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Abstract: This paper proposes an algorithm for determining the optimal capacitance by utilizing a
mathematical model of a submodule (SM) capacitor in a modular multilevel converter (MMC) specif-
ically for medium voltage motor drives (MVDs). By approximating the voltage fluctuation of the SM
capacitor during low-frequency operation, it is feasible to ascertain the minimum capacitance required
for the SM capacitor, ensuring that its voltage fluctuations remain within an acceptable limit that is
predefined as a specified value. Moreover, the study considered the injection of both a high-frequency
common-mode voltage (CMV) and a circulating current to alleviate the SM voltage fluctuation during
the acceleration of motor drives. The effectiveness of the proposed method is validated through
verification using time-domain simulation results obtained using the MATLAB/SIMULINK software
and real-time simulation results acquired using the OPAL-RT simulator platform.

Keywords: modular multilevel converter (MMC); optimal sizing of submodule (SM) capacitor; SM
capacitor voltage ripple limit; high frequency injection (HFI); variable speed motor drives (VMD)

1. Introduction

Modular multilevel converters (MMCs) have become an attractive multilevel con-
verter topology for medium-to-high-voltage and high-power applications owing to their
advantages regarding modular design, low harmonic distortion of the output voltage,
and low switching frequency [1–5]. Consequently, MMCs have been extensively used in
various industrial applications, including high-voltage direct current (HVDC) transmission
systems [6–10], static synchronous compensators (STATCOM) [11–14], and medium voltage
motor drives (MVDs) [15–24]. In addition to the salient features, submodule (SM) capaci-
tors exhibit substantial voltage fluctuations at low frequencies, necessitating the selection
of a sufficiently large capacitance to minimize this variability. However, this causes the
converter system to be oversized and expensive, thereby restricting the applicability of the
MMC system. In theory, the voltage ripple in an SM capacitor is directly proportional to
the amplitude of the output current and inversely proportional to the operating frequency.
This results in a significant voltage ripple in the SM when the motor drives operate at low
speeds, particularly during startup [25]. Owing to these considerations, numerous studies
have been conducted to improve the dynamic performance of converter systems when
motor drives operate at low speeds [17,18,25–30].

Injecting high-frequency sinusoidal waveforms of the common-mode voltage (CMV)
and a circulating current into each arm results in a significant reduction in the voltage
fluctuation of the SM capacitor [18,25,26]. Through this control strategy, the transfer of
high-frequency components between the upper and lower arms enables more frequent
charging and discharging of the SM capacitor, effectively suppressing voltage fluctuations
without affecting the three-phase output currents (Figure 1). However, the injection of
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high-frequency components gives rise to a CMV on the motor side, leading to the po-
tential harming of the motor winding and the deterioration of the motor bearings [17].
Furthermore, the incorporation of sinusoidal waveforms induces elevated current stress
in each arm, leading to increased power loss. To alleviate the current stress in each arm,
a high-frequency square-wave CMV and circulating current are injected into each arm as
an alternative to sinusoidal high-frequency components [27]. Nevertheless, the use of a
square-waveform CMV may lead to significant dv/dt issues at the motor terminal, posing
a threat to the lifespan of motor bearings and rendering them unsuitable for practical
applications. Similarly, the proposed method involves the introduction of a flying-capacitor
MMC (FC-MMC) to alleviate arm current stress and SM capacitor voltage fluctuations
without introducing a CMV to the motor winding [28–30].
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Figure 1. Circuit configuration of a three-phase MMC.

Although employing a substantial capacitance can minimize SM voltage fluctuations,
it results in the MMC system being oversized and expensive. Consequently, determining
the appropriate size of the SM capacitor is crucial, as it establishes the minimum capacitance
required to attain the optimal performance in the MMC-based motor drive system. The
examination and evaluation of the SM capacitance in high-voltage direct current (HVDC)
transmission systems using the MMC topology are presented in [31–33]. Merlin et al.
introduced a mathematical model to predict the minimum required size of SM capacitors
to maintain the voltage ripple within permissible limits [34]. In [35–37], SM capacitance
was determined by assessing the arm energy fluctuation. However, these approaches
only size the SM capacitance by considering the fundamental frequency components of an
MMC system.

