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Abstract: Non-Intrusive Load Monitoring (NILM), which provides sufficient load for the energy
consumption of an entire building, has become crucial in improving the operation of energy systems.
Although NILM can decompose overall energy consumption into individual electrical sub-loads,
it struggles to estimate thermal-driven sub-loads such as occupants. Previous studies proposed
Non-Intrusive Thermal Load Monitoring (NITLM), which disaggregates the overall thermal load
into sub-loads; however, these studies evaluated only a single building. The results change for other
buildings due to individual building factors, such as floor area, location, and occupancy patterns;
thus, it is necessary to analyze how these factors affect the accuracy of disaggregation for accurate
monitoring. In this paper, we conduct a fundamental evaluation of NITLM in various realistic office
buildings to accurately disaggregate the overall thermal load into sub-loads, focusing on occupant
thermal load. Through experiments, we introduce NITLM with deep learning models and evaluate
these models using thermal load datasets. These thermal load datasets are generated by a building
energy simulation, and its inputs for the simulation were derived from realistic data like HVAC
on/off data. Such fundamental evaluation has not been done before, but insights obtained from
the comparison of learning models are necessary and useful for improving learning models. Our
experimental results shed light on the deep learning-based NITLM models for building-level efficient
energy management systems.

Keywords: NILM; thermal load disaggregation; deep learning; machine learning; RNN; transformer

1. Introduction

Energy consumption in urban buildings has been increasing due to population growth
and demands for greater comfort. Energy consumption in buildings accounts for 60% of
the world’s energy consumption and 74.9% in the U.S. [1,2]. Heating, Ventilation, and Air
Conditioning (HVAC) systems account for 45% of all building energy consumption [3]. One
method for effective energy management is to monitor in detail sub-loads, such as HVACs,
computers, lighting, and other appliances. Fischer et al. [4] showed that when consumers
monitor the electrical consumption of each appliance themselves and the findings from
this monitoring are fed back to the consumers, electrical consumption is reduced by 5–15%
in normal households. Therefore, effective energy management requires accurate load
monitoring. Such sub-loads can be incorporated for greater comfort and energy-efficient air-
conditioning and heating operations. Traditionally, sensors and meters have been installed
to intrusively monitor each sub-load (a.k.a., Intrusive Load Monitoring: ILM) [5]. However,
ILMs are expensive and time consuming as they require on-site installation and more
maintenance time as the amount of equipment increases. Consequently, Non-Intrusive

Energies 2024, 17, 2012. https://doi.org/10.3390/en17092012 https://www.mdpi.com/journal/energies

https://doi.org/10.3390/en17092012
https://doi.org/10.3390/en17092012
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/energies
https://www.mdpi.com
https://orcid.org/0009-0003-4443-7589
https://orcid.org/0009-0002-2451-6100
https://orcid.org/0000-0001-8107-4260
https://orcid.org/0000-0002-9626-0944
https://orcid.org/0000-0002-7843-5907
https://orcid.org/0000-0002-3599-8515
https://orcid.org/0000-0002-1894-2448
https://doi.org/10.3390/en17092012
https://www.mdpi.com/journal/energies
https://www.mdpi.com/article/10.3390/en17092012?type=check_update&version=2


Energies 2024, 17, 2012 2 of 17

Load Monitoring (NILM) is promising and has been studied, triggered by the emergence
of neural network technology.

NILM was first proposed by G. W. Hart in the 1980s [6]. Unlike ILM, NILM allows
detailed monitoring of sub-loads without the need to install sensors and meters on each
sub-load. This eliminates the financial and time costs of installing and maintaining sensors
and meters that ILM incurs. NILM obtains and analyzes the overall changes in the voltage
and current in a room/building to deduce by load monitoring how much energy individual
appliances consume. However, NILM cannot observe loads that do not consume electricity,
including thermal loads such as solar radiation and the number of occupants. Since
HVAC systems ignore these thermal-based loads, they are needlessly operated even if a
building is empty because they cannot detect occupants, resulting in continuous energy
consumption. To overcome this drawback, Xiao et al. [7] proposed Non-Intrusive Thermal
Load Monitoring (NITLM).

NITLM resembles NILM from the perspective of monitoring loads but differs in that
NITLM includes more uncertainty of thermal behavior, such as solar radiation, outdoor air,
and the building envelope. NITLM estimates the thermal loads generated by individual
heat sources based on thermal load processed by HVAC systems. This thermal load
processed by HVAC systems can be obtained from HVAC systems. Therefore, individual
thermal loads can be estimated within HVAC systems and directly utilized for energy
management of HVAC systems. For NILM’s electrical behavior, appliances have on/off
switches, and each functional mode acts at designed times so that the electrical behaviors
are somewhat predictable at runtime. NILM can therefore more easily deduce the details of
each sub-load. In contrast, accurately monitoring the thermal behavior is more difficult
during NITLM due to the uncertainties. Of course, we can empirically infer solar radiation
and outdoor air temperature trends based on past information. However, the number of
occupants in particular can hardly be deduced since that amount varies greatly depending
on the occupancy schedule of a room or a building (e.g., office, factory, house, and so on).

