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Abstract: The integration of photovoltaic (PV) systems into the global energy landscape has been
boosted in recent years, driven by environmental concerns and research into renewable energy
sources. The accurate prediction of temperature and solar irradiance is essential for optimizing the
performance and grid integration of PV systems. Machine learning (ML) has become an effective tool
for improving the accuracy of these predictions. This comprehensive review explores the pioneer
techniques and methodologies employed in the field of ML-based forecasting of temperature and solar
irradiance for PV systems. This article presents a comparative study between various algorithms
and techniques commonly used for temperature and solar radiation forecasting. These include
regression models such as decision trees, random forest, XGBoost, and support vector machines
(SVM). The beginning of this article highlights the importance of accurate weather forecasts for
the operation of PV systems and the challenges associated with traditional meteorological models.
Next, fundamental concepts of machine learning are explored, highlighting the benefits of improved
accuracy in estimating the PV power generation for grid integration.

Keywords: forecasting; machine learning; photovoltaic; solar irradiance; temperature; regression models

1. Introduction

The proliferation of photovoltaic (PV) has brought about significant changes in the
global energy landscape. With the sun as an abundant and renewable energy resource, PV
installations have become a vital component of efforts to reduce greenhouse gas emissions
and transition towards a greener future. However, the proficiency and functioning of PV
systems are inherently linked to the availability of sunlight, which is subject to dynamic
fluctuations driven by meteorological factors such as temperature and solar irradiance.
Solar energy is produced using PV cells, which transform sunlight to produce electricity.
The efficacy and staging of solar power systems are strongly influenced by solar irradiance,
which is the amount of sunlight received on a specified surface during a specific period.
Due to the growing use of electricity from solar energy on the one hand and the growth
of this energy integration into the electricity grid on the other hand [1,2], it is becoming
increasingly important to predict the amount of this renewable energy source. This predic-
tion must imperatively involve the forecasting of meteorological data such as irradiation
and temperature. In this context, as mentioned by Yagli et al. [3], an improvement in
the accuracy of photovoltaic energy production forecasting by 25% could reduce 1.56%
(USD 46.5 million) in net production costs. Consequently, weather and photovoltaic power
forecasting is essential to assess solar potential.

Numerous photovoltaic power-forecasting approaches have been studied. According
to Mellit et al. [4] and taking into account the horizon [5], these approaches can be classified
into four categories: (1) very short-term forecasting (VSTF), (2) short-term forecasting
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(STF), (3) medium-term (MTF), and (4) long-term forecasting (LTM). According to the same
authors [4], each category has its precise application; for example, very short-term fore-
casting is used in the management of microgrids. Accurate prediction of temperature and
solar irradiance is essential for the optimization of a grid-connected PV system operation.
Numerous works have been done to recommend an accurate solar energy prediction. The
authors in [6,7] discussed two main approaches: traditional (conventional) approaches and
AI (artificial intelligence) approaches. Traditional approaches contain physical methods,
statistical methods, and regression methods used for energy prediction [8]. These methods
served as a cornerstone for weather forecasting. They can deliver good accuracy, but
they mostly depend on the stability of weather conditions. However, the implementation
of conventional models is comparatively difficult and requires different parameters and
expensive equipment.

On the other hand, over the past decades, AI methods have become very popular
in different engineering fields [6]. Among AI algorithms, machine learning (ML) has
become a powerful tool, offering the potential to advance the accuracy and reliability of
forecasts. The forecasting horizon, spatial resolution, and the accessibility of historical data
are just some of the variables that affect the accuracy of temperature and solar irradiance
forecasts [4]. Smaller spatial areas and shorter forecast lead times often result in more
accurate forecasts. When you have a wealth of reliable historical data, forecasts are also
more accurate. The principle of ML relies on models learned from large data sets and
uses these models to forecast unknown data by learning from mistakes and comparing
errors [9]. Machine learning frequently deals with classification and regression problems
using different algorithms and techniques such as random forest, XGBoost, support vector
machine, and the decision tree.

This article presents an in-depth analysis of existing machine-learning models used
in temperature and solar irradiance prediction. The present work shows how ML models
can be trained on historical data to learn the relationships between temperature, irradiance,
and other relevant factors, such as month, season, and weather conditions. Once trained,
these models can be used to predict future temperature and irradiance values accurately.
This study evaluates the effectiveness and accuracy of presented ML models for weather
forecasting. Moreover, given the self-adaptive nature of ML models, this study and the
application of these models to weather forecasts for PV systems remain sustainable since
they are based on models that are capable of evolution [10].

