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Abstract: The article deals with the problem of a sharp corner, the tip of which is located on the
bi-material interface. The paper presents a qualitative and quantitative description of singular
stress fields occurring in the tip area of such a stress concentrator. The qualitative description
was obtained by solving the problem of the plane theory of elasticity with appropriately defined
boundary conditions. To obtain a quantitative description, it was necessary to determine the values
of generalised stress intensity factors (GSIFs). The GSIFs were determined using the developed
analytical-numerical method. The calculations were made for various load variants (uniaxial/biaxial
tension load, shear load) and notch positions (single/double edge-notched plate, centre-notched
plate). Additionally, the impact of notch geometry (height and opening angle) and relative stiffness
(Young’s moduli ratio of both components of bi-material) on GSIFs was investigated. It has been
noticed that with a decrease in the relative stiffness and an increase in the notch angle or its height,
the normalised GSIFs values increased. The obtained results were compared with the data available
in the literature and their satisfactory agreement with those presented by other scientists was found.

Keywords: interface fracture; V-notch in bi-materials; singular stress fields; stress intensity factors

1. Introduction

Ensuring the high durability of the structure with minimum costs is a priority of
today’s world economy. The durability of the structure largely depends on the strength of
the materials used for its components.

Currently, various types of composites are widely used, which, compared to traditional
construction materials, are characterised by greater strength and at the same time lower
specific weight. Composites are not without some drawbacks. They often contain various
material defects (voids, inclusions) causing the formation of local stress fields with large
gradients. This results in the initiation of new cracks or the propagation of the existing
ones. In the case where the stress concentrator is located inside only one material phase, the
failure criteria commonly used for isotropic materials can be used to predict fracture [1–4].
In the opposite situation, e.g., when the defect is located or started at the surface of the
connection of different elastic materials, it is necessary to develop new, or modify already
existing, material fracture criteria. Suitable fracture hypotheses can be obtained using the
qualitative and quantitative description of singular stress fields occurring in close proximity
to the tip of the defect under consideration.

Many scientists have dealt with the analytical description of local mechanical fields
generated by defects located at the interface (e.g., crack [5,6], structural notch [7,8], and
rigid inclusion [9–11]). In the literature, much less attention has been paid to the problem
of a notch whose tip is located at the interface. Such a defect may appear as a result
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of the development of voids located in one of the phases of the composite [12–14]. It
is worth noting that a special case of such a sharp corner (notch with a zero-opening
angle) is the crack initiated at the interface [15–24]. Stress singularities occurring in the tip
area of such crack, which is perpendicular to the interface were analysed in [15]. GSIFs
values, determined for a short crack located in a bi-material with infinite and finite overall
dimensions, are presented in [16] and [17–23], respectively. The problem of local stress
concentration, occurring in the vicinity of the crack tip, not perpendicular to the interface,
was discussed in [24,25]. As for the corners with a non-zero opening angle, the authors of
the papers [12,26] have dealt with this subject. In [26], eigenequation was derived and the
influence of material constants on the roots of this equation was investigated. Moreover,
the authors, assuming that the notched bi-material is subjected to tensile loads, determined
generalised stress intensity factors. An approximate analytical model, based on the theory
of multilayer beams, enabling the calculation of GSIF (for mode I loading) is also presented
in [12].

There is no insufficient information in the literature on the complete description of the
singular stress fields generated by a notch whose tip is at the interface of two elastic bodies.
Therefore, the main goal of the work was to obtain such analytical and numerical solutions.
The obtained analytical descriptions (eigenequation, formulas for individual components
of the stress tensor) along with the proposed method of GSIFs determination are presented
in the first part of the presented work. The values of the generalised stress intensity
factors, determined for various load variants and geometric and material properties of the
composite, are presented in the second part of the article.

2. Materials and Methods
2.1. Analytical Solutions

The analytical description of the stress fields was obtained by solving (with the
accuracy of multiplicative constants called GSIFs) a plane problem of two connected elastic
half-spaces, the interface of which is weakened by a sharp corner (Figure 1).
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Figure 1. A notch terminating at a bi–material interface.

