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Abstract: This paper proposes a hybrid control scheme that combines fractional-order sliding-mode
control (FOSMC) with radial basis function neural network adaptive damping passivity-based
control (RBFPBC) for modular multilevel converters (MMC) under non-ideal operating conditions.
According to the passive control theory, we establish the Euler–Lagrange (EL) models of positive
and negative sequences based on the unbalanced grid. A passivity-based controller that satisfies
the energy dissipation law is designed. To enable rapid convergence of the system energy storage
function, a radial basis function neural network (RBFNN) is introduced to adjust the injection
damping adaptively. Additionally, a fractional-order sliding-mode controller (FOSMC) is designed.
The fractional-order sliding mode surface used can improve tracking performance, and effectively
suppressed the undesirable chattering phenomenon compared to the traditional sliding-mode control
(SMC). Finally, combining the two control methods can effectively solve the issue of passivity-based
control (PBC) being too dependent on parameters. The proposed hybrid control scheme enhances the
ability of the system to resist disturbances, and improves its overall robustness. Simulation results
demonstrate the feasibility and effectiveness of this control method.

Keywords: modular multilevel converters; RBF neural network; fractional-order sliding-mode
control; passive control

1. Introduction

The development of power electronic devices has led to the transformation of direct
current transmission from the initial two-level converter to the three-level converter and
finally to MMC. MMC has significant advantages in transmission efficiency and topology,
compared to traditional converters, making it a popular choice for flexible direct current
transmission [1]. However, the complex structure of MMC makes it difficult to control,
and power quality and system reliability are still problematic in the event of a grid fault
resulting in voltage imbalance or disturbances [2,3]. Therefore, further research is needed
to improve the control under unbalanced grid conditions.

In the classical control theory, the proportional integral controller (PI) and proportional
resonant controller (PR) can control the internal characteristics of the model well [4,5]. These
controllers have the characteristics of simple structure, easy implementation, and a wide
range of application. However, they have high sensitivity to changes in the environment.
Thus, it is necessary to constantly adjust the quality of the data acquisition level with the
environmental changes. Additionally, the tracking ability for time-varying alternating
current (AC) signals is poor. As a result, many nonlinear control methods have been
proposed to supplement traditional linear controllers. Compared with the traditional
control, model predictive control (MPC), sliding-mode control (SMC), passivity-based
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control (PBC), etc. have been found to have better capability in dealing with non-ideal
states. Reference [6] proposes the MPC strategy in the case of model mismatch and system
parameter instability. A SMC strategy is designed for the inner loop in [7], which improves
the transient characteristics of the system. It can make the system move according to a
predetermined trajectory, and independent of the parameters of the system. However,
chattering phenomena may occur, causing fluctuations as the system approaches the
sliding mode surface. This can result in failure to converge, and eventually instability. To
address this issue, fractional order sliding mode control (FOSMC) has been proposed as an
improved nonlinear control method based on SMC. The sliding-mode surface designed by
introducing the fractional order theory can effectively reduce the chattering phenomenon
and obtain a better tracking performance compared with SMC, as demonstrated in [8–10].

In [11], a proposal for a passivity-based control (PBC) strategy of LCL converter is
presented. PBC is a nonlinear control strategy that considers the energy point of view.
By injecting damping into the system, the energy function and the error function of the
system will asymptotically converge to the desired value. This control method offers the
advantages of good stability, robustness and ease of implementation [12–14]. However, the
PBC strategy has a disadvantage of relying on the control parameter too much, which can
lead to shortcomings when facing the internal parameter changes or external disturbances,
etc. [15,16]. Additionally, the size of the injection damping in PBC is closely related to the
convergence speed of the energy storage function. If the injection damping is too small, it
will slow down the response of the system. Theoretically, the larger the injection damping
is, the faster the system convergence will be. However, in actual engineering, the system
may become uncontrollable if the injection damping is too high. In order to ensure an
appropriate value, several solutions have been proposed in [17–20].