The rest of this paper is organized as follows: Section 2 presents the motivation of the
present study; related works are presented in Section 3; Section 4 brings together the ML
algorithms employed to predict solar irradiance and temperature proposed and studied in
this work. In Section 5, the results found are discussed. Section 6 presents some conclusions.

2. Motivation of This Study

Electricity production and consumption must always be precisely balanced by an elec-
tric operator. The ability of the electricity system to absorb anticipated and unanticipated
changes and interruptions (in production and consumption) while maintaining quality and
consistency of service to customers is then what determines the reliability of the electricity
system. The energy supplier will then be responsible for monitoring the system during
different periods. The intermittent nature of sustainable energy sources makes it more
difficult to manage the network and maintain the production/consumption balance when
added to a network [11], which can cause certain problems regarding the security of the
network [12]. In addition to voltage fluctuations, poor local power quality, and stability
issues, solar power generation is sporadic and unpredictable, leading to several other prob-
lems. For example, maintenance operations are necessary on the network because various
power plants should be frequently stopped or restarted to ensure the balance between
energy production and energy consumption [13]. As a result, the failure rate will increase,
and maintenance will require more components [14]. All of these problems increase the
cost of photovoltaic energy [15] and greenhouse gas emissions [16].
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For this reason, it is essential to develop accurate electricity production projections
to strengthen the stability of the integration of a solar PV system’s production into the
grid and help producers successfully implement their operational strategies [17]. It is also
necessary for reserve estimation, electricity system planning, congestion control, optimal
storage management with stochastic production, the exchange of produced energy on the
electricity market, and, in the long term, minimizing the cost of electricity production.
Several works have been carried out to achieve all these goals, focusing on the accuracy
of solar irradiance prediction, which has recently been improved through the use of deep
learning and machine learning approaches [18,19].

The choice of decision trees, support vector machines (SVMs), random forest, and
XGBoost is based on some good reasons. Decision trees help us understand the decision-
making process, making it easier to interpret solar and temperature predictions. These
models are great at handling complex, non-linear relationships in weather patterns. SVMs
work well with lots of variables, like in meteorological data, ensuring accurate forecasting.
They are also robust, meaning they avoid making predictions that are too specific, making
them more reliable. Random forest combines multiple decision trees, giving us better
predictions and telling us which weather factors matter most. XGBoost improves itself
over time, learning from mistakes to refine forecasts. Plus, it handles missing data, which
is important in real-world situations where we might not have all the meteorological
information. In simple terms, these models are ideal for obtaining accurate temperature
and solar energy forecasts for PV systems.

3. Related Work

In the context of photovoltaic systems, there is a renewed interest and creativity in
research on temperature and solar irradiation prediction based on machine learning.

Table 1 illustrates some research works related to the present study, and Table 2
highlights the advantages/disadvantages of the ML methods used.

Table 1. Bibliographic summary of the main methods and applications.

Ref. Description Forecasting Target Year

[17]

Utilization of a” Partial Functional Linear Regression Model” (PFLRM)
for forecasting the daily power generation in photovoltaic (PV) systems
in order to capitalize on the substantial trajectory data inherent in daily
power output.

PV power 2022

[18] A comprehensive examination of various resources and techniques
employed in predicting solar irradiance across different timeframes. Solar irradiance 2020

[20]
Determination of a range for ambient temperature and the sun radiant,
utilizing MAE as a metric for irradiance, the proportion of variation in
these factors.

Temperature and solar 2021

[21]
Various forecasting challenges, comprising eight papers that delve into
methods for maximizing the output power of PV systems, the sun
radiant, and power generation forecasting.

Solar irradiance, temp.,
thermal energy production 2022

[22]
Overview of recent studies emphasizing solar irradiance forecasting
using ensemble methods categorized into two main forecasting
ensembles: competitive and cooperative.

PV power 2023

[23]
A critical and systematic review of current machine learning
forecasters for wind and solar power, specifically focusing on (ANNs),
(RNNs), (SVMs), and (ELMs).

PV power 2021

[24]
Emerging utilization of alternative methods, including regression trees,
random forests, gradient boosting, and various others, in the context of
solar irradiation prediction.

Solar irradiance 2017
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Table 1. Cont.

Ref. Description Forecasting Target Year

[25]

Ability to pinpoint seven crucial perspectives and trends for
prospective investigations in solar forecasting. These findings are
designed to help readers better utilize these approaches for more
profound future research.

