pi − Pi)
2

(3)

MAE =
1
N

N

∑
i=1

∣∣∣Pi − Pi

∣∣∣ (4)

R2 = 1− ∑ (Pi −
∧
Pi)

2

∑ (Pi −
−
Pi)

2 (5)

where, Pi and
∧
Pi present the measured and prediction values, respectively; Pi is the average

of measured value and N is the number of samples.

4.3. Model Selection and Hyperparameter Optimization

As shown in Figure 1 of Section 2, 12 candidate models are simulated on four data
cases to select 5 better base-models. The original data is divided into a training dataset
(80% data) and a validation dataset (20% data). For the different datasets in spring, summer,
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autumn, and winter, five models with higher scores are adaptively selected as the base-
models according to the R2 evaluation index. Especially, if the R2 scores of the models are
the same, the RMSE and MAE indices are used for further evaluation. The training and
testing of the proposed model using Python 3.6 are conducted on a computer with Intel(R)
Core (TM)i7-8565, CPU@1.80 GHz, RAM 8.00 GB.

The results of the wind power prediction on the validation dataset are displayed in
Table 1. Five base-models are selected with higher R2 scores and lower RMSE and MAE
values. For the spring dataset, the selected base-models are LGBM, GBRT, XGB, ADA,
and RF, with corresponding R2 values of 0.754, 0.746, 0.731, 0.701, and 0.698, respectively.
For the summer dataset, the base-models are SVR, LGBM, GBRT, XGB, and ADA, with
corresponding R2 values of 0.689, 0.673, 0.667, 0.648 and 0.604 respectively. The base modes
and their R2 scores for the autumn dataset are XGB-0.869, GBRT-0.868, LGBM (0.867), RF
(0.854), and KNN (0.853). For the winter dataset, they are GBRT (0.667), LGBM (0.662),
ADA (0.633), SVR (0.634), and XGB (0.628). The R2 scores of the same model vary greatly on
a different dataset, such as LGBM, GBRT, and XGB, which indicate that a single forecasting
model has certain limitations for different data. In addition, for the winter and summer
datasets, the R2 scores of all models are lower; the RMSE and MAE values are higher
than those for the spring and autumn datasets, which is closely related to the fluctuation
characteristics of the original data of wind speed, direction, and power.

The results for PV power forecast are listed in Table 2. For the spring dataset, the five
models with higher R2 scores are bagging (0.791), LGBM (0.762), RF (0.758), SVR (0.746),
and ADA (0.743). Similarly, the base-models with higher R2 scores are bagging (0.791),
LGBM (0.762), RF (0.758), SVR (0.746), and ADA (0.743). For the autumn dataset, the
highest R2 scores are RF (0.615), GBRT (0.613), KNN (0.611), XGB (0.604), and bagging
(0.581). For the winter dataset, the highest R2 scores are GBRT (0.908), KNN (0.906), XGB
(0.904), RF (0.896), and LGBM (0.894). The R2 values of the ELAN model for wind power
prediction and PV power prediction on all datasets are negative, which indicate that the
model is unsuitable for renewable prediction. Like wind power forecasting, the evaluation
indices of a model for PV power forecasting on different datasets are different. For all
12 models, the R2 scores on the winter dataset are the highest, and RMSE and MAE values
are the lowest, followed by summer, spring, and autumn.

Due to the significant difference between wind power and PV power time series, the
base-models selected are also different, indicating the universality of different algorithms
on different data. For example, the RF model is selected as the base-model on all four
datasets for PV power prediction, whereas it is selected only on spring and autumn data
for wind power forecasting, indicating that the performance of the RF method has certain
limitations for data with stronger fluctuations. Similarly, the bagging method is selected
only in wind power forecasting. We can see the variations among these base-models for
different cases in Tables 1 and 2.

With the base-model selected; the next step is to select the meta-model. Taking wind
power prediction as an example, the RF, XGB, GBRT, LGBM, and LR models with higher
R2 scores on four datasets in the above base-model experiments are tested and verified
as meta-models, respectively. The results are shown in Table 3. It can be seen that the
RMSE and MAE values of the linear model as the meta-model are lower and R2 scores are
higher on each dataset than the other models. Therefore, the linear model is selected as
the meta-model in this paper. In a similar manner, the LR model as the meta-model for PV
power prediction on four seasons has better prediction accuracy than the other models.
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Table 1. Evaluation indices of the base-models for wind power prediction.