Recent works [7–10] only proposed machine learning-based NITLM, so these studies
did not compare between learning models for accurate monitoring. Furthermore, all of
these studies have evaluated only a single building because of the difficulty of preparing a
realistic dataset of various buildings. To improve the accuracy of NITLM, it is essential to
compare learning models in buildings with various properties and to consider the results
obtained from these comparisons. The insights from the evaluation will help to improve
learning models and clarify issues in NITLM.

Okazawa et al. [11] demonstrated that deep learning models, specifically Long Short-
Term Memory (LSTM) and Gated Recurrent Unit (GRU), outperform traditional machine
learning methods in terms of the Mean Absolute Error (MAE) and Root Mean Squared
Error (RMSE) in an NITLM task. However, their results were obtained from experiments
conducted only on a single building and evaluated based on the error between the actual
and estimated occupant load. These results would change for other buildings due to several
building factors, such as floor area and occupancy patterns. It is important to analyze
which factors in the buildings affect the accuracy of disaggregation for accurate monitoring
because there are no previous studies evaluating NITLM on a variety of realistic buildings.
For the effective operation of HVAC systems, it is also important to evaluate other aspects,
such as the accuracy of occupancy detection and determining whether occupants are
present or absent because this information can be used to turn HVACs on or off.

This study is based on Okazawa et al. [11]. As mentioned above, their study validated
the effectiveness of such models only on a single building. In contrast, our study addresses a
variety of buildings and empirically compares the effectiveness of the deep neural network
models. In our experiments, we evaluated results from one floor of a single building to
16 floors of five realistic buildings. We added other metrics as follows: the Mean Relative
Error (MRE) [8], which can measure the relative error of each model and each building,
and the F-score, which can measure the accuracy of occupancy detection. Using the
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experimental results, this work tries to shed light on the future of NITLM and push the
boundaries for efficient usage of HVAC systems.

The rest of this paper is organized as follows. Section 2 shows the related works of
NILM, and Section 3 provides an overview of the NITLM system and the learning model
for NTILM. Section 4 shows our experimental scenarios and the results of performing
NITLM on each building using each learning model. Finally, Section 5 concludes this paper.

2. Related Works

NILM was first proposed by G. W. Hart in the 1980s [6]. Existing studies on NILM can
be classified into two major approaches: appliance classification tasks and regression tasks.
Furthermore, there are primarily two types of learning models used: machine learning
models and deep learning models.

Appliance Classification Tasks: Appliance classification methods analyze the oper-
ating status of each appliance from the electrical consumption data obtained from smart
meters. Earlier studies used Hidden Markov Models (HMMs) for probability modeling
of time-series data [12]. Lin et al. [13] performed appliance classification by using fuzzy
c-means, an improved method of k-means, with genetic algorithms. Tabatabaei et al. [14]
proposed a multi-label classification method using a Support Vector Machine (SVM).
Wu et al. [15] showed that NILM classifiers based on Random Forest (RF) could out-
perform the performance of classifiers based on SVM [14].

In recent years, deep learning classifiers have been proposed due to the high-frequency
data used in NILM and their superior handling of large data. As deep learning models,
Convolutional Neural Network (CNN) [16–18], Recurrent Neural Network (RNN) [19],
models combining CNN and RNN [20], and Transformer-based models [21] are utilized.

Appliance Regression Tasks: On the other hand, regression analysis methods involve
estimating the detailed electrical consumption profiles of individual appliances from the
electrical consumption obtained from smart meters. Similar to classification tasks, in the
early stages of NILM, Factorial HMM (FHMM) [22,23], an improved model of HMM, was
used. Machine learning models such as RF have also been used [15].

In regression tasks, deep learning models such as LSTM [24,25], GRU [26], and CNN
are also employed. Kelly et al. [24] proposed deep learning models such as Autoencoder,
Rectangles, and LSTM, showing results that exceeded the decomposition accuracy of
FHMM, particularly in terms of the F-score. Zhang et al. [25] demonstrated improved
performance over conventional LSTM models [24] by altering the output from a sequence
length (sequence to sequence) to a point (sequence to point). Recently, Transformer, which
has been used to update the state-of-the-art models in natural language processing [27],
image processing [28], and time-series data processing [29], has been applied to NILM
regression analysis methods. Yue et al. [30] showed that applying Transformer to NILM
achieved performance that surpassed deep learning models such as LSTM, GRU, and CNN.
Models that combine several learning models have also been proposed, with Transformer-
based models [31] and combined models of CNN and LSTM [32].