In [17], the optimal damping parameter was obtained by observing the stability,
amplitude and phase frequency characteristic curves of the system for different damping
values. It should be noted that this method has a large human factor. Reference [18] derives
the critical damping from the resonance relationship using a complex formula that is not
applicable in practical engineering. The self-tuning of injection damping is achieved though
the use of fuzzy control [19]. However, this method relies heavily on the rule table formed
by experts’ experience, and lacks adaptive ability. Another approach is the use of the
particle swarm optimization (PSO) algorithm to design the parameters of the PBC [20].
However, this method has a slow computational speed and requires offline tuning. The
radial basis function neural network (RBFNN) is a feed-forward neural network that has a
simple structure and excellent performance. It consists of three layers: topology-input layer,
hidden layer and output layer. RBFNN solves the issues of high computation and slow
learning speed that are present in most learning algorithms. Therefore, it is more suitable
for online control. References [21–23] describe some applications in power electronics.

Motivated by the above studies, this paper proposes a hybrid control strategy, FOSMC-
RBFPBC, which was used to control the MMC under unbalanced grids. Firstly, RBFNN
is proposed for online adaptive control of injection damping in PBC, which solves the
problem of injection damping size selection. It can make the system converge quickly by
adjusting the injection damping size online. Secondly, FOSMC is used to obtain a better
tracking performance. Finally, this research examines the advantages and disadvantages of
the two control methods, FOSMC and RBFPBC, and proposes their combination to comple-
ment each other. The resulting system exhibits fast response speed and low sensitivity to
parameter variations and external disturbances.

The manuscript is structured as follows: Section 2 presents the topology and control pro-
cess of MMC. Section 3 details the design procedure for the FOSMC-PBC. Section 4 explains the
use of RBFNN to adaptively adjust injection damping. Finally, Section 5 presents simulations
for three different conditions to validate the proposed theoretical approach.
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2. The Topology and Mathematical Modelling of MMC
2.1. MMC Topology

The MMC topology is shown in Figure 1. The ABC three-phase and its upper and
lower bridge arms are identical symmetrical structures, and each bridge arm consists
of n sub-module, bridge arm inductance and bridge arm resistance connected in series,
and the inverted AC current is connected to the power grid after passing through the
filter inductance Lm and filter resistance Rm. The sub-module is a half-bridge structure.
Controlling the output voltage magnitude of the MMC can be achieved by regulating the
conduction and switching off of the switching devices within the sub-module.
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Figure 1. MMC topology. 
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2.2. MMC Mathematical Modelling

According to Kirchhoff’s law, the mathematical model for MMC can be obtained as
uga = usa − ( L

2 + Lg)
dia
dt − ( R

2 + Rg)ia
ugb = usb − ( L

2 + Lg)
dib
dt − ( R

2 + Rg)ib
ugc = usc − ( L

2 + Lg)
dic
dt − ( R

2 + Rg)ic

(1)

where, uga, ugb and ugc are the three-phase AC voltages on the grid side; usa, usb and usc are
the three-phase AC voltages on the input side of the MMC; ia, ib and ic are the three-phase
currents on the grid side.

A transformation of the above equation gives:{
usd = ugd − Reqid − Leq

did
dt + ωLeqiq

usq = ugq − Reqiq − Leq
diq
dt − ωLeqid

(2)

where Req = R/2 + Rg, Leq = L/2 + Lg; ω is the grid fundamental frequency corner
frequency, ω = 2π f .
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Since there will be positive and negative sequence components when the grid is
unbalanced, an expansion of (2) is performed:

u+
sd = u+

gd − Leq
di+d
dt − Reqi+d + ωLeqi+q

u+
sq = u+

gq − Leq
di+q
dt − Reqi+q − ωLeqi+d

u−
sd = u−

gd − Leq
di−d
dt − Reqi−d − ωLeqi−q

u−
sq = u−

gq − Leq
di−q
dt − Reqi−q + ωLeqi−d

(3)

Figure 2 displays the MMC control block diagram. The diagram illustrates the net side
of the measured current after the separation of positive and negative sequences. The outer
loop control of the current reference value is used to calculate the difference. The FOSMC-
RBFPBC generates a given value of the voltage, which is then modulated to generate PWM
waveforms. By controlling the MMC sub-modules of the power tube, overall system control
is achieved.
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3. Design of FOSMC-PBC Controller
3.1. Euler–Lagrange Model