Method Indices Spring
Dataset

Summer
Dataset

Autumn
Dataset

Winter
Dataset

LR
RMSE 0.189 0.135 0.205 0.237
MAE 0.166 0.114 0.123 0.208

R2 0.579 0.52 0.49 0.315

ELAN
RMSE 0.294 0.209 0.295 0.287
MAE 0.269 0.188 0.273 0.259

R2 −0.016 −0.151 −0.063 0

SVR
RMSE 0.169 0.109 0.111 0.174
MAE 0.129 0.079 0.08 0.134

R2 0.662 0.689 0.851 0.634

DT
RMSE 0.21 0.159 0.136 0.236
MAE 0.139 0.116 0.085 0.167

R2 0.48 0.335 0.775 0.322

KNN
RMSE 0.163 0.128 0.11 0.188
MAE 0.112 0.095 0.068 0.136

R2 0.686 0.569 0.853 0.573

ADA
RMSE 0.159 0.123 0.136 0.174
MAE 0.132 0.103 0.104 0.142

R2 0.701 0.604 0.776 0.633

Bagging
RMSE 0.166 0.126 0.113 0.197
MAE 0.115 0.094 0.071 0.142

R2 0.677 0.581 0.845 0.526

RF
RMSE 0.16 0.125 0.109 0.19
MAE 0.111 0.092 0.068 0.138

R2 0.698 0.591 0.854 0.562

ET
RMSE 0.173 0.133 0.117 0.202
MAE 0.117 0.098 0.073 0.146

R2 0.649 0.538 0.834 0.505

GBRT
RMSE 0.147 0.113 0.105 0.165
MAE 0.106 0.08 0.065 0.124

R2 0.746 0.667 0.867 0.667

XGB
RMSE 0.151 0.116 0.104 0.175
MAE 0.105 0.084 0.062 0.128

R2 0.731 0.648 0.869 0.628

LGBM
RMSE 0.145 0.112 0.104 0.167
MAE 0.102 0.08 0.063 0.125

R2 0.754 0.673 0.868 0.662

Table 2. Evaluation index of independent models for solar power prediction.

Method Indices Spring
Dataset

Summer
Dataset

Autumn
Dataset

Winter
Dataset

LR
RMSE 0.157 0.12 0.167 0.162
MAE 0.117 0.095 0.121 0.128

R2 0.711 0.858 0.381 0.759

ELAN
RMSE 0.302 0.334 0.226 0.331
MAE 0.255 0.303 0.187 0.299

R2 −0.07 −0.096 −0.137 −0.004

SVR
RMSE 0.147 0.111 0.148 0.118
MAE 0.095 0.076 0.107 0.097

R2 0.746 0.879 0.515 0.872
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Table 2. Cont.

Method Indices Spring
Dataset

Summer
Dataset

Autumn
Dataset

Winter
Dataset

DT
RMSE 0.154 0.153 0.154 0.128
MAE 0.112 0.103 0.105 0.073

R2 0.723 0.771 0.474 0.849

KNN
RMSE 0.187 0.116 0.132 0.101
MAE 0.111 0.08 0.092 0.062

R2 0.589 0.868 0.611 0.906

ADA
RMSE 0.148 0.118 0.142 0.121
MAE 0.095 0.096 0.099 0.094

R2 0.743 0.862 0.555 0.865

Bagging
RMSE 0.134 0.107 0.137 0.111
MAE 0.084 0.082 0.094 0.067

R2 0.791 0.887 0.581 0.888

RF
RMSE 0.144 0.105 0.132 0.107
MAE 0.092 0.073 0.091 0.064

R2 0.758 0.892 0.615 0.896

ET
RMSE 0.178 0.116 0.138 0.113
MAE 0.106 0.078 0.096 0.068

R2 0.627 0.868 0.576 0.883

GBRT
RMSE 0.163 0.108 0.132 0.1
MAE 0.106 0.076 0.089 0.062

R2 0.688 0.886 0.613 0.908

XGB
RMSE 0.168 0.107 0.134 0.102
MAE 0.111 0.078 0.091 0.065

R2 0.669 0.888 0.604 0.904

LGBM
RMSE 0.142 0.106 0.137 0.107
MAE 0.092 0.074 0.094 0.064

R2 0.762 0.889 0.58 0.894

Table 3. Evaluation index of different meta-models.