NILM cannot observe loads that do not consume electricity, including thermal loads
such as solar radiation and the number of occupants. To overcome this drawback, a recent
work [7–9] proposed Non-Intrusive Thermal Load Monitoring (NITLM). Xiao et al. [7]
proposed RF-based load monitoring methods for cooling loads to obtain detailed sub-thermal
loads. They experimented on the thermal load of an entire twenty-three-story building by
decomposing its thermal load into four sub-loads: occupants, lighting, equipment, and the
building envelope. Additional research on NITLM [8,9] has already been conducted, but all
of these studies evaluated only a single building. Lin et al. [9] proposed disaggregated load
forecasting using the Load Component Disaggregation (LCD) algorithm and evaluated this
method on a five-story building in Tianjin. All of the studies mentioned above only propose a
disaggregation or forecasting method for NITLM, not a fundamental evaluation for accurate
monitoring. Therefore, we introduced deep learning-based NITLM, including LSTM, GRU,
and Transformer, and conducted experimental evaluations on various buildings.
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3. Non-Intrusive Thermal Load Monitoring (NITLM)

This section provides an overview of NITLM and details the learning model utilized
for disaggregation.

3.1. System Overview

This section describes our NITLM system with an example shown in Figure 1. We
assume there are some heat sources in a room, which can be classified into two categories:
internal thermal loads and environmental ones. The internal thermal loads include the
heat generated from people (occupants), equipment (e.g., computers), and lighting, while
the environmental ones are derived from solar radiation and heat conduction through the
envelope. There is also the assumption that an HVAC system cools the rooms, where the
cooling load is assumed to be equivalent to the thermal sub-loads. The thermal sub-loads
cooled by the HVAC system cannot be directly measured because we do not assume that
any meters are installed in the room; therefore, we are required to obtain such sub-loads by
decomposing the overall cooling. As described in Section 2, machine learning and deep
learning have been used in recent NILM research.

Figure 1. Summary of Non-Intrusive Thermal Load Monitoring (NITLM).

3.2. Learning Model

Since each model has a different prediction accuracy for time-series data, we evaluated
four learning models, namely, LSTM, GRU, and Transformer, which are widely used in
NILM studies, and RF, which has been used in previous NITLM studies. The following
subsections discuss the advantages and disadvantages of these learning models.

3.2.1. Random Forest (RF)

RF [8] is an ensemble learning algorithm for classification or regression. It is con-
structed from many decision trees and the prediction value is determined by averaging the
value of individual decision trees. The given data are initially segmented randomly into
subsets. Then, a decision tree is trained on each subset and RF to create multiple decision
trees. When testing, the test data are input into multiple decision trees, and the average
of the outputs from these trees is taken as the final output of the RF model. This captures
the nonlinear relationships between inputs and outputs, making it applicable to complex
time-series data. Moreover, overfitting in training can be suppressed because multiple
decision trees are trained on different subsets of data.
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RF has the disadvantage that it cannot consider the seasonality, trend, and statistical
properties inherent in time-series data because RF randomly segments the time-series
data. Nevertheless, it can provide relatively good accuracy for nonlinear data such as
weather data where various factors (e.g., temperature and humidity) are involved. Similar
to weather data, thermal load data vary with temperature and humidity; thus, RF has the
potential to provide accurate results in NITLM.

3.2.2. Long Short-Term Memory (LSTM)

LSTM is a type of RNN model that enables the consideration of short-term and long-
term memory in time-series data. Figure 2a shows the LSTM architecture. It has various
gates such as the forget gate, input gate, and output gate. The Constant Error Carousel
(CEC) represents memory cells that store error information at time t − 1, and the forget
gate determines whether the information in the CEC will be retained or discarded. This
structure allows the LSTM model to make estimations with short-term and long-term
historical information. When decomposing the cooling load into the occupant load, LSTM
is effective at capturing factors such calendar information (e.g., weekday or weekend)
as well as the dependencies between current and long-term past thermal loads. LSTM
is widely used in NILM for electricity consumption and delivers more accurate load
disaggregation results compared to conventional machine learning models [24].

In this study, we used the LSTM model, as shown in Figure 3b. First, sequences of
current and past cooling load data are input into the LSTM layer. The values obtained from
the LSTM layer are dimensionally reduced through a linear layer, and thus we can obtain
the output as the current occupant load.

＋ ×

×

×

sigmoid tanh sigmoid sigmoid

×

tanh

Forget gate

Input gate

Output gate

CEC

��−

��

��

��

��−

(a) LSTM architecture

× ＋

×
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×

Update gate
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��−1
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(b) GRU architecture

Figure 2. LSTM and GRU architecture.