Rewriting (3) into the EL-model form as{
M+ .

x+ + J+x+ + R+x+ = u+

M− .
x− + J−x− + R−x− = u− (4)

where

M+ = M− =

(
Leq 0
0 Leq

)
, J+ =

(
0

ωLeq

−ωLeq
0

)
, J− =

(
0

−ωLeq

ωLeq
0

)

R+ = R− =

(
Req 0
0 Req

)
, u+ =

(
u+

gd − u+
sd

u+
gq − u+

sq

)
, u− =

(
u−

gd − u−
sd

u−
gq − u−

sq

)

x+ =

(
i+d
i+q

)
, x− =

(
i−d
i−q

)
The positive and negative superscripts represent the positive and negative sequence

components. u is the input vector; x is the state variable; J is the interconnection matrix; R
is the semipositive dissipation matrix; and M is the positive definite energy storage matrix.

3.2. Passivity-Based Controller Design

For the system with n inputs and m outputs can given by:{ .
x = f (x, u)
y = h(x)

, x(0) = x0 ∈ Rn (5)
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where x, u, and y are state variables, input variables and output variables, respectively.
For the system (5), to prove that it is strictly passive, it is necessary to satisfy the

following dissipation inequality for any t > 0:

H(x(t))− H(x(0)) ≤
∫ t

0
uTydτ−

∫ t

0
Q(x)dτ (6)

Or: .
H(x) ≤ uTy − Q(x) (7)

The MMC energy storage functions for positive and negative order are chosen, respec-
tively, as  V+ = (x+)T M+x+

2

V− = (x−)T M−x−
2

(8)

Derivation of (8) gives:{ .
V
+
= (x+)TM+ .

x+ = (x+)Tu+ − (x+)T J+x+ − (x+)TR+x+
.

V
−
= (x−)TM− .

x− = (x−)Tu− − (x−)T J−x− − (x−)TR−x−
(9)

According to (9), since it is an antisymmetric matrix, it can be obtained that
(x+)T J+(x+) = (x−)T J−(x−) = 0. And then, making y = x+ , Q(x) = (x+)TR+x+

and y = x− , Q(x) = (x−)TR−x− , respectively. The simplification of (9) can satisfy (7);
it can be seen that the MMC system is strictly passive at all times. When the MMC is
passively controlled, the system is stable and controllable.

Define the desired equilibrium points of the positive-sequence and negative-sequence
inner-loop currents, respectively, as

x+re f =

[
i+dre f
i+qre f

]
, x−re f =

[
i−dre f
i−qre f

]
(10)

where i+dre f , i+qre f , i−dre f and i−qre f are the desired equilibrium points of the positive-sequence
d-axis, positive-sequence q-axis, negative-sequence d-axis and negative-sequence q-axis
currents, respectively, i.e., the reference values of the inner-loop currents.

The positive and negative order state variable errors are:

x+e =

[
x+ed
x+eq

]
=

[
x+d − x+dre f
x+q − x+qre f

]
, x−e =

[
x−ed
x−eq

]
=

[
x−d − x−dref
x−q − x−qref

]
(11)

Substituting (11) into (4), it can be obtained that{
M+ .

x+e + Jx+e + R+x+e = u+ − M+ .
x+re f − Jx+re f − Rx+re f

M− .
x−e + Jx+e + R−x−e = u− − M− .

x−re f − Jx−re f − Rx−re f
(12)

In order to speed up the convergence of the system, let the dissipation terms of the
injected damping of the positive and negative sequences be{

R+
a x+e = (R+ + R+

d )x+e
R−

a x−e = (R− + R−
d )x−e

(13)

where Ra is the dissipation factor, and Rd is the injection damping.