Consider a sharp corner (Figure 1) with a polar coordinate system (with coordinates r
and ϕ) which is located at the notch tip. In such a reference system, there are two indepen-
dent components of the displacement vector, in the radial (ur) and angular direction (uϕ).

The related strain components have the following form:

εr =
∂ur

∂r
, εϕ =

1
r

∂uϕ

∂ϕ
+

ur

r
, εrϕ =

1
r

∂ur

∂ϕ
+

∂uϕ

∂r
−

uϕ

r
. (1)
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The generalised Hooke’s law can be written as:

σr = Λ
(
εr + εϕ

)
+ 2µεr, σϕ = Λ

(
εr + εϕ

)
+ 2µεϕ, τrϕ = µεrϕ (2)

where Λ, µ are Lame’s constants and are respectively: Λ = Eν
(1+ν)(1−2ν)

, µ = E
2(1+ν)

.
Navier equations are described by the Formula (3):

∂σr

∂r
+

1
r

∂τrϕ

∂ϕ
+

σr − σϕ

r
= 0,

∂τrϕ

∂r
+

1
r

∂σϕ

∂ϕ
+ 2

τrϕ

r
= 0. (3)

By using Formulas (1)–(3), equilibrium equations (Lame’s equation) can be obtained:

(Λ + 2µ) ∂
∂r

(
∂ur
∂r + 1

r
∂uϕ

∂ϕ + ur
r

)
− µ 1

r
∂

∂ϕ

(
∂uϕ

∂r −
1
r

∂ur
∂ϕ +

uϕ

r

)
= 0

(Λ + 2µ) 1
r

∂
∂ϕ

(
∂ur
∂r + 1

r
∂uϕ

∂ϕ + ur
r

)
+ µ ∂

∂r

(
∂uϕ

∂r −
1
r

∂ur
∂ϕ +

uϕ

r

)
= 0

. (4)

The asymptotic form of the displacement function can be written as [27,28]:

ur(r, ϕ) = rλ f (ϕ), uϕ(r, ϕ) = rλg(ϕ), (5)

where f (ϕ) and g(ϕ) are angular coordinate functions obtained on the basis of the Airy
stress function.

Substituting (5) to Formula (4), a system of differential equations was obtained, from
which the general form of the asymptotic solution is determined (6) [11,28]:

uri = rλj
(

Ai cos
((

1 + λj
)

ϕ
)
+ Bi sin

((
1 + λj

)
ϕ
)
+ Ci cos

((
1− λj

)
ϕ
)
+ Di sin

((
1− λj

)
ϕ
))

uϕi = rλj
(
−Ai sin

((
1 + λj

)
ϕ
)
+ Bi cos

((
1 + λj

)
ϕ
)
− Ci

κi+λj
κi−λj

sin
((

1− λj
)

ϕ
)
+ Di

κi+λj
κi−λj

cos
((

1− λj
)

ϕ
))

σri = rλj−1µi

(
Ai2λj cos

((
1 + λj

)
ϕ
)
+ Bi2λj sin

((
1 + λj

)
ϕ
)
+ Ci

(
3− λj

) 2λj
κi−λj

cos
((

1− λj
)

ϕ
)
+ Di

(
3− λj

) 2λj
κi−λj

sin
((

1− λj
)

ϕ
))

σϕi = rλj−1µi

(
−Ai2λj cos

((
1 + λj

)
ϕ
)
− Bi2λj sin

((
1 + λj

)
ϕ
)
+ Ci

(
1 + λj

) 2λj
κi−λj

cos
((

1− λj
)

ϕ
)
+ Di

(
1 + λj

) 2λj
κi−λj

sin
((

1− λj
)

ϕ
))

τrϕi = rλj−1µi

(
−Ai2λj sin

((
1 + λj

)
ϕ
)
+ Bi2λj cos

((
1 + λj

)
ϕ
)
+ Ci

(
1− λj

) 2λj
κi−λj

sin
((

1− λj
)

ϕ
)
− Di

(
1− λj

) 2λj
κi−λj

cos
((

1− λj
)

ϕ
))


, (6)

where: µi =
Ei

2(1+νi)
—shear modulus κi = (3− νi)/(1 + νi)—a plane stress, κi = (3− 4νi)—

a plane strain, νi—Poisson’s ratio, i = 1, 2, j = I for symmetric problems (Mode I), j = II for
skew-symmetric problems (Mode II).