(a) GRU model

Figure 3. Cont.
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(b) LSTM model

(c) Transformer model

Figure 3. Illustration of the thermal load estimation workflow. The learning models estimate the
current occupant load based on the current and past cooling load.

3.2.3. Gated Recurrent Unit (GRU)

GRU is a type of RNN that can handle long-term time-series data like LSTM. It
is a lightweight version of LSTM with fewer gates and parameters. LSTM has more
gates compared to GRU, which allows for the capture of more complex and long-term
dependencies. However, due to its complexity, the LSTM model runs the risk of overfitting
the training data, especially when dealing with small datasets. In contrast, GRU has a
simpler gate structure, which can be expected to help suppress such overfitting. Figure 2b
shows the GRU architecture. Unlike LSTM, the GRU model has two gates: the reset gate
and the update gate. GRU does not have memory cells that store past information like
CECs. In this model, the reset gate performs a part of the forget gate, and the update
gate performs the forget gate and input gate. Therefore, the number of gates and cells
can be reduced, and past errors can be considered without CECs. In NITLM, the time
granularity of thermal load data is coarse, like hour granularity. Therefore, GRU may
help in suppressing overfitting during thermal load disaggregation, potentially leading
to improved accuracy. GRU is not well suited for nonlinear time-series data with more
complex relationships because GRU has fewer parameters than LSTM. In this case, LSTM
would provide higher accuracy than GRU because it has more parameters.

In this study, we employed a GRU model, as shown in Figure 3a. Similar to LSTM
as described in Section 3.2.2, sequences of current and past cooling load data are input
into the GRU layer. The obtained values from the GRU layer are dimensionally reduced
through a linear layer, and we obtain the output as the current occupant load.

3.2.4. Transformer

Transformer is a deep learning model that uses only an attention mechanism to clarify
which parts of past data to focus on to achieve high accuracy. Transformer has been
applied to NILM [30] and outperformed, with higher accuracy, the previous LSTM-based
state-of-the-art models. Transformer, however, has a disadvantage: when the order of
time-series data is important, the Transformer encoder layer may not be able to capture
this information. In such cases, LSTM and GRU, which are strong for time-series data, may
provide more accurate prediction.

The bottom of Figure 3c illustrates the Transformer model used in this experiment.
The Transformer model consists of two layers: an MLP layer and a Transformer encoder
layer. Moreover, the Transformer encoder layer consists of two components: a multi-
head attention mechanism and a feed-forward neural network. The multi-head attention
mechanism enables the model to simultaneously examine various segments of the input
data through self-attention. This enhances the model’s capacity to identify complex patterns
and relationships in the data. The feed-forward neural network is a layer that processes
and extracts information from the input data at each position within the model. First, the
given input data undergo positional embedding, which supplies positional information to
the cooling load data. Next, the Transformer encoder layer processes these data, producing
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output data of the same length as the input. Finally, a linear layer reduces the dimensions
of the output data to provide the final output result.

4. Experiments

In this section, we apply NITLM to multiple buildings and evaluate the decomposition
accuracy for each learning model. We discuss the accuracy of NITLM from two aspects.
First, we compare the accuracy between different models to confirm the efficiency of deep
learning models for NITLM. Second, we conduct a comparison of decomposition accuracy
across different buildings and floors to evaluate which characters and floors influence the
accuracy.

4.1. Datasets

In this section, we provide a description of the realistic datasets for the experiments. We
utilized EnergyPlus [33], an open-source physics simulation tool, to generate the thermal
load data. This software simulates by inputting a building model, weather data, and
schedules for occupants, equipment, and lighting in a room. First, we provide the details of
the building model utilized in this experiment. The floor plans of the building models are
shown in Figure 4, and their summary is provided in Table 1. For these experiments, we
used 16 floors from 5 buildings. These buildings are referred to as Building O, Building R,
Building N, Building A, and Building Y. There are eight target floors in Building O, three
in Building R, one in Building N, two in Building A, and two in Building Y, for a total of
sixteen floors. The details of the target floors are shown in Table 1. Each building is an
office building, and their respective location, stories, total floor area, floors targeted for the
experiment, and period of experimental data are as shown in Table 1. We used the weather
data corresponding to each location.

Figure 4. Floor layout of building models.