R+
d =

[
R+

d1 0
0 R+

d2

]
, R−

d =

[
R−

d1 0
0 R−

d2

]
(14)
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Combining (12) and (13) can give the following equation{
M+ .

x+e + R+
a x+e = u+ − M+ .

x+re f − J+x+ − R+x+re f + R+
d x+e

M− .
x−e + R−

a x−e = u− − M− .
x−re f − J−x− − R−x−re f + R−

d x−e
(15)

Let the right-hand side of (15) be 0. The control laws for the positive and negative
sequences are selected as{

u+ = M+ .
x+re f + J+x+ + R+x+re f − R+

d x+e
u− = M− .

x−re f + J−x− + R−x−re f − R−
d x−e

(16)

The error energy storage function of the system can be defined as:{ .
H

+
= ∂(x+e )

TM+x+/∂x+ = (x+e )
TM+ .

x+e
.

H
−
= ∂(x−e )

TM−x−/∂x− = (x−e )
TM− .

x−e
(17)

Substituting (16) into (17), it can be obtained that{ .
H

+
= −(x+e )

T
(R+ + R+

d )x+e < 0
.

H
−
= −(x−e )

T
(R− + R−

d )x−e < 0
(18)

According to (18), the chosen control law accelerates the convergence of the system.
Substituting the corresponding matrices into (16), respectively, the passive control signals
of the system under positive and negative sequences can be obtained as

u+
sd = u+

gd − Leq
di+dre f

dt + ωLeqi+q − Reqi+dre f + R+
d1x+ed

u+
sq = u+

gq − Leq
di+qre f

dt − ωLeqi+d − Reqi+qre f + R+
d2x+eq

u−
sd = u−

gd − Leq
di−dre f

dt − ωLeqi−q − Reqi−dre f + R−
d1x−ed

u−
sq = u−

gq − Leq
di−qre f

dt + ωLeqi−d − Reqi−qre f + R−
d2x−eq

(19)

The control block diagram of the d-axis passive control under positive sequence
components is shown in Figure 3.
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In practical engineering, the conversion between analog and digital signals requires
a delay of one sampling period, so the control law of the discretized passive controller is
as follows:

u+
sd(k) = u+

gd(k + 1) + ωLeqi+q (k + 1)− Reqi+dre f (k + 1) + R+
d1x+ed(k + 1)

u+
sq(k) = u+

gq(k + 1)− ωLeqi+d (k + 1)− Reqi+qre f (k + 1) + R+
d2x+eq(k + 1)

u−
sd(k) = u−

gd(k + 1)− ωLeqi−q (k + 1)− Reqi−dre f (k + 1) + R−
d1x−ed(k + 1)

u−
sq(k) = u−

gq(k + 1) + ωLeqi−d (k + 1)− Reqi−qre f (k + 1) + R−
d2x−eq(k + 1)

(20)
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3.3. Fractional-Order Sliding-Mode Passivity-Based Controller Design

Fractional order calculus is an extension of calculus to a more general form, i.e., it can
be differentiated or integrated to fractional order [24,25]. It can be defined as

aDα
t =


dα

dtα α > 0
1 α = 0∫ t

a (dτ)α α < 0

(21)

where aDα
t is the defining symbol of fractional-order calculus; a and t represent the upper

and lower limits; and α is the number of integrations.
Common examples of fractional-order calculus are RL, GL, and Caputo. Caputo

fractional-order differentiation is more widely used in practice; it is defined as

Dα f (t) =
1

Γ(n − α)

∫ t

0

f (n)(τ)

(t − τ)α−n+1 dτ, n − 1 < α < n (22)

where Γ(·) is a gamma function, Γ(·) =
∫ ∞

0 e−ttγ−1dt; n is a positive integer, n = 1.
Since the MMC system with sliding-mode controllers exhibits vibration during conver-

gence, which tends to degrade the performance of the control system, the fractional-order
theory is introduced into the sliding-mode surface to mitigate the vibration. For the positive
and negative order systems, the following sliding-mode surface can be designed

s1 = b1x+ed + c1Dα1−1x+ed + d1D1−µ1 x+ed
s2 = b2x+eq + c2Dα2−1x+eq + d2D1−µ2 x+eq

s3 = b3x−ed + c3Dα3−1x−ed + d3D1−µ3 x−ed
s4 = b4x−eq + c4Dα4−1x−eq + d4D1−µ4 x−eq

(23)

where bi, ci, and di are slip-mode surface coefficients, i = 1, 2, 3, 4; Dα−1xe is the α − 1 order
integral over the deviation xe; D1−µxe is the 1 − µ order differentiation over the deviation
xe. 0 < α, µ < 1.