Solar irradiance, PV power 2023

[26]

Examining the current state of the art and assessing different
methodologies, not solely based on their performance and
generalization of this. Evaluation of these approaches to perform not
only on the designated dataset but also on
alternative datasets or varied case studies.

PV power 2018

Table 2. Disadvantages and advantages of ML methods.

Ref. Machine Learning Method Advantages Disadvantages

[17] Partial functional linear
regression model (PFLRM)

Introduces the PFLRM as a generalization
of traditional multiple linear regression,
allowing the modeling of non-linearity
structures in the data.

Acknowledges the need for further
investigation and considering additional
time-varying meteorological variables as
functional predictors.

[18] RNN, LSTM,
GRU, TCN

Leverages deep learning and machine
learning techniques for very short-term
solar forecasting, demonstrating irradiance
and practical application of advanced
technologies in renewable
energy optimization.

The study’s findings are tailored to the
local city of Karachi, potentially limiting
the generalizability of the results to other
regions with different climatic conditions.

[20]

Machine learning,
linear statistical models,
numerical weather
prediction (NWP)

Guide future research by highlighting the
most suitable forecasting methods and
confirm the importance of forecasting
terms, revealing up to 95% power output
variation between short and
long-term predictions.

Limitations related to the availability of
historical information for site-specific
applications potentially impact the
model’s accuracy and generalizability.

[21]

Numerical weather
prediction models (NWP),
physical techniques,
machine learning
techniques, linear
statistical models

Demonstrating a practical strategy for
overcoming challenges in inaccurately
predicting power generation.

Lack of universally applicable models
and the need for customization based on
regional characteristics.

[22]

Competitive ensemble
(bagging, boosting,
ensemble Kalman filter),
cooperative ensemble
(ARMA-ANN,
ARIMA-SVM. . .)

Demonstrated that ensemble models
perform better than standalone ones. The
artificial neural network (ANN) and space
vector machine (SVM) are widely used
with ensemble models (WD-ANN, EMD
BPNN, and W-SVM) due to their ability to
solve complex.

It did not present the various intelligent
techniques and machine learning
algorithms used in the field of
forecasting, showing the advantages
and disadvantages.

[23] ANN, RNN, SVM, ELM

Compares machine learning methods,
metaheuristics, and hybrid approaches,
aiding scientists and engineers in choosing
suitable prediction methods for
diverse circumstances.

Extreme learning machines (ELMs) might
be suitable only for simple models and
could struggle to capture enough features
and learn adequately, requiring careful
optimization or extension to become
deep networks.

[24] Regression tree, random
forest, gradient boosting

Recognizes the potential of hybrid models
and ensemble forecast approaches to
enhance prediction performance,
addressing the challenges posed by the
diversity of solar radiation data.

Due to the variety in data conditions and
parameters, determining the superior
method becomes challenging, leading to
comparable prediction errors among
different approaches.
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Table 2. Cont.

Ref. Machine Learning Method Advantages Disadvantages

[25] 128 forecasting methods of
solar irradiance and power

Reviews five classifications and seven
pre-processing methods for solar
forecasting data, enhancing forecasting
accuracy and providing a solid foundation
for further research.

Despite the comprehensive comparisons,
the diversity of forecasting methods and
associated characteristics makes it
challenging to draw definitive
conclusions, highlighting the complexity
of solar forecasting evaluation.

[26]
Probabilistic forecasting of
solar power (PSPF) and load
forecasting (PLF)

Recognizes the need to combine PSPF and
PLF in the review, emphasizing the
growing interest in net demand forecasting
and exploring common ground between
these areas.

Research gaps such as the impact of net
demand forecasting on probabilistic
performance metrics and the importance
of benchmark datasets.

When comparing forecasting models based on criteria such as efficiency, complexity,
response time, data size, scalability, evaluation methods, difficulty of implementation,
and the overall cost of implementation, various considerations come into play (Table 3).
Statistical methods, known for their simplicity, demonstrate their efficiency in terms of
computational resources and response time, making them suitable for smaller datasets.
However, they may have difficulty dealing with complex patterns. Machine learning
methods, while potentially offering high accuracy, often require significant computing
resources and have slower response times. Physical methods, incorporating fundamental
principles, offer moderate efficiency and scalability but may encounter challenges in di-
verse datasets. Numerical weather prediction (NWP) models, designed for atmospheric
forecasting, demonstrate high accuracy but come with high implementation costs and
computational requirements. Hybrid models aim to strike a balance between accuracy and
efficiency by combining machine learning and physical components. Ensemble methods,
focusing on diversity for accuracy, have moderate scalability but may require additional
computational resources. Implementation costs vary, with statistical models being cost-
effective, machine learning and physical models having moderate to high costs, and hybrid
and ensemble models providing a balance between accuracy and implementation expense.
The choice of model depends on the specific task requirements, available resources, and
acceptable tradeoffs between accuracy, efficiency, and cost.