The schedules for occupancy, lighting, and equipment of the datasets used in [7–9]
all follow a fixed pattern for weekdays and holidays. These datasets are for only a single
building because of the difficulty of obtaining the building model. Therefore, these datasets
are not realistic and rich, and it is difficult to reveal problems that need to be solved to
improve accuracy in the NITLM. In contrast, we measure the actual on/off times of the
HVAC systems in each building, and our schedules for occupancy, lighting, and equipment
in EnergyPlus are set based on these HVAC on/off times. Table 2 shows these schedules
for when the HVAC is turned on and off. Maximum for lighting and equipment represents
the highest thermal load when they are fully utilized while, for occupancy, it represents the
maximum occupancy density in the room. HVAC ON Schedule represents the schedule
during the periods when the HVAC is on and HVAC OFF Schedule represents the schedule
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during the periods when the HVAC is off. The lighting schedule from 08:00 to 12:00 h when
HVAC is on, for example, consumes 100% out of 12 W/m2 during those hours. For lighting,
from 0:00 to 6:00 h when the HVAC is off and from 6:00 to 8:00 h when the HVAC is on, the
lighting schedule is set to 0% from 0:00 to 6:00 and 50% from 6:00 to 8:00. The number of
occupants is defined by occupancy density. Similar to lighting, from 8:00 to 12:00 h when
HVAC is on, we can calculate the occupancy as 100% out of 0.1 person/m2 being present in
the room. The occupant load is calculated using the following formula after determining
the occupancy density from the schedule file:

Qoccupant = d × S × Qperson, (1)

where Qoccupant [W] is the occupant load in the room, d [person/m2] is the occupancy
density, S [m2] is the floor area of the room, and Qperson [W/person] is the occupant
load per person. Unlike lighting and equipment, the occupancy schedule is not constant
throughout the time periods. It is assumed that the number of occupants is uncertain, and
randomness is introduced by adding a uniform distribution of at most 0.02 person/m2 in
each time slot. In summary, by inputting these schedule files and the local weather data
corresponding to each building’s location into EnergyPlus, simulations are conducted to
generate thermal load data.

Table 1. The details of building models.

Building Building O Building R Building N Building A Building Y

Location Tokyo Tokyo Tokyo Osaka Osaka

Stories 9 floors 9 floors 9 floors 6 floors 6 floors

Total floor area Approx. 6900 m2 Approx. 1000 m2 Approx. 3600 m2 Approx. 2400 m2 Approx. 3700 m2

Target floors
2∼9 floor

(Approx. 600 m2)
4, 5, 7 floor

(Approx. 120 m2)
8 floor

(Approx. 320 m2)
2 floor: Approx. 200 m2

3 floor: Approx. 150 m2
3, 4 floor

(Approx. 430 m2)

Experiment period
2018, 2019

1 Jun. ∼30 Sep.
2017, 2018

1 Jun.∼30 Sep.
2018, 2019

1 Jun.∼30 Sep.
2018, 2019

1 Jun.∼30 Sep.
2018, 2019

1 Jun.∼30 Sep.

Table 2. Occupancy, lighting, and equipment operating schedules.

Thermal Load Occupancy Lighting Equipment

Weekday Maximum 0.1 person/m2 12 W/m2 12 W/m2

HVAC ON Schedule 00:00–08:00 (20%) 00:00–08:00 (50%) 00:00–08:00 (25%)
08:00–12:00 (100%) 08:00–12:00 (100%) 08:00–12:00 (100%)
12:00–13:00 (60%) 12:00–13:00 (50%) 12:00–13:00 (80%)
13:00–18:00 (100%) 13:00–19:00 (100%) 13:00–18:00 (100%)
18:00–19:00 (50%) 19:00–20:00 (80%) 18:00–20:00 (50%)
19:00–20:00 (30%) 20:00–24:00 (50%) 20:00–24:00 (25%)
20:00–24:00 (20%)

HVAC OFF Schedule 00:00–24:00 (0%) 00:00–24:00 (0%) 00:00–24:00 (25%)

Weekend HVAC ON Schedule 00:00–24:00 (25%) 00:00–24:00 (50%) 00:00–24:00 (25%)

HVAC OFF Schedule 00:00–24:00 (0%) 00:00–24:00 (0%) 00:00–24:00 (25%)

Figure 5 presents the details for the experimental period. Testing starts on 1 June
and proceeds in weekly intervals for evaluations. During each test week, the preceding
two months (eight weeks) of data are utilized as training and validation datasets. For
example, when we test the week from 1 to 7 June 2019, we use the data from 8 August to
30 September 2018 as the training and validation set. When we test the following week, 7
to 13 June, the training and validation period is shifted by one week, incorporating data
from 13 August to 30 September 2018 and 1 to 7 June 2019, aggregating two months of data.
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In the evaluation of the learning model, training, validation, and test periods shift by one
week. The final evaluation results are obtained by averaging the metrics of each test week.
Building R has thermal load data for 2017 and 2018, whereas other buildings have data for
2018 and 2019. Consequently, Building R’s data from 2018 and data from other buildings in
2019 are selected for a four-month testing period.