This paper proposes a mathematical model for sizing SM capacitors by estimating
the SM voltage to ensure that the SM voltage fluctuates within an allowable limit during
low-frequency operation for motor drive applications. The main technical contributions of
this study are as follows.

• The approach of utilizing a high-frequency CMV and circulating current injection to
minimize SM capacitor voltage fluctuations during low-speed or standstill operations
of the motor drive is mathematically explained in detail.
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• An algorithm is formulated to estimate the SM capacitor voltage ripple, which is
employed to optimize the SM capacitance in accordance with the system specifications
for the allowable SM capacitor voltage ripple limit (∆vlim).

The remainder of the paper is structured as follows: Section 2 outlines the MMC
circuit and its operation and provides a suppression of the SM voltage ripple during
low-frequency operation. In Section 3, we introduce the proposed optimal algorithm for
designing SM capacitors based on estimating the SM voltage fluctuations under variable
frequency operations. Sections 4 and 5 demonstrate the efficacy of the proposed method
through time-domain simulations using MATLAB/SIMULINK R2021a software and real-
time simulations using the Opal-RT platform. Finally, Section 6 summarizes the key
contributions and conclusions of this study.

2. Circuit and Operation of Modular Multilevel Converter
2.1. Circuit Operation

A schematic representation of a three-phase MMC connected to an induction motor
(IM) is shown in Figure 1. The MMC comprises three phases, with each phase composed
of two arms. The arm linked to the positive bar is termed the upper arm, whereas the
arm connected to the negative bar is referred to as the lower arm. Each arm consists of
Nsm-identical SMs connected in series with a buffer inductor (Larm) designed to control the
circulating currents within the converter arising from voltage disparities between the arms.
The SM circuit can take the form of a half-bridge (HB), full-bridge (FB), or flying-capacitor
power circuit. In this investigation, the HB circuit was employed for its simplicity, featuring
two power semiconductor devices, denoted as IGBT T1 and T2, along with an isolated
capacitor (Cdc) and freewheeling diodes.

The configuration and function of the HB-SM are shown in Figure 2. The SM capacitor
(Cdc) is regulated to be charged, discharged, or bypassed based on the direction of the
arm current and switching state of the IGBT devices. During the ON state of S1, the SM
capacitor voltage (vsm) increases in the positive direction of the arm current (iarm > 0),
indicating the charged mode, and decreases in the negative direction of the arm current
(iarm < 0), signifying the discharged mode, as illustrated in Figure 2a,b, respectively. In
the OFF state of S1, the SM capacitor voltage remains constant, representing the bypassed
mode, irrespective of the arm current direction, as illustrated in Figure 2c,d.
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2.2. Voltage Ripple Reduction under Low-Frequency Operation

Assuming that the output voltage (vx) and current (ix) exhibit symmetrical sinusoidal
waveforms, they can be represented as per Equation (1):{

vx = Vx cos(ωt + δx)
ix = Ix cos(ωt + δx − ϕx)

(1)

where vx and ix correspond to the output voltage and output current of phase x, respectively
(x = a, b, and c represent phases a, b, and c); Vx and Ix denote the amplitudes of the output
voltage and current; while δx represents the initial phase angle of phase x (with a = 0,
b = −2π/3, and c = 2π/3); and ϕx signifies the phase shift between voltage and current.

In accordance with Kirchhoff’s voltage law (KVL), the voltages across the upper
and lower arms (vxP and vxN) can be formulated as expressed in Equation (2). By substi-
tuting the three-phase output voltage from Equation (1) into the upper and lower arm
voltage expressions in Equation (2), the arm voltages can be represented as expressed in
Equation (3). {

vxP = 1
2 VDC − vx

vxN = 1
2 VDC + vx

(2)

{
vxP = 1

2 VDC − Vx cos(ωt + δx)
vxN = 1

2 VDC + Vx cos(ωt + δx)
(3)

where vxP and vxN represent the upper and lower arm voltages of phase x, and VDC denotes
the DC-link voltage.