New irradiation and temperature prediction methods quantify the impact of proposed
improvements on the overall efficiency, sustainability, and profitability of photovoltaic sys-
tems using more complex models and more precise data. They integrate climate variability,
site-specific characteristics, and solar panel performance to provide more reliable forecasts.
Compared to traditional forecasting methods, which often rely on simplified models and
historical data, new methods provide a better understanding of future weather conditions,
enabling more accurate planning and optimized use of photovoltaic systems.

Table 3. Comparison between ML methods and different “traditional” forecasting methods.

Methods Accuracy Complexity Level Response Data Size Scalability Evaluation Difficulty of
Implementation Cost

Machine
Learning
Methods
[23,24]

High high Slow Large Scalable

Statistical metrics
(MAE, MSE) and

specialized metrics
(accuracy, F1-score)

May range from easy
to hard

May vary from
moderate

to high

Statistical
Methods
[17,19,20]

Good Simple Fast Small Generally
scalable

Statistical metrics
(MAE, MSE, RMSE) Generally easy Generally low

Physical
Methods

[9,11]
Good Varied Varied Varied Moderate Utilizing

physical principles
Can be

challenging

Can vary from
moderate

to high
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Table 3. Cont.

Methods Accuracy Complexity Level Response Data Size Scalability Evaluation Difficulty of
Implementation Cost

Numerical
Weather

Prediction
(NWP)
Models
[12,13]

Good Varied slow Large Typically
scalable

Brier score,
continuous ranked
probability score

Can be
challenging Generally high

Hybrid
Models
[25,27]

High high Varied Varied Moderate

Combine metrics from
both

statistical and
machine

learning evaluation

May range from easy
to hard

Can vary from
moderate

to high

Ensemble
Forecasting

[22]
High Moderate to high Varied Varied Scalable

Combine metrics from
both

statistical and
machine

learning evaluation

May range from easy
to hard

Can vary from
moderate

to high

4. Methods

The subfield of machine learning in computer science is classified as an artificial
intelligence technique. It has the advantage of allowing models to solve problems that
explicit methods cannot, and it can be used in a variety of domains [24]. Analyzing data
using machine learning (ML) allows computer systems to gain insights from data over
time. Unlike statistical models, ML approaches can generally capture non-linearity and
adapt data instability, producing more accurate predictors. As a result, ML algorithms have
been used in recent years to forecast a variety of problems, including forecasting renewable
energy sources [23].

4.1. Decision Tree

A decision tree (DT) functions as a classification model, illustrating a recursive division
of instance space. The structure comprises nodes, forming a rooted tree where the “root”
node lacks outgoing edges, and subsequent nodes possess exactly one incoming edge.
Internal or test nodes, with exterior edges, partition the instance space based on discrete
functions of input attribute values. Each internal node creates two or more subspaces,
where, in the simplest scenario, each test assesses a single attribute, dividing the instance
space based on attribute values. Numeric attributes are split based on range conditions.

It is common practice to assign a class corresponding to the ideal target value to each
leaf. Alternatively, a leaf may store a probability vector indicating the likelihood of the
target characteristic having a specific value. Instances are categorized by traversing the tree
from the root to a leaf based on test results. The representation employs circles for internal
nodes and triangles for leaves [28].

Figure 1 illustrates a straightforward decision tree model with two variables, k1 and
k2 (ranging from 0 to 1) and a binary objective variable, Y (0 or 1). A decision tree model
has key components, including nodes, branches, and essential modeling operations such as
stopping, splitting, and pruning.

• Nodes: Three node types exist. (a) A root node, or decision node, divides records
into mutually exclusive sets. (b) Inner nodes, or chance nodes, elucidate options at a
particular position in the tree structure, connecting to parent nodes above and child
or leaf nodes below. (c) Leaf nodes, or final nodes, signify the result of a sequence of
choices or events.