For ease of calculation, the fractional-order differential and fractional-order integral
terms are each shifted forward by one sampling period, while the error xe(k) is approxi-
mately changed to xe(k) = i(k + 1)− iref(k − 1). Combined with (22), the fractional-order
sliding surface is given as follows:

s1(k) = b1x+ed(k) + c1Dα1−1x+ed(k − 1) + d1D1−µ1 x+ed(k − 1)
s2(k) = b2x+eq(k) + c2Dα2−1x+eq(k − 1) + d2D1−µ2 x+eq(k − 1)
s3(k) = b3x−ed(k) + c3Dα3−1x−ed(k − 1) + d3D1−µ3 x−ed(k − 1)
s4(k) = b4x−eq(k) + c4Dα4−1x−eq(k − 1) + d4D1−µ4 x−eq(k − 1)

(24)

Since the derivation process for the negative order is similar to that for the positive
order, only the positive order will be analyzed next.

The MMC grid-side currents i+d (k + 1) and i+q (k + 1) need to be delayed by one
sampling period due to the sampling delay of the digital controller, which cannot be
obtained by instantaneous k-sampling. Therefore, with the help of the Euler discrete
method [26], (3) can be discretized as i+d (k + 1) = Ts

Leq
[u+

gd(k)− u+
sd(k)] + (1 − TsReq

Leq
)i+d (k) + ωTsi+q (k)

i+q (k + 1) = Ts
Leq

[u+
gq(k)− u+

sq(k)] + (1 − TsReq
Leq

)i+q (k)− ωTsi+d (k)
(25)
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Substituting (24) into (23), it can be obtained that

s1(k) = b1[
Ts
Leq

(u+
gd(k)− u+

sd(k)) + (1 − TsReq
Leq

)i+d (k) + ωTsi+q (k)− i+dre f (k − 1)]

+c1Dα−1x+ed(k − 1) + d1D1−µx+ed(k − 1)

s2(k) = b2[
Ts
Leq

(u+
gq(k)− u+

sq(k)) + (1 − TsReq
Leq

)i+q (k)− ωTsi+d (k)− i+qre f (k − 1)]

+c2Dα−1x+eq(k − 1) + d2D1−µx+eq(k − 1)

(26)

In order to weaken the effect of uncertainty, the discrete exponential convergence law
is given as {

s1(k + 1)− s1(k) = −Tsε1sgn(s1(k))− Tsq1s1(k)
s2(k + 1)− s2(k) = −Tsε2sgn(s2(k))− Tsq2s2(k)

(27)

where εi and qi are convergence law coefficients and are positive integers, i = 1, 2.
To further improve the high-frequency chattering, sgn(·) is replaced by the saturation

function sat(·). {
s1(k + 1)− s1(k) = −Tsε1sat(s1(k))− Tsq1s1(k)
s2(k + 1)− s2(k) = −Tsε2sat(s2(k))− Tsq2s2(k)

(28)

where

sat(s) =


1 s > ∆
ks s ≤ ∆, k = 1

∆
−1 s < −∆

(29)

Combining (24) and (26), (28) can be written as

s1(k + 1)− s1(k) = b1[x+ed(k + 1) + i+dre f (k − 1)− Ts
Leq

u+
gd(k)

+ Ts
Leq

u+
sd(k)− (1 − TsReq

Leq
)i+d (k)− ωTsi+q (k)]

+c1Dα−1x+ed(k)− c1Dα−1x+ed(k − 1)

+d1D1−µx+ed(k)− d1D1−µx+ed(k − 1)

s2(k + 1)− s2(k) = b2[x+eq(k + 1) + i+qre f (k − 1)− Ts
Leq

u+
gq(k)