Train TestValid

Jun. 1

/2019

Aug. 8

/2018
Jun. 7

6 weeks 2 weeks 1 week

・
・
・
・

Aug. 13

Sep. 30

/2018

Train TestValid

Train TestValid

Sep. 27

Figure 5. Details of the experimental period.

4.2. Evaluation Flow
The flow of the experiment is illustrated in Figure 6. Initially, the building model

and schedule are input into EnergyPlus to simulate and generate thermal load data. As a
result of the simulation, thermal load data are obtained, and the cooling load for the entire
room is input into the learning model. The learning model uses one of the four models
described in Section 3.2: RF, GRU, LSTM, or Transformer. The output of the learning model
can obtain occupant load.cpsl. Occupant load output from the learning model is compared
with the occupant load generated by EnergyPlus to calculate the evaluation metrics. The
learning models are trained and evaluated using a similar process to that of the related
works [7,8]. In the training phase, the occupant load is estimated based on the cooling load
and calendar information. The estimated results are then compared with the actual data,
and the learning model is updated to minimize its loss. In the test phase, the occupant
load is estimated using the same input data as in the training phase but for a different
period. The estimated results are compared with the actual data and evaluated using the
evaluation metrics. The evaluation metrics used are the MAE, RMSE, MRE, and F-score,
which are represented by the following Equations (2)–(7).

MAE =
1
N

N

∑
i=1

|ŷi − yi|, (2)

RMSE =

√√√√ 1
N

N

∑
i=1

(ŷi − yi)
2, (3)

MRE =
∑N

i=0|yi − ŷi|
∑N

i=0|yi|
× 100, (4)

recall =
TP

TP + FN
, (5)

precision =
TP

TP + FP
, (6)

F-score = 2 × precision × recall
precision + recall

, (7)

where N represents the number of data points, yi represents the i-th actual value, and ŷi
represents the i-th decomposed value. In the equations referred to as (5)–(7), TP, FN, and
FP are calculated based on whether the occupant load is zero or greater than zero. These
values are represented as follows: True Positive (TP): This refers to instances when the
model correctly predicts a positive condition, in this case, correctly identifying times when
occupant load is greater than zero. False Negative (FN): This is when the model incorrectly
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predicts a negative condition, meaning it fails to recognize when the occupant load is
greater than zero and incorrectly predicts it as zero. False Positive (FP): This occurs when
the model incorrectly predicts a positive condition, that is, it predicts an occupant load
when in reality it is zero. The MAE, RMSE, and MRE help to quantify the error between
predicted values and actual values, while the F-score helps to understand the accuracy and
reliability of the model in determining the presence or absence of an occupant load. We
used PyTorch 2.1.0 [34] on a GeForce RTX 3070 [35] with 8 GB of VRAM and CUDA 11.1.

Figure 6. The experimental flow.

4.3. Results and Discussion

The decomposition accuracy when NITLM is applied to each building using the
learning models referred to in Section 3.2 is evaluated from two perspectives: comparison
between the models and comparison between the floors. The target floors for the experi-
ments are those listed in Table 1. Building R was tested for the period from 1 June to 30
September 2018, while the other buildings were tested for the same period in 2019.

4.3.1. Comparison between Models

Figure 7 shows the evaluation results for each model across all buildings, evaluated
by the MAE, RMSE, MRE, and F-score. In each figure, the box plots represent the models,
with blue indicating RF, orange indicating GRU, green indicating LSTM, and red indicating
Transformer. In addition, the left side box plots in each figure represent results when only
the cooling load was input, while the right side includes calendar information in addition
to the cooling load as inputs. The top left is for the MAE, the top right is for the RMSE, the
bottom left is for the MRE, and the bottom right is for the F-score. It can also be seen that
for the MAE and RMSE, the values of the MAE and RMSE increase proportionally as the
area of each building increases because the occupancy density is constant in each building.
Therefore, after calculating the MAE and RMSE for each building, these are divided by the
office area of the respective building, calculating the MAE and RMSE per square meter,
which are then plotted in the box plots.

Initial observations indicate that including calendar information along with the total
cooling load significantly improves accuracy. Comparing the median values among the
same input models, we observe that, for the MAE and RMSE, the order of error from lowest
to highest is LSTM, RF, GRU, and Transformer. These results mean that LSTM provides
the most accurate monitoring among these models. As for the MAE, the variance of the
estimation results using the RF input cooling load with the calendar was 0.058, while
LSTM using the same input was 0.070. Similar to the MAE, for the RMSE, the variance of
the estimation result using the RF input cooling load with the calendar was 0.108, while
LSTM using the same input was 0.152. Therefore, the RF model has less variance than
LSTM; thus, RF can provide a more stable estimation than the other deep learning models.
Conversely, for MRE, the order is RF, LSTM, GRU, and Transformer. For the MRE, RF can
provide accurate monitoring with a low MRE as compared with the other learning models.
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Figure 7d shows that Transformer can estimate the occupancy detection more accurately
than the other learning models. Transformer provided stable and accurate occupancy
detection in many of the buildings tested. Detailed experimental results for each building
are provided in Appendix A.