Particular solutions for the analysed plane problem of notched bi-material were
derived by determining the constants Ai, Bi, Ci, Di, and eigenvalue λj. The unknowns
sought were obtained on the basis of the following boundary conditions:

1. along the interface, for ϕ = 0 [29]; ur1 = ur2; uϕ1 = uϕ2; σϕ1 = σϕ2; τrϕ1 = τrϕ2,
2. of the upper surface of the V-notch, for ϕ = γ; σϕ1 = τrϕ1 = 0
3. for ϕ = −π/2

• symmetry conditions (Mode I) τr ϕ2 = uϕ2 = 0
• skew-symmetry conditions (Mode II) σϕ2 = ur2 = 0

Eigenequations (7-symmetric problem, 8-skew-symmetric problem) from the zero
condition of the boundary condition matrix determinant were determined:

βλI sin[2γ] +
(

β− 1 + 2α
(
−1− α + β + (α− β)λI

2)+ 2α(β− α)λI
2 cos[2γ]

)
sin[πλI ]+

+α(1 + α− β) sin[(π − 2γ)λI ] + (1 + α)(α− β) sin[(π + 2γ)λI ] = 0,
(7)

βλI I sin[2γ] +
(
1− β + 2α

(
1 + α− αλI I

2 + β
(
λI I

2 − 1
))

+ 2α(α− β)λI I
2 cos[2γ]

)
sin[πλI I ]+

+α(β− α− 1) sin[(π − 2γ)λI I ]− (1 + α)(α− β) sin[(π + 2γ)λI I ] = 0,
(8)

where: α = µ1/µ2−1
(1+κ1)

, β = µ1(1+κ2)
µ2(1+κ1)

.
The roots of the above equations correspond to the eigenvalues λj.
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Assuming in Formulas (7) and (8) that α = 0, β = 1, γ = γ − π/2, the resulting
eigenequations are identical to those for the notch problem in isotropic material [27]:

λI sin[2γ] + sin[2γλI ] = 0, λI I sin[2γ]− sin[2γλI ] = 0. (9)

The roots of Equations (7) and (8) cannot be found analytically. They were determined
numerically using the Berents method applied to the proprietary calculation program
written in the Wolfram Language. The eigenvalues λj obtained in this way, determined for
notches with arbitrarily assumed opening angles, are shown graphically in Figure 2.
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Figure 2. A solution of eigenequations (ν1 = ν2 = 0.3, plane stress condition), (a) for Mode I (7), (b) for Mode II (8).

It was found that the parameters λj, regardless of the notch geometry and the mechan-
ical properties of the bi-material, always assume real values. Moreover, the strength of
the stress singularity increases with a decrease in the notch angle and an increase in the
relative stiffness.

To obtain an analytical description of individual components of the stress tensor, it
was necessary to define GSIFs in advance. Since eigenvalues λj always assume real values,
the generalised stress intensity factors Kj were defined, similar to the work [27], as follows:

KI = lim
r→0

√
2πr1−λI σϕ2(r,−π/2)

KI I = lim
r→0

√
2πr1−λI I τrϕ2(r,−π/2)

. (10)

Due to the rather complicated form of the solutions obtained, only the stress formulas
in the material in which the potential crack will propagate are presented below (for the
notch shown in Figure 1 it is the material marked with the number 2).

σϕ2 =


−KIrλI−1

(
(1+λI) cos[ 1

2 (λI−1)(π+2ϕ)]FI2+αµ1(λI−κ2) sin
[

πλI
2 +ϕ+λI ϕ

]
FI1

)
√

2παµ1(λI−κ2)FI0
+

KI IrλI I−1
(
(1+λI I) cos

[
πλI I

2 +(λI I−1)ϕ
]

FI I2+α(λI I−κ2) cos
[

πλI I
2 +ϕ+λI I ϕ

]
FI I1

)
√

2παµ1(λI I−κ2)FI I0


τrϕ2 =


KIrλI−1

(
(λI−1) cos

[
πλI

2 +(λI−1)ϕ
]