+ Ts
Leq

u+
sq(k)− (1 − TsReq

Leq
)i+q (k) + ωTsi+d (k)]

+c2Dα−1x+eq(k)− c2Dα−1x+eq(k − 1)

+d2D1−µx+eq(k)− d2D1−µx+eq(k − 1)

(30)

Combining (28) and (30), it can be obtained that

x+ed(k + 1) = −i+dre f (k − 1) + (1 − TsReq
Leq

)i+d (k) +
Ts
Leq

[u+
gd(k)− u+

sd(k)] + ωTsi+q (k)

− c1
b1
[Dα−1x+ed(k)− Dα−1x+ed(k − 1)]− d1

b1
[D1−µx+ed(k)− D1−µx+ed(k − 1)]

− 1
b1
[Tsε1sgn(s1(k)) + Tsq1s1(k)]

x+eq(k + 1) = −i+qre f (k − 1) + (1 − TsReq
Leq

)i+q (k) +
Ts
Leq

[u+
gq(k)− u+

sq(k)]− ωTsi+d (k)

− c2
b2
[Dα−1x+eq(k)− Dα−1x+eq(k − 1)] + d2

b2
[D1−µx+eq(k)− D1−µx+eq(k − 1)]

− 1
b2
[Tsε2sgn(s2(k))− Tsq2s2(k)]

(31)

where x+ed(k + 1) and x+eq(k + 1) can be considered as the inputs of the passive controller
with fractional-order sliding-model nature, obtained from the original inputs x+ed(k) and
x+eq(k) of the PBC after passing through the fractional-order sliding-model controller, so
that the two control methods of passive control and fractional-order sliding-model control
can be efficiently combined, resulting in a new hybrid control strategy, i.e., fractional-order
sliding-mode passive control (FOSMC-PBC).

Figure 4 illustrates the FOSMC-PBC control of the d-axis under positive order com-
ponents, where the passive controller is the main part. The original input of the passive
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controller is controlled by a fractional-order sliding mode, thus obtaining a new state with
sliding mode properties, which is used as the new input of the passive controller, during
which the state will gradually converge to the equilibrium point along the fractional-order
sliding mode surface, and the energy storage function of the system will gradually con-
verge to 0. By combining the advantages of the two controllers, FOSMC and PBC, and
letting them both “join hands”, the controller designed in this paper has both passive
characteristics and strong anti-jamming ability, and at the same time can realize smaller
jitter. Therefore, the proposed FOSMC-PBC control can obtain good dynamic response and
strong robustness.
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4. RBFNN-Based Injection Damping Adaptation Control

It can be seen that the size of the injection damping is closely related to the convergence
speed of the energy storage function. If the injected damping is too small, it will slow down
the response speed of the system. Theoretically, the larger the injection damping, the faster
the system convergence speed, but when the injection damping is too large, the system
will lose its stability, becoming an oscillation. Therefore, in order to ensure the stability of
the system under the premise that the energy storage function can quickly converge to the
desired equilibrium point, it is necessary to choose a suitable injection damping.

RBFNN is a kind of network that is widely used in online control nowadays. It has
advantages such as excellent performance and simple structure. Therefore, in this paper,
by constructing an RBFNN of 2-5-1, online adaptive injection damping is carried out,
which further improves the ability of the system to resist parameter variations and external
disturbances while making the system converge quickly.

As shown in Figure 5, the positive-order d-axis, for example, utilizes the error x+ed and
the rate of change dx+ed/dt of that error as inputs to the network.

The output of the input layer is

Out(1)i = x(i),i = 1, 2 (32)

where x(1) = i+d − i+dre f , x(2) =
d(i+d −i+dre f

)
dt .

The input of the hidden layer is

In(2)
j =

→
x (33)
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The output of the hidden layer is

Out2
j
(m) = g(In(2)

j (m)) (34)

g(x) = exp(
∥→x −⇀

c j∥
2

2b2
j

) (35)

where cj is the center point of the Gaussian function; the closer it is to the input, the
more sensitive the Gaussian function is; bj is the variance of the Gaussian function, which
determines the mapping range of the Gaussian function, and the larger its value, the larger
the mapping range.