The upper arm current and lower arm current (ixP and ixN) of phase x can be expressed
as shown in (4). {

ixP = 1
2 ix + icirc,x

ixN = − 1
2 ix + icirc,x

(4)

where ixP and ixN are the upper and lower arm currents of phase x, and icirc,x is the circulat-
ing current of phase x.

As previously noted, the SM voltage ripple experiences significant fluctuations during
the startup operation of motor drives, owing to its inverse proportionality to the frequency
of operation. To mitigate this voltage fluctuation in the SM, a high-frequency CMV de-
noted as vh, along with the circulating current (ih), is introduced into each arm. This
injection enhances the exchange of high-frequency components between the arms of the
converter. The introduced high-frequency voltage and current are expressed as indicated
in Equations (5) and (6).

vh = Vh cos(ωht) =
MmaxVdc

2
cos(ωht) (5)

ih = Ih cos(ωht) (6)

where vh and ih represent the high-frequency voltage and current injected into each arm,
respectively; Vh and Ih denote the amplitudes of the injected high-frequency voltage
and current, respectively; ωh represents the frequency of vh; and ih, Mmax is a coefficient
representing the modulation margin (Mmax = 0.85–0.95).

The upper and lower arm voltages (vxP and vxN), which account for the introduced
high-frequency voltage (vh), can be obtained as expressed in Equation (7).{

vxP = 1
2 VDC − vx − vh

vxN = 1
2 VDC + vx + vh

(7)

Moreover, the upper and lower arm currents (ixP and ixN), factoring in the injected
high-frequency circulating current (ih), are represented in Equation (8). It is important to
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highlight that the frequency (fh) must be chosen to be less than one-tenth of the switching
frequency of the converter (fh ≤ fsw/10) to ensure effective controllability.{

ixP = 1
2 ix + icirx,dc + ih

ixN = − 1
2 ix + icirx,dc + ih

(8)

The instantaneous powers of the upper and lower arms (PxP, PxN) can be determined,
as outlined in Equation (9), and derived from Equation (10) by multiplying the arm voltage
and current from Equations (7) and (8), respectively. PxP =

(
1
2 VDC − vx − vh

)(
1
2 ix + icirx,dc + ih

)
PxN =

(
1
2 VDC + vx + vh

)(
− 1

2 ix + icirx,dc + ih

) (9)

where PxP and PxN represent the instantaneous power of the upper and lower arm in phase
x, respectively. 

PxP = 1
4 VDCix +

1
2 VDCicirx,dc +

1
2 VDCih − 1

2 vxix

−vxicirx,dc − vxih − 1
2 vhix − vhicirx,dc − vhih

PxN = − 1
4 VDCix +

1
2 VDCicirx,dc +

1
2 VDCih − 1

2 vxix

+vxicirx,dc + vxih − 1
2 vhix + vhicirx,dc + vhih

(10)

The powers in the upper and lower arms consist of fundamental, second, and high-
frequency components injected into each arm to mitigate the SM voltage ripple, as expressed
in Equation (10). The high-frequency components have a minimal impact on the voltage
ripple, which is primarily influenced by the fundamental and second harmonics [38].
Consequently, the high-frequency components were disregarded, and only the fundamental
and second-order harmonic components were considered, as indicated in Equation (11).{

PxP = 1
2 VDCicirx,dc − 1

2 vxix +
1
4 VDCix − vxicirx,dc − 1

2 Vh Ih
PxN = 1

2 VDCicirx,dc − 1
2 vxix − 1

4 VDCix + vxicirx,dc +
1
2 Vh Ih

(11)

At a steady state, the first and second terms in Equation (11) are equal because of
the power balance between the DC and AC sides. The remaining terms consist of both
fundamental and high-frequency components, representing the power exchange within the
converter induced by the AC and DC components of the circulating currents, respectively,
leading to fluctuations in the SM capacitor voltage. Based on these terms, the DC circulating
current icircx,dc can be calculated as expressed in Equation (12).

icirx,dc =
vxix

VDC
(12)

As expressed in Equation (11), the powers in the upper and lower arms are similar,
with certain terms having opposite signs, and there is no difference between the upper and
lower arms in the SM voltage fluctuation control. For simplicity, only the upper arm power
was examined to mitigate the SM voltage fluctuation.