FI2+αµ1(λI−κ2) cos
[

πλI
2 +ϕ+λI ϕ

]
FI1

)
√

2παµ1(λI−κ2)FI0
+

+
KI IrλI I−1

(
(λI I−1) cos[ 1

2 (λI I−1)(π+2ϕ)]FI I2+α(λI I−κ2) sin
[

πλI I
2 +ϕ+λI I ϕ

]
FI I1

)
√

2παµ1(λI I−κ2)FI I0


σr2 =


KIrλI−1

(
(λI−3) cos[ 1

2 (λI−1)(π+2ϕ)]FI2+αµ1(λI−κ2) sin
[

πλI
2 +ϕ+λI ϕ

]
FI1

)
2
√

2παµ1(λI−κ2)FI0
+

−
KI IrλI I−1

(
(λI I−3) cos

[
πλI I

2 +(λI I−1)ϕ
]

FI I2+α(λI I−κ2) cos
[

πλI I
2 +ϕ+λI I ϕ

]
FI I1

)
√

2παµ1(λI I−κ2)FI I0





, (11)
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where:

FI1 =

 −α(λI − 1)λI cos
[
γ + πλI

2 − γλI

]
+
(
1 + α− β + αλI

2) cos
[
γ− πλI

2 + γλI

]
+

+(β− 2α− 1)λI cos
[
γ + πλI

2 + γλI

]
+ (α− β)(λI − 1) cos

[
γ− 1

2 (π + 2γ)λI

] ,

FI2 = (α− β + αλI)µ1 + βµ2)

(
cos
[

γ +
πλI

2
+ γλI

]
− 2α

(
λI sin[γ] sin

[
1
2
(π − 2γ)λI

]
+ sin[γλI ] sin

[
γ +

πλI
2

]))
,

FI0 =

 2 cos[γ]
(
−λI cos

[
πλI

2

]
cos[γλI ] + (1− β + λI + 2α(1 + λI)) sin

[
πλI

2

]
sin[γλI ]

)
+

+ sin[γ]
((

1− β + 4αλI
2) sin

[
1
2 (π − 2γ)λI

]
+ (1 + β + 2λI + 4αλI − 2βλI) sin

[
1
2 (π + 2γ)λI

]) ,

FI I1 = µ1

 αλI I(1 + λI I) cos
[
γ + πλI I

2 − γλI I

]
−
(
1 + α− β + αλ2

I I
)

cos
[
γ− πλI I

2 + γλI I

]
+

(β− 1− 2α)λI I cos
[
γ + πλI I

2 + γλI I

]
+ (α− β)(1 + λI I) cos

[
γ− 1

2 (π + 2γ)λI I

] ,

FI I2 = ((α− β + αλ)µ1 + βµ2)

 (1 + α) cos
[
γ + πλI I

2 + γλI I

]
+

+αλI I cos
[
γ− πλI I

2 + γλI I

]
− α(1 + λI I) cos

[
γ + πλI I

2 − γλI I

] ,

FI I0 =

 2 cos[γ]
(

λI I cos
[

πλI I
2

]
cos[γλI I ]− (β− 1 + 2α(λI I − 1) + λI I) sin

[
πλI I

2

]
sin[γλI I ]

)
+

+ sin[γ]
((

1− β + 4αλ2
I I
)

sin
[

1
2 (π − 2γ)λI I

]
+ (1 + β + 2(β− 1− 2α)λI I) sin

[
1
2 (π + 2γ)λI I

]) .

For the quantitative description of stresses, it is necessary to determine the values
of the Kj coefficients (GSIFs). A method for finding generalised stress intensity factors is
discussed in the next section.

2.2. The Method for Determining Generalised Stress Intensity Factors Kj

For the considered problem of a notch with a tip located on the bi-material interface,
there are no exact solutions enabling the determination of the value of generalised stress
intensity factors. The multiplied constants Kj (GSIFs) used in Formula (11) can be found
using approximate methods. In this paper, the analytical and numerical method for
determining GSIFs presented in the work [30] was used. It is an asymptotic method, based
on the comparison of analytically and numerically obtained stress distributions in the
vicinity of the defect’s tip. So, for its application, it was necessary to derive, based on the
obtained analytical solutions, approximating functions and to determine the appropriate
stresses using numerical methods (finite element method (FEM)). The methodology of
obtaining the latter is discussed in the next section. Below, the approach of the applied
method of GSIFs determination is discussed and the formulas for approximating functions
are derived.