The input of the NN output layer is

In(3)
k (m) =

5

∑
m=1

wkOut(2)j (m) (36)

The output of NN is as follows:

R+
d1 = Out(3)k (m) = f (In(3)

k (m)) (37)

f (x) =
aex

ex + e−x (38)

where wk is the weight of the hidden layer to the output layer; a is the upper limit of the
injected damping.

This NN’s performance function is as follows:

E(k) =
1
2
(i+

d
− i+

dre f
)

2 (39)

The network weight is adjusted using the gradient descent approach. An inertia term
is included in the formula to improve convergence speed.

∆wk(m) = −α
∂E(m)

∂wk
+ β∆wk(m − 1) (40)

where α is the learning rate and β is the inertial coefficient.



Energies 2024, 17, 580 11 of 18

5. Simulation Analysis
5.1. Simulation Setup

In order to verify the effectiveness and superiority of the FOSMC-RBFPBC con-
troller designed in this paper, we built the MMC simulation model and its control
system in MATLAB/SIMULINK, designed three kinds of non-ideal working condi-
tions (sudden change of load on the network side, three-phase symmetrical faults, and
asymmetrical faults), and compared and analyzed the fractional-order sliding mode
passive control (FOSMC-PBC) strategy proposed in this paper with two kinds of control
methods, namely, sliding-mode passive control (SMC-PBC) and proportional-integral
(PI) control. The system simulation parameters are shown in Table 1, and the control
parameters are shown in Table 2.

Table 1. Simulation parameters.

Parameters Values

Grid voltage ugabc/kV 66
Grid-side inductors Lg/mH 1.2

Grid-side resistors Rg/Ω 0.4
Bridge arm resistors R/Ω 0.01

Bridge arm inductors Lf/mH 0.135
Submodule capacitance C/µF 12

Number of bridge arm submodules n 21
System frequency f /Hz 50

Switching frequency f s/kHz 20

Table 2. Control parameters.

Parameters Values

PI Kp = 5, Ki = 10

SMC-PBC R+
d1 = R−

d1 = R+
d2 = R−

d2 = 80
ε1 = ε2 = ε3 = ε4 = 50, q1 = q2 = q3 = q4 = 100

FOPBC-RBFSMC

b1 = b2 = b3 = b4 = 8
c1 = c2 = c3 = c4 = 30
d1 = d2 = d3 = d4 = 3
ε1 = ε2 = ε3 = ε4 = 10
q1 = q2 = q3 = q4 = 23

α = 0.5, β = 0.3

5.2. Grid-Side Disturbance

In the initial stage, the active power is set to 1 MW, and the reactive power is set to
0 MVar, with a increase of 2 MW of active load at 0.5 s suddenly.

Figure 6 shows the grid-side current waveforms, and Figure 6a–c use PI control,
SMC-PBC control, and FOSMC-RBFPBC control, respectively. From Figure 6, it can
be seen that the three control strategies can stabilize the system when coping with
the sudden change in the load on the grid side, but it can be clearly seen that the PI
control can cope with the lack of the ability to deal with the sudden change in the load,
and its response speed is slow, and the regulation time is long; the SMC-PBC control,
although it has been improved compared with the PI control, will make the current
after smoothening the chattering due to the chattering problem that exists in the sliding
mode, and FOSMC-RBFPBC control not only improves this chattering situation, but
also has a smoother current, smaller overshoot, faster regulation time, and significantly
better dynamic performance than the other two control strategies.

Figure 7 shows the output power waveform. From the figure, it can be seen that
when the active load is put in at 0.5 s, it will lead to the fluctuation of the MMC output
power as well. FOSMC-RBFPBC control has a clear advantage in dealing with the
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perturbation of the sudden change in the load, and it can reach the new stabilization
point more quickly.
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5.3. Three-Phase Symmetrical Failure

In the initial stage, the active power is set to 3 MW, the reactive power is set to 0 MVar,
and a 0.5 p.u. three-phase symmetrical fault occurs at 1 s. The grid-side voltage waveform
is shown in Figure 8.
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Figure 8. Grid voltage.