• Branches: Replacing random events from internal and root nodes, branches form a
hierarchy, defining decision paths. Each route (from the root node through inner nodes
to a leaf node) depicts a rule of classification decision, expressible as ‘if-then’ rules.
For instance, “If condition 1 and condition 2 and. . . condition i occur, then outcome
j occurs”.
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• Splitting: Parent nodes are divided into purer child nodes related to the target variable,
using input variables associated with the target. Continuous and discrete input
variables, categorized into two or more bins, are employed. Criteria like entropy, Gini
index, classification error, information gain, gain ratio, and towing criteria determine
the most crucial input variables, ensuring the purity of resulting child nodes (i.e., the
proportion with the target condition) [29].
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4.2. Random Forest

In the realm of machine learning, the random forest (RF) stands out as a widely em-
braced ensemble learning technique, frequently employed for tasks related to classification
and regression (Figure 2). The essence of ensemble learning lies in combining predictions
from multiple machine learning models to enhance forecast accuracy and reliability.
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Contrary to linear regression, which assumes data linearity, random decision trees
within the RF framework demonstrate superior predictive capabilities by swiftly adapting
to non-linearities inherent in the data. While the simplicity of linear regression aids in
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model comprehension, it often falls short in predictive performance due to its reliance on
the linearity assumption. Random forests exhibit enhanced prediction accuracy, particularly
on medium to large datasets, as they effectively navigate and capture non-linear patterns.

In situations where the number of independent variables surpasses the number of
observations, logistic regression and linear regression algorithms encounter limitations
since there are more parameters to estimate than available data points. The random forest
circumvents this constraint by selectively utilizing predictor variables, ensuring effective
model performance [30].

The predictive process of the random forest model involves computing a forecast
through the averaging of projections derived from individual decision trees. This aggre-
gation mitigates model variance and contributes to an overall improvement in predictive
accuracy [31].

Here is a detailed description of how a random forest model works:

1. Divide the training data into different groups. The process used for this is called bagging.
2. Use each subset of training data to train a decision tree. Only a random subset of

features is considered at each split in the decision tree.
3. Repeat steps 1 and 2 to create a forest of the decision tree.
4. To predict something, take the average of all the projections from all the individual

decision trees.

4.3. Support Vector Machine (SVM)

Another kernel-based machine learning approach employed for classification tasks
and regression challenges is the support vector machine (SVM), pioneered by Vapnik in
1986 (Figure 3). This method is particularly utilized in support vector regression (SVR) to
address regression problems. Successful applications of support vector machines in time
series forecasting have been documented [24].
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The SVM technique partitions data points into two classes with the widest margin
by identifying a hyperplane within the input space. The margin represents the separation
between the nearest data points for each class and the hyperplane. The hyperplane is
determined through the resolution of a quadratic programming problem. A set of support
vector data points closest to the hyperplane provides the solution to this problem. Once the
support vectors are identified, new data points can be classified using SVM by projecting
them onto the hyperplane. If data points lie on one side of the hyperplane, they are classified
into a specific class; otherwise, they are grouped into the opposing class. SVMs are a potent
machine learning technique applicable to regression and classification tasks, particularly
effective with high-dimensional data and data exhibiting non-linear relationships [32,33].
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The primary objective of model classification is to construct a model that performs
optimally based on the training dataset. Conventional training methods often result in
models that accurately memorize each input-output combination, leading to a decreased
ability to generalize if the model is overly tailored to the training data. Conversely, SVM
aims to categorize classes within the training set into as many distinct groups as possible
using a surface that maximizes the separation between them. In essence, SVM facilitates
the maximization of a model’s generalization potential [34].

4.4. XGBoost (XGB)

XGBoost (XGB) is a collection of decision trees based on gradient boosting, known for
its high scalability (Figure 4). It achieves incremental expansion of the objective function by
minimizing a loss attributed to gradient ascent. XGBoost utilizes a distinct loss function
designed specifically for decision trees, the sole base classifiers employed in XGBoost. To
expedite the training of decision trees without compromising ensemble accuracy, XGBoost
implements various techniques. XGBoost addresses the computational complexity of
decision tree construction, particularly the time-consuming step of determining optimal
distribution. It targets this by optimizing the split search process. While conventional split
search algorithms explore all potential candidate splits and choose the one with the highest
gain, XGBoost streamlines this process by pre-sorting and storing data in a compressed
column format. This reduces the need for repeated sorting at each node, ensuring each
feature is sorted only once. Moreover, XGBoost incorporates randomization strategies to
improve training efficiency and prevent overfitting. Random subsamples are employed
during the training of individual trees, and column subsampling is applied at both the tree
and tree node levels as part of XGBoost’s randomization approaches [35].
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Figure 4. Example of XGBoost model’s algorithm.