The following functions were used to extrapolate the hoop σϕ2 and tangential τrϕ2
stresses numerically determined at two neighbouring points located at a distance of rn and
rn+1 from the notch tip:

σϕ2(rn ,−π/2) =
KI(r)√

2πr1−λI
(1 + cIrn), σϕ2(rn+1,−π/2) =

KI(r)√
2πr1−λI

(1 + cIrn+1)

τrϕ2(rn ,−π/2) =
KI I(r)√

2πr1−λI I
(1 + cI Irn), τrϕ2(rn+1,−π/2) =

KI I(r)√
2πr1−λI I

(1 + cI Irn+1)

 (12)

where CI, CII are constants that can be eliminated from the equations.
Applying the (10) and (11) to the extrapolating functions (12), the formulas for GSIFs

(approximating functions) were obtained in the following form:

KI(r) =

√
2π(rnrn+1)

1−λI (rn
λI σϕ2(rn+1,−π/2)−rn+1

λI σϕ2(rn ,−π/2))
rn−rn+1

KI I(r) =

√
2π(rnrn+1)

1−λI I (rn
λI I τrϕ2(rn+1,−π/2)−rn+1

λI I τrϕ2(rn ,−π/2))
rn−rn+1

. (13)
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The Kj(r) factors were calculated on the basis of the above Formula (13), assuming for
σϕ2 and τrϕ2, respectively, the values of hoop and tangential stresses obtained with the use
of FEM at n + 1 nodes.

The accuracy of the determined GSIFs values depends on the selection of the area from
which the stresses obtained using FEM are implemented into the approximating functions.
This area was determined using the criterion of selecting nodes proposed in [30].

The Kj(r) coefficients determined in all selected nodes should theoretically be identical.
However, due to potential errors in numerical calculations, the found values of the gener-
alised stress intensity factors may differ slightly. To minimise such an error, the obtained
results were averaged according to the following formula:

KI =

n+1
∑

n=1
KI(r)

n + 1
, KI I =

n+1
∑

n=1
KI I(r)

n + 1
. (14)

To verify the method used, the GSIFs were calculated for the problem of a crack
perpendicular to the interface and started on it. The obtained results were compared
with the exact solution [16] and the approximate one [18]. A satisfactory agreement was
obtained in both cases—the difference was about 1.2%. A similar convergence of results was
obtained in the notch problem, the tip of which is located on the border of the connection
of two materials. The relative difference between the compared GSIFs values, found with
the use of the developed method and in the work [26], was about 1.8%.

2.3. FEM Modelling

Currently, various types of numerical simulations are often performed before the
implementation and production of the product. Numerical calculations can be performed
using various methods. One of them is FEM. This method can be used, for example,
to analyse issues related to friction [31,32], flow [33,34] or to predict the operation of
piezoelectric transducers [35–37].

In the presented work, FEM was used to determine generalised stress intensity factors.
Numerical calculations were performed in the ANSYS environment, for which, using the
built-in programming language Ansys Parametric Design Language (APDL), a proprietary
module enabling direct determination of GSIFs was implemented. This module also takes
into account the previously mentioned criterion of selecting nodes. The following types of
specimens were modelled in numerical simulations:

• a rectangular plate with a single edge sharp corner under uniaxial tension (Figure 3a);
• a rectangular plate with a double edge sharp corner under uniaxial/biaxial tension

(Figure 3b);
• a rectangular plate with a central sharp corner under uniaxial/biaxial tension (Figure 4a);
• a rectangular plate with a central sharp corner under pure shear loading (Figure 4b).

As the tested samples have one or two planes of symmetry, only their halves or
quarters were modelled (shaded area in the figures above). Symmetry (for tension samples—
Figures 3 and 4a) and anti-symmetry (for shear samples—Figure 4b) boundary conditions
were assumed in the symmetry planes.