(a) MAE per square meter ↓ (b) RMSE per square meter ↓

(c) MRE ↓ (d) F-score ↑

Figure 7. Comparison of evaluation metrics between learning models and input data. We evaluated
the MAEs and RMSEs per square meter, which are calculated by dividing by the office area of each
building because MAEs and RMSEs vary with the area of each building. Diamond sign indicates
as outlier and arrows in the caption are whether a higher or lower value indicates a better or worse
evaluation metrics.

From the above results, LSTM or RF are a good choice for reducing the error between
the estimated occupant load and the actual occupant load. LSTM can estimate the load with
higher accuracy compared to RF, while RF is a better choice compared to LSTM if stable
estimation results are desired. On the other hand, Transformer is a good choice if the objective
is to improve the accuracy of occupancy detection. Compared to previous research [7–9]
from the other point of view, the datasets in previous research [7–9] have a fixed occupancy
schedule, whereas our data are based on simulated occupancy schedules defined based on
measured HVAC on/off data. LSTM and Transformer are more accurate than RF [7,8] with
realistic thermal load data from the perspective of the characteristics of the data.

Table 3 shows the average of the calculation time and memory usage in the test
phase, which is the time when the learning model estimates the occupant load. As for the
calculation time, RF is the fastest compared to the other learning models. A comparison
among the deep learning models shows that the Transformer model results in the fastest
calculation time. This is because the Transformer model utilized in our experiment has a
simple structure consisting of one or two Encoder layers without a Decoder layer. As for the
memory usage, there are similar results with the results of the calculation time. RF utilizes
the least amount of memory compared to the other learning models. The Transformer
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model also uses the least amount of memory among the deep learning models, up to
13.5% less, for the same reason as the results of the calculation time. If NITLM is to be
implemented in the HVAC or other edge devices, computational effort such as memory
capacity and calculation time should be considered. Typically, the edge devices have an
average memory capacity of 1 or 2 GB, indicating that these results in Table 3 are applicable
to edge devices. In addition, for real-time control, it is a good choice to use a learning
model that can be processed at high speed, such as RF.

Table 3. Comparison of the calculation time [s] and the memory usage in GPUs [MB] between
learning models and input data while they estimate the occupant load.

RF GRU LSTM Transformer

Calculation time
Cooling load 0.0022 0.8050 0.8163 0.6743

Cooling load w/clalender 0.0024 0.8251 0.9129 0.6762

Memory usage
Cooling load 500.4 748.6 759.1 708.4

Cooling load w/ clalender 494.3 757.0 795.6 688.4

4.3.2. Comparison between Floors

Table 4 shows the evaluation results based on the MRE when performing estimations
using different learning models in Building O. When comparing the results for the 2nd
and 6th floors within the same model, the MRE is almost unchanged, varying from 0.97
to 1.22 times. Therefore, there is not much difference in the decomposition accuracy due
to the floor level. However, when comparing the 2nd and 8th floors in Table 4, the MRE
increases significantly for all models, ranging from 1.9 to 3.0 times. As expected, changes in
the number of floors and occupancy patterns produce large changes in the MRE between
these floors. Note that if the occupancy pattern differs notably from one floor to another,
this will have a significant impact on the MRE in the estimation.

Table 4. Comparison of MREs between the floors in Building O.

RF GRU LSTM Transformer

Building O 2F 19.0 20.5 18.7 17.9
3F 19.7 19.9 20.9 20.2
4F 23.4 24.1 23.6 26.4
5F 18.7 25.2 21.5 25.7
6F 18.8 19.8 18.3 21.9
7F 28.1 28.4 26.4 41.3
8F 35.3 44.5 44.0 54.0
9F 27.2 36.8 29.2 52.8

Figure 8 shows heatmaps of the occupancy patterns for the 2nd, 6th, and 8th floors of
Building O during the summer of 2019 over four months, with the left figure representing
the 2nd floor, the middle figure representing the 6th floor, and the right figure representing
the 8th floor. In each heat map, the horizontal axis represents the time of day, and the
vertical axis represents individual days over the four months. The maps show the thermal
load from occupancy at each time, with darker blue representing a higher occupant load
and yellow representing a minimal load. The heat map for the 2nd floor shows a schedule
where people arrive around 8 AM and gradually leave after 8 PM. During office hours
from 8 AM to 8 PM, the color is mostly dark blue, indicating a steady daily occupant load.
This suggests a regular occupancy pattern with almost the same number of occupants
each day. Comparing the occupancy patterns on the 2nd and 6th floors, where the MREs
are almost the same, the patterns during four months in summer are almost identical. In
contrast, the 8th floor shows varying numbers of occupants at different times, with some
weeks having more people and others having fewer. Such patterns lead to larger errors
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in the decomposition compared to the regular pattern of the 2nd floor. However, in the
real world, occupancy patterns like the one on the 8th floor are more realistic than the
one on the 2nd floor. Therefore, learning models that can accurately capture such varied
occupancy patterns are needed.