PxP,rpl =
1
4

VDCix − vxicirx,dc −
1
2

Vh Ih (13)

where PxP,rpl represents the power ripple of phase x in the upper arm.
To mitigate the SM voltage fluctuation, the ripple in the upper arm power is regulated

to zero (PxP,rpl = 0). By substituting the circulating current from Equation (12) into the arm
power ripple in Equation (13), the magnitude of the high-frequency components can be
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determined, as expressed in Equation (14). The magnitude of the high-frequency current
injected into each arm can be calculated as expressed in Equation (15).

1
2

Vh Ih =
1
4

VDCix −
v2

xix

VDC
(14)

Ih =
1

Vh

(
1
2

VDC − 2v2
x

VDC

)
ix (15)

By substituting the magnitude of the injected high-frequency current from Equation (15)
into Equation (6), the injected high-frequency current can be represented as indicated in
Equation (16).

ih =
1

Vh

(
1
2

VDC − 2v2
x

VDC

)
ix cos(ωht) (16)

Consequently, the voltage fluctuation in the SM capacitor is alleviated during low-
frequency operations through the injection of a high-frequency current into each arm of the
MMC system.

3. Design SM Capacitor in Low-Speed Range of Medium Voltage Motor Drives

In this section, an optimal design algorithm for the SM capacitor is presented, which
relies on the estimation of the SM voltage ripple during the low-frequency operation of
motor drives. The proposed method ensures that the voltages of the SM capacitors fluctuate
within a predefined limit by considering the voltage ripple requirements of the system.

3.1. Estimation of Submodule Voltage Fluctuation

The power ripple in the upper arm can be obtained by substituting Equation (12) into
Equation (13), as expressed in Equation (17). Similarly, the power ripple in the lower arm
can be represented by Equation (18). Subtracting the power ripple of the lower arm from
that of the upper arm yields the power ripple for the corresponding phase, as expressed in
Equation (19).

PxP,rpl = VDC

(
1
4
− v2

x

V2
DC

)
ix −

1
2

Vh Ih (17)

PxN,rpl = −VDC

(
1
4
− v2

x

V2
DC

)
ix +

1
2

Vh Ih (18)

Px,rpl =
1
2

VDCix − Vh Ih (19)

where PxN,rpl represents the power ripples of phase x in the lower arm.
Integrating the power ripple of the phase (Px,rpl) from Equation (19), the energy ripple

of phase x (Ex,rpl) considering the injected high-frequency components can be obtained, as
indicated in Equation (20).

Ex,p−p =
∫ (1

2
VDCix − Vh Ih

)
dt (20)

where Ex,p−p represents the energy ripple of phase x.
Assuming that the energy distributed among each SM is equal, the relationship be-

tween the energy ripple of phase x and the SM capacitor voltage ripple can be established,
as expressed in (21).

Ex,p−p = NsmCdc
2

(
v2

c,max − v2
c,min

)
= NsmCdcvc∆vp−p

(21)

where Ex,p−p is the energy ripple of phase x in the upper arm, and ∆vp−p is the peak–peak
voltage ripple of the SM capacitor.
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By substituting the energy ripple from Equation (21) into Equation (20), the SM voltage
ripple can be derived, as expressed in Equation (22). The process of estimating the SM
voltage fluctuation based on the energy fluctuation is illustrated in Figure 3.