Each decision tree has learned to predict the residual error of the previous tree. The
disparity between the actual target value and the predicted value of the previous tree is
called residual error. The XGBoost algorithm uses a method known as gradient boosting
to train decision trees. One additional decision tree is added to the set at a time using the
iterative gradient boosting approach. Each new decision tree undergoes training to reduce
the residual error of the previous trees. Other methods, such as regularization and early
stopping, are also used by the XGBoost algorithm to improve model performance [36–38].

4.4.1. Case Study

In this case study, a dataset containing historical information on the energy production
of a solar farm located in Hassi R’mel, Laghouat, is used, Algeria (Latitude: 33◦7′29.728′′ N;
Longitude: 3◦21′22.484′′ E). Figure 5 shows a satellite image of the Hassi R’Mel power plant.
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Figure 5. Satellite image of the Hassi R’Mel power plant.

The Hassi R’Mel power installation, boasting a capacity of 150 MW, stands as a
pioneering facility in the realm of thermo-solar and combined cycle hybrid electricity
generation. Positioned within the largest natural gas field in Algeria, Hassi R’Mel, the
installation incorporates two (02) gas turbines (40 MW), two 75 MW combustion systems, a
steam turbine with a capacity of 80 MW, and two (02) parabolic solar fields contributing
25 MW to the production capacity. The solar fields encompass 224 parabolic collectors
organized into 56 loops across an expansive area of 180,000 m2. Figure 6 provides a
visual representation, showcasing the power plant adorned with its distinctive parabolic-
shaped collectors.
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Figure 6. Parabolic Collector of the Power Plant.

Historical data for temperatures and solar irradiance were collected daily from solar
stations [39], covering a 7-month period from January to July (comprising 212 entries
indexed from 0 to 211, each containing five columns: year, month, day, temperature,
and irradiance).

The dataset is pre-processed by handling missing values and extracting relevant
temporal features. The data used in this study are available at (Figure 7):

• NASA/POWER CERES/MERRA2 Native Resolution Daily Data
• Dates (month/day/year): 1 January 2023 through 31 April 2023
• Location: Longitude 3.356; Latitude 33.125;
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Figure 7. Description of data shown using Python.

Data may disappear due to file loss, equipment malfunction, or other reasons. This
can reduce the statistical power of the analysis, making it less likely that true effects or
relationships will be detected because missing data may be systematically related to the
variables of interest. As shown in the table above, which was extracted from the program
via Python, no value is lost as a result of processing the data used in this study (non-null).

In this study, the four models are employed for temperature and solar irradiance
forecasting, with “YEAR”, “MONTH”, and “DAY” serving as design variables across
all models. The decision tree model dynamically adapts its structure during training,
utilizing a decision tree regressor with default parameters. The random forest model,
employing the random forest regressor, determines its structure based on the number of
trees and their configurations. The support vector machine (SVM) with a linear kernel
characterizes its structure with the optimal hyperplane during training. In contrast, the
XGBoost model utilizes the XGBoost Regressor with specific hyperparameters, including
n_estimators = 100, learning_rate = 0.1, and max_depth = 3. All models share temporal
features as input measures, offering predictions for temperature and solar irradiance.

Figure 8 illustrates the variations in temperature and solar irradiance throughout the
month of January. The daily values represent the averages recorded per day, explaining the
temperature drop of up to 2 ◦C during the first months, as observed in Figure 8.

4.4.2. Model Evaluation

The performance evaluation of each model involved the use of key metrics, including
mean absolute error (MAE), mean squared error (MSE), and root mean square error (RMSE).
The definitions of these metrics are provided using Equations (1)–(3), respectively, as
outlined in the pertinent literature [26,27,39].

MAE =
1
N ∑N

i=1|x̂i − xi| (1)

MSE =
1
N ∑N

i=1(x̂i − xi)
2 (2)

RMSE =

√
1
N ∑N

i=1(x̂i − xi)
2 (3)

Here, “N” represents the length of the time series, “x̂i” denotes the forecasted value,
and “xi” represents the measured value.
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5. Discussion of Results

The initial section of the verification results focuses on visual comparison to evaluate
the concordance between actual and predicted values within the test data for irradiance
and temperature predictions. Moreover, quantitative evaluation employs metrics such
as mean absolute error (MAE), mean squared error (MSE), and root mean square error
(RMSE). Moving to the next section, the comparison of models expands to encompass
various criteria, including complexity level, stability, response time, and implementation
complexity. This multifaceted evaluation aims to offer a comprehensive understanding of
the models’ performance beyond numerical metrics alone.