Figure 9 shows the grid-side current waveforms. Due to the occurrence of a three-phase
symmetry fault, the current increases rapidly, and after a period of time, balancing is restored.
Under the FOSMC-RBFPBC control, the regulation time of the system is much shorter than
that of the remaining two control strategies, and the quality of the current waveform is higher.

Figure 10 shows the output power waveforms, and it can be seen that the FOSMC-
RBFPBC control not only has a faster regulation time but also has fewer power drops for
dealing with the perturbation of the three-phase symmetry fault.
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5.4. Asymmetrical Fault

In the initial stage, the active power is set to 3 MW, the reactive power is set to 0 MVar.
and a 0.2 p.u. phase A asymmetrical fault occurs at 0.5 s. The network-side unbalanced
voltage waveform is shown in Figure 11.

Figure 12 shows the waveforms of the grid-side current, and it can be seen that the
overshooting of the net-side current is about the same for the three control methods, but
the net-side current under the FOSMC-RBFPBC control takes only 25 ms to stabilize after a
fault occurs, whereas the PI control takes 60 ms, and the SMC_PBC control takes 38 ms. So,
the FOSMC-RBFPBC control has a much faster regulation time.
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Figure 13 shows the output power waveform. As can be seen from the figure, the
power under PI control has the largest drop and the longest regulation time; the FOSMC-
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RBFPBC control has the best effect, which is much better than PI control, and there is
a slight improvement compared with the SMC-PBC control. Thus, the fractional-order
sliding-mode passive control also has some advantages for dealing with the perturbation
of unbalanced faults.
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Figure 13. Power fluctuation.

Table 3 shows the FFT analysis of the grid-side current during fault. From the table,
it can be seen that the harmonic content of PI control is the highest; while the harmonic
content under FOSMC-RBFPBC control is the lowest, which is 1.03% and 0.32% lower than
that of PI control and SMC-PBC control, respectively. Thus, the FOSMC-RBFPBC control
can have a good effect on harmonic suppression when unbalanced faults occur.

Table 3. FFT analysis of current of Phase A.

Current FOSMC-RBFPBC SMC-PBC PI

FFT analysis 0.63% 0.95% 1.66%

5.5. Analysis of Results

In this paper, we give the dynamic performance indicators (overshoot, setting time) of
PI, SMC-PBC, and FOSMC-RBFPBC under three non-ideal states, as shown in Table 4.

Table 4. Dynamic performance indicators.

Condition Control Strategy Overshoot/% Setting Time/s

1

PI 12 0.25

SMC-PBC 7.6 0.12

FOSMC-RBFPBC 1.5 0.07

2

PI 29.08 0.14

SMC-PBC 11.33 0.1

FOSMC-RBFPBC 7.67 0.08

3

PI 20.13 0.18

SMC-PBC 5.33 0.15

FOSMC-RBFPBC 4.21 0.1

6. Conclusions

In this paper, a FOSMC-PBC control strategy is proposed for some challenges faced
by the current MMC control technology in practice, and online self-tuning of the injected
damping is performed using RBFNN. In this paper, by comparing and analyzing the PI
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control, SMC-PBC, and FOSMC-RBFPBC control under three kinds of non-ideal working
conditions, and verifying them through simulation experiments, the following conclusions
can be drawn:

(1) Through the fractional-order theory and RBFNN injection damping adaptation, the
passive control operation is freed from the shortcomings of being too dependent
on the parameters, and the ability to resist perturbations is significantly improved.
The system under FOSMC-RBFPBC control has better results in all three non-ideal
operating conditions.

(2) The FOSMC-RBFPBC control retains the original anti-disturbance performance of
the sliding-mode control while having the passive characteristics of the system, and
the introduction of the fractional-order sliding-mode surface improves the chattering
phenomenon. The response speed, stability, overshooting, and robustness of the
system are all improved significantly, and also, the FOSMC-RBFPBC control has a
certain suppression effect on the harmonics.

(3) In the future, RBFNN should be researched in greater depth, and more experiments
should be conducted.
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