The samples were discretized using quadrangular, eight-node finite elements (Figure 5).
The mesh of division into finite elements was densified in the tip region. Furthermore,
the tip of the notch was surrounded by a special triangular finite element with a shape
function, which could simulate the singularities of displacements of the r0.5 type. In this
way, a better representation of the singular stress fields occurring in the vicinity of the
corner tip was obtained.
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Figure 3. Geometry and method of fixing and loading specimens: (a) with a single edge-notched
plate, and (b) with a double edge-notched plate.
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Figure 4. Geometry method of fixing and loading of specimens with a centre-notched plate subjected to (a) uniaxial/biaxial
tension and (b) pure shear loading.
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The applied load σy1 was constant and equal to 1 Pa. However, the value of the load
σy2 was determined on the basis of Formula (15), resulting from the condition of continuity
of strain −εy1 = εy2:

σy2 =
E2
(
σy1 − σxν1

)
E1

+ σxν2. (15)

For tensile specimens, numerical calculations were performed for variable proportions
of longitudinal and transverse loads −σx/σy1. Moreover, the simulations were prepared
for various relative stiffness of the individual components of the bi-material–Γ = µ1/µ2 ,
where µi =

Ei
2(1+νi)

. In all simulations, it was assumed that the Young’s modulus of material

1 was constant and be equal to: E1 = 1 × 109 Pa. However, the Young’s modulus of
material 2 –E2- was variable and depended on the parameter Γ. The Poisson coefficients
also depended on this parameter, which were respectively: ν1 = ν2 = 0.3 (for Γ = 1), ν1 = 0.3,
ν2 = 0.35 (for Γ > 1), and ν1 = 0.35, ν2 = 0.3 (for Γ < 1).

Numerical tests were performed for specimens with various notch angles ψ and
proportions of characteristic dimensions a/w. Moreover, it was arbitrarily assumed that
the notch height a is constant and amounts to 1 m. The ratio of the height and width of the
specimens was also kept constant—h/w = 2. The plane stress condition was assumed in
all simulations.

3. Results and Discussion

The quantitative description of singular stress fields is obtained by finding generalised
stress intensity factors. For their determination, using the previously described method,
the numerical data (hoop and tangential stresses at the interface of the bi-material) and
eigenvalues λj are necessary. The latter, for the samples described in Section 2.2, were
calculated on the basis of the dependence (7) and (8) and are presented in Tables 1 and 2.

Table 1. The eigenvalues λI (Mode I).

2ψ
[◦]

γ
[◦]

λI

Γ = 0.1 Γ = 0.2 Γ = 0.5 Γ = 1 Γ = 2 Γ = 5 Γ = 10

0 90 0.68145 0.64075 0.56383/0.56383
* 0.5 0.42944/0.42944

* 0.32579 0.25150

30 75 0.72936 0.67111 0.57386 0.50145 0.43042 0.33514 0.26647
60 60 0.79536 0.72026 0.59975 0.51222 0.43166 0.33627 0.27426
90 45 0.86612 0.78694 0.64984 0.54448 0.44639 0.33606 0.27385

ν1 = 0.3, ν2 = 0.35 for Γ > 1, ν1 = 0.35, ν2 = 0.3 for Γ < 1; *—from reference [18].
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Table 2. The eigenvalues λII (Mode II).

2ψ
[◦]

γ
[◦]

λII

Γ = 0.1 Γ = 0.2 Γ = 0.5 Γ = 1 Γ = 2 Γ = 5 Γ = 10

0 90 0.68145 0.64075 0.56383 0.5 0.42944 0.32579 0.25150
30 75 0.77821 0.73773 0.66074 0.59819 0.52828 0.41805 0.33128
60 60 0.92776 0.88173 0.79616 0.73090 0.66201 0.55226 0.45604
90 45 1 1 0.99105 0.90853 0.83206 0.73052 0.64428

ν1 = 0.3, ν2 = 0.35 for Γ > 1, ν1 = 0.35, ν2 = 0.3 for Γ < 1.