5.1. Temperature Prediction

The accuracy of temperature forecasts is contingent upon several factors, including the
chosen forecast method, the quality of input data, and the complexity of prevailing weather
conditions. Machine learning algorithms prove effective by being trained on extensive
datasets comprising historical temperature data, which may encompass information from
extreme weather events. This training enables algorithms to discern patterns and relation-
ships associated with diverse climatic scenarios. Once trained, these algorithms exhibit



Energies 2024, 17, 1124 13 of 20

the capability to provide more precise predictions about future temperatures, even when
faced with conditions beyond the range of historical data. In the specific case outlined, the
program leverages data spanning several months to enhance its training, capturing the
nuances of climate changes throughout different seasons. Figure 9 visually represents the
variation in temperature within the study area over a duration of seven months.
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Figure 9. Representation of the temperature data.

Note

In this process, the decision tree model registers a value of 0 in the metrics, signifying
that the studied model perfectly fits the training data. This exceptional case implies that the
model attains flawless accuracy in predicting the values of the target variable for all training
data points. Such a scenario is uncommon and is more likely to occur with smaller training
datasets. In this instance, 80% of the data is allocated for the model training, corresponding
to 167 days. Figure 10 provides a visual comparison of the predicted temperature values
among the four models, highlighting the distinctive characteristics and performance of
each. For each studied model, the values of the MAE, MSE, and RMSE for temperature
forecasting are shown in Table 4.
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Table 4. The values of metrics for temperature forecasting.

Model MAE MSE RMSE

DT 0.00000 * 0.00000 * 0.00000 *
RF 0.32031 0.15355 25.15817
SVM 1.18382 2.25412 24.38985
XGBoost 0.59879 0.58510 0.76492

* Raw result obtained from data treatment.
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5.2. Solar Irradiance Prediction

Solar irradiation forecasting involves the complex process of predicting how much
sunlight will reach a specific location at a given time in the future. However, this process
has become more complex due to ongoing climate change. As the planet warms, we observe
an increase in extreme weather events, such as thick clouds and dust storms, which are
becoming more frequent. These extreme weather conditions can significantly reduce the
amount of sunlight reaching the Earth’s surface, making it extremely difficult to predict
solar irradiation levels accurately.

This increased complexity explains the relatively low solar irradiation scores recorded
during the first months of the study. Figure 11, shown above, provides a visual overview
of the collected solar irradiation data, highlighting the challenges of forecasting this vital
resource. Figure 12 illustrates a comparison between the different models for predicted
irradiance values. Values of MAE, MSE, and RMSE for solar irradiance forecasting are
presented in Table 5.

Table 5. The values of metrics for solar irradiance forecasting.

Model MAE MSE RMSE

DT 0.00000 * 0.00000 * 0.00000 *
RF 0.02702 0.027029 0.03940

SVM 0.75297 0.75297 0.84729
XGBoost 0.06601 0.06601 0.08301

* Data raw result obtained from data treatment, a decision tree works by recursively splitting the data based on
the features, creating decision nodes to differentiate between different classes (in this case, we are concerned with
regression, not classification, as such we are not going to work with classes). Thus, achieving 0 error in a DT
model is theoretically possible, especially if you have a small and well-structured dataset.

5.2.1. Interpretation

In this study, the models underwent training with the exclusion of the last 40 days that
were selected for the test set. Upon evaluation of its accuracy, the SVM model emerged with
the highest mean absolute error (MAE) value, indicating its relatively weaker performance
compared to the other models. The XGBoost model secured the second position, followed
by the RF model, with the simple DT model ranking last. Graphical analysis unveiled
that the representation of temperature values generated by the decision tree model closely
resembled the original representation. This observation implies that the decision tree model
retained the fundamental characteristics of the original data, offering valuable insights into
temperature patterns within the study.

5.2.2. Measuring Forecast Speed

The forecasting speed of a model varies depending on the model architecture, the
size of the dataset, and the hardware the model is running on. However, measuring
forecast speed can be useful for comparing different models or for optimizing a model’s
performance. As we can see in Table 6, both DT and XGB achieve a low prediction speed
(unit is second). Table 7 presents a comparison between different models according to their
complexity of implementation, their speed, and their efficiency.

Table 6. The values of forecasting speed (s).

Model DT RF SVM XGB

Temperature 0.00588 0.01296 0.01292 0.00199
Irradiance 0.00399 0.02592 0.00793 0.00426
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Table 7. Comparison of the different models using other factors.