∆vp−p =
1

Cdc

∫ (1
2

ix −
Vh Ih
VDC

)
dt (22)Energies 2024, 17, x FOR PEER REVIEW 8 of 19 
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3.2. Optimal Sizing Algorithm of the SM Capacitor

Figure 4 illustrates the optimal design algorithm for SM capacitance, employing a
mathematical model to estimate the SM voltage fluctuation during low-frequency oper-
ations. In addition, the voltage ripple limit (∆vc,lim) of the SM capacitor is predefined as
a system requirement, which ensures that the SM capacitor voltage fluctuates within an
allowable limit.

Initially, the SM capacitance is selected to guarantee that the voltage fluctuation
of the SM capacitor remains within the specified limit as per the system requirement
(∆vp−p ≤ ∆vlim). It is important to emphasize that the value of ∆vlim may vary based on the
specific requirements of the different systems. Consequently, the minimum capacitance
must adhere to the given constraint, as expressed by Equation (23).

Cdc ≥
1

∆vlim

∫ (1
2

ix −
Vh Ih
VDC

)
dt (23)

Based on the system parameters and the high-frequency components injected into each
arm during low-frequency operations, the energy ripple and SM voltage fluctuation can be
estimated using the outlined procedure of the proposed algorithm, as illustrated in Figure 3.
By assessing the SM voltage ripple against the defined voltage ripple limit, the optimal
capacitance of the SM capacitor can be identified using the proposed algorithm procedure
outlined in Figure 4. Figure 5 depicts the changes in the SM capacitor voltage fluctuation
(∆vp−p) under the influence of the injected high-frequency components, considering the
variations in capacitance and operational frequency. Furthermore, the system permits SM
capacitor voltages to fluctuate within an acceptable range of ∆vlim = 10%. For an operational
frequency of fn = 10 Hz, the SM voltage ripple can reach 2.8% with a higher SM capacitance
of Cdc = 3500 µF. However, the system can be optimized by selecting an SM capacitance of
Cdc = 1000 µF while still meeting the system requirement of ∆vlim.
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If the SM voltage ripple exceeds the voltage limit (∆vc,p−p > ∆vlim), the SM capacitance
must be increased to mitigate the voltage ripple value. If the SM voltage ripple is lower
than the voltage limit (∆vc,p−p < ∆vlim), the SM capacitance must be reduced to optimize the
capacitance value. This process is iterated until the voltage ripple approaches the voltage
ripple limit (∆vc,p−p ≈ ∆vlim), leading to the determination of the optimal SM capacitance.
In this investigation, a voltage ripple limit of ∆vlim = 10% was selected, corresponding to
a rated SM voltage of vc,rated = 1600 V, which is established as an acceptable limit for the
SM capacitor voltage. Consequently, the SM capacitance was selected as Cdc = 1000 µF to
ensure that the SM voltage fluctuation was ∆vlim ≤ 10%.

3.3. SM Voltage Balancing Control

Figure 6 depicts the SM capacitor voltage balancing control employing the high-
frequency injection method. This method encompasses phase average voltage control,
individual SM voltage control, and SM voltage reference generation [27]. The average
phase voltage (Vcx), expressed in Equation (24), is regulated to track the reference value
of the average voltage (V∗

c ) using a proportional–integral (PI) controller, as illustrated in
Figure 6a. The output from the phase voltage controller (i∗cirx,dc) serves as the reference
for the circulating current controller. Additionally, the circulating current (icir,x) was con-
trolled to adhere to the circulating current reference while incorporating a high-frequency
component (ih).

Vcx =
1

2Nsm

Nsm

∑
j=1

(
Vcj,xu + Vcj,xl

)
(24)

where Vcx is the capacitor voltage average of phase x; Vcj,xu and Vcj,xl are the jth SM voltages
of the upper and lower arms, respectively; and Nsm is the number of SM per arm.