(a) Building O 2F (b) Building O 6F (c) Building O 8F

Figure 8. Changes in occupancy patterns in Building O.

5. Conclusions and Future Remarks

In this study, we evaluated the accuracy of deep learning models for five buildings
with 16 floors using RF, LSTM, GRU, and Transformer. We compared the models for accu-
racy differences and variance in NITLM accuracy across buildings and floors. Our results
showed that including calendar information with the total heat load as input generally im-
proved the overall model accuracy. For reducing occupancy count errors, LSTM was found
to be the most suitable choice. However, for increased accuracy stability, it is preferable to
use RF due to its smaller variance. For optimal enhancement of occupancy detection accu-
racy, Transformer is ideal. Additionally, our evaluation of inter-floor differences revealed
that variations in accuracy are a result of occupancy patterns unique to each floor, rather
than differences in floor levels having a significant impact on accuracy. Our fundamental
evaluation results and insights from these results are useful for improving learning models
for NITLM tasks.

However, it is important to consider various factors such as building materials and
adjacent buildings in real-world scenarios. To develop high-precision disaggregation
models, it is necessary to adapt and selectively apply learning models based on the specific
conditions of each building. Therefore, future work should clarify the building elements,
such as the floor level, window area, or exterior material, that contribute to the differences
in accuracy between buildings and floors.
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Appendix A

This appendix presents the results estimated for various occupancy patterns when
decomposing the thermal load. Figure A1, from the top, shows the occupancy patterns
over four months, the actual cooling load and occupant load from 3 August to 9 August,
and the estimated results for RF, GRU, LSTM, and Transformer. The heatmap indicating
occupancy patterns represents each date on the vertical axis and each time on the horizontal
axis. Each time slot indicates the occupant load. Darker colors represent a higher occupant
load, while lighter colors represent a smaller occupant load. In the other graphs, the x-axis
represents the time, and the y-axis represents the thermal load, such as the cooling load and
the occupant load. The estimation results are depicted with black dotted lines for the actual
cooling load and blue for RF, orange for GRU, green for LSTM, and red for Transformer
estimations. As for the buildings and floors, four types with distinctive occupancy patterns
were selected out of sixteen. The occupancy patterns for the four buildings/floors are as
follows:

• Building O 2F: On this floor, there are fixed office hours, and the number of people
coming in daily is constant. In this case, the daily occupancy patterns do not vary
significantly.

• Building O 8F: On this floor, while the office hours are fixed, the number of people
coming in varies day-to-day. In this case, unlike Building O 2F, the daily occupancy
patterns change significantly.

• Building N 8F: On this floor, there are fixed office hours, and the number of people
coming in daily is constant. However, towards the end of July, the number of people
coming to this floor increases and remains until the end of September.

• Building R 5F: On this floor, while there are fixed office hours, occupants are present
even during late nights and on weekends. Furthermore, since the number of occupants
varies day-by-day, the occupancy pattern is irregular compared to the other three
floors.

Due to the data collection period for the on/off data of the HVAC system, the data for
the 2nd and 8th floors of Building O and the 8th floor of Building N are from 2019, while
the data for the 5th floor of Building R are from 2018. Therefore, the first three buildings
show a week starting from Saturday, 3 August, while Building R’s data begin from Friday,
3 August in these figures.

When examining the estimation results by building and floor, we can see that, for the
second and eighth floors of Building O, although the GRU model sometimes significantly
deviates from the actual values, other models accurately follow the actual values. In cases
like the eighth floor of Building N, where the number of occupants significantly changes
over time, the RF and Transformer models produce estimates lower than the actual values,
while the GRU and LSTM models are able to follow the actual values. This indicates that
GRU and LSTM can adapt to sudden changes in the number of occupants because they can
consider past time-series data. Finally, for the fifth floor of Building R, although all models
follow the waveform, if we focus on the brief peaks during the night and on Sundays, there
are parts where the waveform is not captured. Considering this, it is evident that, among
the learning models, LSTM most accurately follows the waveform.
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Figure A1. Actual cooling load, occupant load, and examples of estimation results using RF, GRU,
LSTM, and Transformer for some buildings.
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