Model Indices Spring
Dataset

Summer
Dataset

Autumn
Dataset

Spring
Dataset

LR
RMSE 0.137 0.104 0.098 0.158
MAE 0.095 0.072 0.06 0.115

R2 0.759 0.681 0.878 0.678

RF
RMSE 0.156 0.117 0.108 0.181
MAE 0.111 0.086 0.066 0.136

R2 0.715 0.639 0.857 0.604

GBRT
RMSE 0.161 0.122 0.113 0.184
MAE 0.112 0.089 0.071 0.136

R2 0.697 0.61 0.843 0.587

XGB
RMSE 0.149 0.113 0.104 0.174
MAE 0.104 0.081 0.063 0.128

R2 0.74 0.662 0.868 0.632

LGBM
RMSE 0.152 0.117 0.106 0.175
MAE 0.107 0.085 0.065 0.129

R2 0.729 0.638 0.863 0.627

In order to improve the prediction performance of the basic learner model, the Bayesian
global optimization method is adopted to optimize the main parameters of these base-
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models, and the range of parameters are preset as listed in Table 4. For different datasets,
the optimal parameters of a model may be different. In practical application, the hyperpa-
rameter optimization of the model can use offline training and online prediction to save
calculation costs and improve the efficiency of the model prediction.

Table 4. Hyperparameters of the different base learner models.

Model Hyperparameters Range Model Hyperparameters Range

KNN
n_neighbors 1–20 SVR svr_c 0.1–100

weights uniform svr_gamma 0.01–1.0

RF

n_estimators 10–200

GBRT

n_estimators 10–200
max_depth 10–200 subsample 0.1–1.0

min_samples_split 1–10 min_samples_split 1–20
min_samples_leaf 1–10 min_samples_leaf 1–20

LGBM

n_estimators 10–200

XGB

n_estimators 10–200
max_depth 1–10 max_depth 10–200
num_leaves 1–20 min_child_weight 1–10

learning_rate 1–20 subsample 0.1–1.0
subsamples 0.1–1.0 learning_rate 0.1–1.0

ADA
n_estimators 10–200 Bagging n_estimators 10–200
learning_rate 0.1–1.0 max_samples 1–10

4.4. Wind Power Forecasting and Results Analysis

The single base-model is employed as a benchmark for comparing with the proposed
stacking ensemble model. The evaluation index values on four test datasets are shown
in Figure 4. The last day of each season, namely 29 February, 31 May, 31 August, and
31 December, is selected as the forecast day. The wind power forecast curve is shown in
Figure 6.