The control of the individual SM voltages is presented in Figure 6b, where each SM
voltage is regulated to track the voltage reference (V∗

c ). Furthermore, the direction of the
arm currents (ixP and ixN) determines the polarity of the controller output, which can be
employed for SM voltage reference generation. A block diagram illustrating the SM voltage
reference generation in the upper and lower arms with a high-frequency common-mode
voltage (CMV) injected into each arm is shown in Figure 6c and expressed mathematically
in Equations (25) and (26), respectively.
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3.4. Overall System Control

Figure 7 illustrates a comprehensive control block diagram of the MMC-based motor
drive system, encompassing both motor control and converter control. Motor drive control
employs the field-oriented control (FOC) method, which consists of an outer loop controller
and an inner loop controller. In the outer loop controller, the actual motor speed (ω) and
rotor flux (ψ) are regulated to track the reference values of
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* and ψ*, thus providing the
direct–quadrature (d-q) axis current references (i*d and i*q) and stator current angle (θr).
In the inner controller, the measured stator current (id and iq) is regulated to follow the
reference values i*d and i*q. The output of the FOC control provides voltage commands (ma,
mb, and mc), which are utilized to generate modulation signals for SM voltage reference
generation. Further details regarding the FOC method for controlling motor drives using
the d-q reference frame can be found in [39].

Regarding MMC control, the control strategy for SM voltage balancing encompasses
the average SM voltage balancing control, individual SM voltage balancing control, and
circulating current control, contributing to the generation of the SM voltage reference. A
detailed discussion of the components of the SM capacitor voltage balancing control is pro-
vided in Section 3.3. Additionally, the high-frequency common-mode voltage (CMV) injec-
tion method was employed to mitigate the SM voltage fluctuation during the standstill/low-
speed period of the motor drives. The phase-shifted pulse-width modulation (PSPWM)
scheme is utilized to generate the switching state of the power switching devices, as
depicted in Figure 7.
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4. Simulation Results

In this section, we verify the efficiency of the proposed approach in reducing the size of
the SM capacitor using time-domain simulation with MATLAB/SIMULINK software and
real-time simulation using the OPAL/RT platform. The motor converter system consisted
of an induction motor (IM) and a three-phase MMC with 3 SMs per arm, totaling 18 SMs.
The system parameters are listed in detail, as shown in Table 1.
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Table 1. System Parameters.

Parameters Symbol Values

DC-link voltage VDC 4800 V
Number of SMs per arm NSM 3

Arm inductance Larm 1.5 mH
SM capacitance Cdc 1000 uF

Switching frequency fsw 2000 Hz
Nominal frequency fn 60 Hz

Rated voltage Vrated 3300 V
Rated current Irated 215 A
Rated speed ωrated 1800 rpm
Rated torque Trated 5306 N.m

Voltage ripple limit ∆vlim 10%

The variation in the SM voltage ripple, according to the variation in the operating
frequency and considering high-frequency components injected into each arm to eliminate
the SM capacitor voltage fluctuation, is illustrated in Figure 8. Theoretically, the SM voltage
fluctuation is inversely proportional to the operation frequency, resulting in significant
voltage fluctuation at a very low frequency operation (fn = 1 Hz) without injecting high-
frequency CMV (∆vp−p = 16,074 V), reducing significantly (∆vc,p−p = 159.155 V) with the
support of injected high-frequency components, as shown in Figure 8. Therefore, the SM
capacitor voltage ripple must be mitigated during the standstill/low-speed operation of
the motor drive to ensure a high performance of the system.
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The effectiveness of the proposed algorithm for estimating SM voltage fluctuations
is validated by comparing the estimated SM capacitor voltage fluctuation, as defined in
Equation (22), and the real values of the SM voltages in the upper arm (vcu) and lower
arm (vcl). This comparison is depicted as shown in Figure 9a,b. It is evident that the
estimated SM voltage, indicated by the red line, closely tracked the real values of the
individual SM voltages in terms of both shape and magnitude. The simulation involved
high-frequency components injected at a very low motor speed, with four SMs integrated
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into each converter arm and a DC-link voltage of 8000 V. The proposed algorithm exhibited
excellent efficiency in estimating SM voltage fluctuations, with an error of less than 1%, as
illustrated in Table 2 and Figure 10.