Model Complexity Speed Efficiency

DT Simple Very fast More efficient
RF Simple Fairly fast Efficient

SVM Simple Fairly fast Not enough
XGB Medium Very fast Efficient

The evaluation results indicate that the decision tree stands out as an accurate and
robust forecasting tool for both temperature and solar irradiance. The model demonstrates
the capability to achieve low mean absolute error (MAE), mean squared error (MSE), and
root mean square error (RMSE) values, along with optimal forecasting speed. However, the
selection of the most suitable forecasting model is contingent on the specific requirements of
the application. In the current study, where forecasting accuracy and speed are paramount,
the decision tree model excels on both fronts. Decision trees exhibit high accuracy by
adeptly learning intricate relationships between features and the target variable. Through
recursive data division based on feature values, decision trees discern complex patterns,
contributing to their accurate predictions.

Decision trees are notably fast due to their avoidance of complex calculations. The
algorithm’s efficiency lies in comparing the feature values of a data point with those of
the training data and, upon finding a match, assigning a label to the data point. Moreover,
decision trees showcase versatility by accommodating both continuous and categorical
features, rendering them a versatile and adaptable machine-learning algorithm for vari-
ous applications.

Differential privacy techniques provide a robust framework for injecting controlled
noise into the training process, thereby protecting individual data points such as federated
learning and homomorphic encryption. By integrating these advanced privacy-preserving
techniques, our future research aims to strike a delicate balance between accuracy, model
complexity, and computational efficiency, thereby contributing to the development of
secure and privacy-friendly ML models for predicting energy production photovoltaic. By
exchanging model parameters rather than private data, the intended FedDRL (federated
deep reinforcement learning) can produce an accurate prediction model in a decentralized
manner, thus avoiding sensitive privacy issues [40]. Moreover, homomorphic encryption
(HE), with its security guarantees and computability on encrypted data, has become one
of the most promising techniques to protect data privacy [41]. This proactive approach
aligns with the evolving data protection landscape and highlights our commitment to
ensuring responsible and ethical use of energy-related data in the context of renewable
energy forecasting.

6. Conclusions

In this paper, four ML algorithms were designed to predict future temperature and
irradiance values with high accuracy: decision tree, support vector machine, random forest,
and XGBoost.

The effectiveness of these methods was evaluated based on different simulation studies.
A comparative study between these algorithms is presented according to three parameters:
the mean absolute error, the absolute error, and the mean square error.

Based on the results, the present study highlights the importance of accurate tempera-
ture and solar irradiation estimates to optimize photovoltaic systems. The simple decision
tree algorithm allows the model to make predictions very quickly. However, it is important
to note that the accuracy of a decision tree model depends on the quality of the training data
and the choice of features. We also propose using ensemble methods like gradient boost-
ing to improve accuracy in photovoltaic energy production forecasting. These methods
combine multiple models for higher accuracy while remaining computationally efficient.
They also recommend streamlining model complexity by focusing on relevant features,
using techniques like recursive feature elimination (RFE) or feature importance analysis.
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Additionally, fine-tuning model hyperparameters is crucial for finding the right balance
between accuracy and efficiency. On another note, researchers emphasize advanced feature
engineering to capture nuanced relationships in meteorological data for better accuracy,
particularly in the context of climate change-induced variability. Integrating climate mod-
els into forecasting processes helps understand long-term climate trends, and real-time
data assimilation techniques enhance accuracy amidst climate variability by continuously
incorporating the latest observational data. These strategies effectively manage tradeoffs
in forecasting accuracy, model complexity, and computational efficiency in photovoltaic
energy production.

By providing the tools needed for efficient and sustainable solar energy production,
machine learning models, particularly decision trees, have the potential to transform the
energy sector. Furthermore, given the self-adaptive nature of ML models, this article can be
used as a reference because the results mentioned can be considered sustainable.

Concerning our future research on forecasting photovoltaic energy production, this
study will be developed subsequently via other machine learning models and, in particu-
lar, on the improvement of model architectures, the search for new approaches, and the
integration of technology techniques to improve forecast accuracy. The results of this study
pave the way for better consumption of renewable energies in areas rich in solar resources.

The results obtained in this article make a notable contribution to the field of photo-
voltaic energy production forecasting by shedding light on the choice of predictive models
used in the development of solar energy infrastructures in order to obtain forecasts. They
are more accurate and reliable for efficient energy management and predicting energy and
financial gains.
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