In Figure 6, the base-models adaptively selected for each dataset are different in the
four seasons. Furthermore, the RMSE and MAE values of the stacking ensemble method are
lower than all the selected single base-models. In winter, the RMSE and MAE values of the
stacking ensemble method are 0.152 and 0.102, respectively, which are the largest compared
with the other three seasons. Nevertheless, its prediction error is still much smaller than
the benchmarks, such as the SVR, XGB, GBRT, ADA, and LGBM methods, of which the
RMSE and MAE values are 0.169 and 0.13; 0.181 and 0.132; 0.164 and 0.122; 0.168 and 0.134;
0.17 and 0.124, respectively, indicating its excellent stability and robustness. The GBRT
model is selected as the base-model in all four datasets, and its error values and R2 scores
are less than the stacking ensemble model, indicating that the prediction performance of
GBRT has a certain stability and robustness. In addition, the R2 score values of the stacking
ensemble model are higher than those of the single base-models for all datasets. Taking the
winter case as an example, the R2 score of the stacking ensemble method is 0.702, which is
the lowest for the four seasons. Nevertheless, it is still much higher than the benchmark
models, demonstrating its outstanding performance, i.e., the improvement in its prediction
accuracy and an enhancement of its generalization ability. From Figure 6, the prediction
error for autumn is the smallest, followed by summer, spring, and winter, consistent with
the characteristics of data with weaker fluctuations. It can be concluded that when the input
data at some time point fluctuates greatly, the accurate prediction ability of the stacking
ensemble model needs to be improved. However, compared to all the benchmark models
for different datasets, the prediction performance of the proposed method is still superior.
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The prediction curves of the stacking ensemble model and the comparison benchmarks
with 96 time points for the selected prediction day covering four seasons are shown in
Figure 7. The stacking ensemble model can better track the actual output power change
trend than the single benchmark, indicating better prediction performance. In Figure 7a,c,d
for winter, their prediction curves are flat in some time periods due to the weak fluctuation
of the input data, including wind speed and direction. Thus, the true values closely
follow the actual values. In Figure 7c for autumn, the true measured power values of
the predicted day have higher fluctuations. According to the input data, wind speed and
direction are random in the range of 48–96 time points, and the wind speed reaches a
limit of 14~15 m/s at some time points. Therefore, the predicted power values during this
time period deviate from the real measured power. However, compared to the benchmark
models, the prediction curve of the stacking ensemble model is closer to the true measured
values. It demonstrates that the stacking ensemble model integrates multiple algorithms
with different principles, adaptively tracking changes in the datasets. Compared with
the benchmark models, the proposed model for wind power forecasting has a better
fitting performance and can produce more accurate point predictions along with better
generalization performance and stability.

4.5. PV Power Forecasting and Results Analysis

Similar to the wind power forecasting cases, the proposed stacking ensemble model
is further validated by forecasting the output power of a PV station. The division of the
dataset and selection of the forecast day are the same as the case of wind power prediction.
The evaluation index values and prediction curves are presented in Figures 8 and 9.

In Figure 8, the base-model adaptively selected for photovoltaic power prediction is
different from that for wind power prediction. For example, in spring, the base-models
for photovoltaic prediction are SVR, bagging, LGBM, ADA, and RF, while for wind power
prediction, the base-models are ADA, XGB, GBRT, RF, and LGBM, demonstrating the
different performance of the different models in data mining. Furthermore, the proposed
stacking ensemble model has a lower prediction error and higher R2 scores than the other
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comparison models for all the study cases. Taking the autumn dataset as an example,
in Figure 8c, the RMSE and MAE values of the stacking ensemble model are 0.098 and
0.062, respectively, which are higher than the other three seasons; its R2 score is 0.762 and
is the lowest in all the four seasons. Nevertheless, compared to the benchmark models,
its forecasting error is the lowest and its R2 score is the highest, indicating the prediction
superiority of the proposed method.

Due to the diversity of the data characteristics, the prediction error and fitting score
in the different seasons vary. In spring, summer, autumn, and winter, the RMSE values
are 0.104, 0.099, 0.098, and 0.079, respectively; the MAE values are 0.063, 0.069, 0.062, and
0.05, respectively; and R2 scores are 0.894, 0.895, 0.762, and 0.942, respectively, which fully
illustrate the ability of the data-driven stacking ensemble model to deep mine potential data.

Energies 2023, 16, x FOR PEER REVIEW 15 of 20 
 

 

of the predicted day have higher fluctuations. According to the input data, wind speed 
and direction are random in the range of 48–96 time points, and the wind speed reaches a 
limit of 14~15 m/s at some time points. Therefore, the predicted power values during this 
time period deviate from the real measured power. However, compared to the benchmark 
models, the prediction curve of the stacking ensemble model is closer to the true measured 
values. It demonstrates that the stacking ensemble model integrates multiple algorithms 
with different principles, adaptively tracking changes in the datasets. Compared with the 
benchmark models, the proposed model for wind power forecasting has a better fitting 
performance and can produce more accurate point predictions along with better general-
ization performance and stability. 

 
Figure 7. Wind power prediction curve of the different comparison models: (a) spring, (b) summer, 
(c) autumn, and (d) winter. 