Figure 11 presents a recommendation for optimizing the SM capacitance at various
operating frequencies using the proposed algorithm, based on the predefined system
requirement for the SM voltage ripple limit (∆vlim). Assuming that the system allows
for a maximum voltage ripple of ∆vlim = 10%, the SM capacitance can be designed as
Cdc = 1000 µF, as illustrated in Figure 11. The performance of the MMC-based motor drive
system, considering the optimal SM capacitance of Cdc = 1000 µF and a high-frequency
CMV injection, is shown in Figure 12. With the selected SM capacitance of Cdc = 1000 µF, the
SM capacitor voltages were maintained in balance at the rated voltage of 1600 V, ensuring
that the voltage fluctuations remained within the acceptable range defined by the system
requirement of ∆vlim.

Table 2. Performance comparison of SM voltage ripple estimation method.

Frequency
[fn]

Voltage Ripple
Estimation

Real SM
Voltage Ripple

5 Hz 9.8% 9.5%
10 Hz 8.6% 8.1%
15 Hz 6% 6.6%
20 Hz 5.4% 5.8%
25 Hz 3.6% 4.2%
30 Hz 2.2% 2.9%
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5. Real-Time Simulation

In this section, we evaluate the effectiveness of the proposed algorithm through real-
time simulations using an OPAL-RT 5707 real-time simulator. These simulations ensured
that computations occurred in real-time and were consistent with the results obtained
from the hardware setup. The system configuration of the real-time simulator is illustrated
in Figure 13, consisting of an OPAL-RT5707 real-time simulator, an RT-Lab target PC, an
interface PC, and an oscilloscope. Initially, the proposed algorithm was conducted on
the MATLAB/SIMULINK platform, seamlessly integrated into RT-LAB. Subsequently,
real-time simulations were conducted using multiple cores. It is important to note that the
OPAL-RT/FPGA analog output is limited to a range of ±16 V, requiring the application of
a scaling factor for the effective visualization of the analog output waveforms.

Figure 14 illustrates the effectiveness of the proposed algorithm in estimating the
voltage of the SM capacitor. The estimation, denoted by (22), was compared with the
actual SM capacitor voltage. Owing to equipment constraints, only one SM voltage in
both the upper and lower arms was compared with its estimated value. As shown in
Figure 14a,b, the red lines representing the estimated SM capacitor voltage closely track the
blue lines representing the real SM capacitor voltage. This observation validates the robust
performance of the proposed algorithm for accurately estimating SM capacitor voltages.
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With the estimated SM capacitor voltage shown in Figure 14, the optimal SM capac-
itance of Cdc = 1000 µF was selected to ensure that the SM capacitor voltage fluctuated
within the predefined range of the system specification. The performance of the proposed
algorithm in fine-tuning the capacitance of the SM was evaluated at exceptionally low
motor speeds ofω = 150 rpm using a real-time simulator, as shown in Figure 15. As indi-
cated in Figure 15b, the voltages across the SM capacitors were maintained at equilibrium
at the rated voltage of vc,rated = 1600 V, and the fluctuations in the SM capacitor voltages
remained within 10%. This demonstrates compliance with the system requirements speci-
fying ∆vlim = 10%.
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6. Conclusions

This paper proposes an optimal design algorithm to determine the optimal capacitance
of SM capacitors in an MMC, using a proposed SM voltage ripple estimation algorithm to
ensure that the SM voltages fluctuate within an acceptable range during low-frequency op-
erations. Additionally, the concept of high-frequency CMV and circulating current injected
into each arm has been conducted to minimize SM capacitor voltage fluctuations during
low-speed or standstill operations of motor drives. Consequently, the proposed algorithm
demonstrates exceptional precision, predicting the SM capacitor voltage ripple with a
variance of less than 1%. The effectiveness of the proposed method was verified using time-
domain simulation results with MATLAB/SIMULINK software and real-time simulation
results with the OPAL-RT simulator platform. The simulation results demonstrate that the
capacitance value obtained through the proposed optimal design algorithm guarantees
that the SM capacitor voltage fluctuates within an acceptable range of ∆vlim = 10%.
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