4.5. PV Power Forecasting and Results Analysis 
Similar to the wind power forecasting cases, the proposed stacking ensemble model 

is further validated by forecasting the output power of a PV station. The division of the 

Figure 7. Wind power prediction curve of the different comparison models: (a) spring, (b) summer,
(c) autumn, and (d) winter.



Energies 2023, 16, 1963 16 of 20

Energies 2023, 16, x FOR PEER REVIEW 16 of 20 
 

 

dataset and selection of the forecast day are the same as the case of wind power prediction. 
The evaluation index values and prediction curves are presented in Figures 8 and 9. 

 
Figure 8. Comparison results of the different prediction models for PV power: (a) spring, (b) sum-
mer, (c) autumn, and (d) winter. 

In Figure 8, the base-model adaptively selected for photovoltaic power prediction is 
different from that for wind power prediction. For example, in spring, the base-models 
for photovoltaic prediction are SVR, bagging, LGBM, ADA, and RF, while for wind power 
prediction, the base-models are ADA, XGB, GBRT, RF, and LGBM, demonstrating the dif-
ferent performance of the different models in data mining. Furthermore, the proposed 
stacking ensemble model has a lower prediction error and higher R2 scores than the other 
comparison models for all the study cases. Taking the autumn dataset as an example, in 
Figure 8c, the RMSE and MAE values of the stacking ensemble model are 0.098 and 0.062, 
respectively, which are higher than the other three seasons; its R2 score is 0.762 and is the 
lowest in all the four seasons. Nevertheless, compared to the benchmark models, its fore-
casting error is the lowest and its R2 score is the highest, indicating the prediction superi-
ority of the proposed method. 

Due to the diversity of the data characteristics, the prediction error and fitting score 
in the different seasons vary. In spring, summer, autumn, and winter, the RMSE values 
are 0.104, 0.099, 0.098, and 0.079, respectively; the MAE values are 0.063, 0.069, 0.062, and 
0.05, respectively; and R2 scores are 0.894, 0.895, 0.762, and 0.942, respectively, which fully 
illustrate the ability of the data-driven stacking ensemble model to deep mine potential 
data. 

Figure 8. Comparison results of the different prediction models for PV power: (a) spring, (b) summer,
(c) autumn, and (d) winter.

Figure 9 shows the prediction curves of the stacking ensemble model and the com-
parison models on the prediction day. From sub-graph (b) summer and (c) autumn, the
real measured values of PV power have little variation, and the prediction curves of the
stacking ensemble model closely follow the true output power curves, indicating a high
prediction accuracy. In sub-graph (a) spring and (d) winter, the actual power value of the
predicted day has greater fluctuations due to the variation of the input datasets. Therefore,
there is a certain gap between the predicted values and the actual measured values, while
the overall trends of the prediction curve follow the changes of the actual measured power
curve, indicating the effectiveness and adaptiveness of the stacking ensemble method for
PV power forecasting. In addition, for all datasets, at times with low PV output power, the
prediction values of the proposed stacking model are similar to those of the benchmark
model, indicating the difficulty of prediction at low power points. However, at times
with high PV output, especially at time periods with large fluctuations (black box mark
in sub-figures (a) spring and (d) winter), the prediction curves of the proposed stacking
model more closely follow the true power curve, indicating the significant superiority and
reliability of the proposed method for PV power prediction.
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5. Conclusions

In this paper, an adaptive, data-driven stacking ensemble model is proposed for the
output power prediction of renewable energy, including wind power and PV power. The
proposed model is validated using datasets collected from an actual wind farm and PV
station. The following conclusions can be drawn:

(1) The models with different algorithm principles can deeply mine the space and struc-
tural characteristics of multi-dimensional heterogeneous datasets from multiple per-
spectives, realizing the performance complementarity among algorithms. The pro-
posed stacking ensemble learning framework can track the dynamic changes within
data, combining multiple base-models to improve the forecasting accuracy, as well as
the generalization ability and adaptability.

(2) The cross-validation and Bayesian hyperparameter optimization methods are used in
the model training, which can effectively improve the model’s prediction accuracy.

(3) The linear model is employed as a meta-model to integrate base-models. The weight
of each base-model is determined by the minimum cross-validation error principle,
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which can further improve the model’s prediction accuracy without increasing the
model’s complexity or calculation cost.
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