GSIFs units—[Pa m1−λj]—depend on the geometrical and material parameters of the
specimens. This prevents direct comparison of the results obtained. Such inconvenience
can be eliminated by normalising GSIFs [20]. In the presented work, the determined values
of the Kj coefficients were normalised using the following formula:

Fj = Kj/
(

σy1
√

πa1−λj
)

, (j = I, I I) (16)

The results obtained for each type of specimens are presented below.

3.1. Rectangular Plate with a Single Edge Sharp Corner under Uniaxial Tension

Table 3 shows the normalised FI factors calculated for a tensile bi–material with a
single edge notch. The calculations were made for various relative stiffness and notch
apex angles.

Table 3. Values of normalised stress intensity factors FI calculated for a rectangular plate with a
single edge sharp corner under uniaxial tension, a/w = 0.2.

Γ
FI

2ψ = 0◦ 2ψ = 30◦ 2ψ = 60◦ 2ψ = 90◦

0.1 4.317 6.070 8.765 11.990
0.2 3.076 3.722 4.713 5.991
0.5 1.908 2.019 2.236 2.609

1
1.361 1.375 1.431/2.220 ** 1.579/2.471 **

1.367 * 2.230 * 2.478 *
2 0.983 0.983 0.989 1.042
5 0.636 0.659 0.659 0.659
10 0.452 0.490 0.502 0.504

*—From reference [38]; **—calculated for a/w = 0.4.

By analysing the results presented in Table 3, it can be seen that the normalised FI
values increase with

• an increase in the notch angle 2ψ;
• a decrease in the relative stiffness Γ (this tendency is consistent with the distribution

of the normalised stress intensity factors determined for the crack initiated at the
interface [16,18]).

It was also found that as the height of the notch increased, regardless of the material
parameters and its opening angle, the FI coefficients increased (Figure 6).
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3.2. Rectangular Plate with a Double Edge Sharp Corner under Uniaxial/Biaxial Tension

Similar tests, as for the case described in Section 3.1, were performed for the prob-
lem of a double edge-notched plate. The obtained results are presented in Table 4 and
Figures 7 and 8.

Table 4. Values of normalised stress intensity factors FI calculated for the rectangular plate with a double edge sharp corner
under uniaxial/biaxial tension, a/w = 0.4.

Γ

FI

2ψ = 0◦ 2ψ = 30◦ 2ψ = 60◦ 2ψ = 90◦

σx = 0 σx/σy1 = 2 σx = 0 σx/σy1 = 2 σx = 0 σx/σy1 = 2 σx = 0 σx/σy1 = 2

0.1 4.332 3.488 5.847 3.68 8.469 4.086 11.498 4.600
0.2 2.950 2.430 3.489 3.00 4.412 2.424 5.580 2.578
0.5 1.685 1.525 1.767 1.40 1.958 1.318 2.281 1.343
1 1.132 1.132 1.140 1.03 1.189 0.950 1.324 0.969
2 0.772 0.806 0.777 0.778 0.781 0.783 0.821 0.832
5 0.480 0.493 0.497 0.51 0.496 0.509 0.517 0.518
10 0.344 0.346 0.368 0.38 0.376 0.395 0.381 0.406

The stress intensity coefficients were calculated for two load variants: uniaxial (σx = 0)
and biaxial (σx/σy1 6= 0) tension. The influence of the tested parameters—relative stiffness
Γ, vertex angle 2ψ, and relative notch height a/w—on the values of normalised stress
intensity factors was identical as for the single edge-notched plate problem.

As for the influence of the ratio of loads perpendicular and parallel to the interface
(σx/σy1) on the values of the FI coefficients, on the basis of the analyses performed (Table 4,
Figure 8) it can be concluded that with increasing load σx:

• the FI value significantly decreases for Γ ≤ 1;
• increases slightly for the case where Γ > 1.

Of course, for the case of a crack in a homogeneous material (Γ = 1, 2ψ = 0◦), the
application of an additional load σx does not affect the stress intensity factor.
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3.3. Rectangular Plate with a Central Sharp Corner under Uniaxial/Biaxial Tension

The same tests, as for the case described in Section 3.2, were performed for the
problem with the centre-notched plate. The obtained results are presented in Table 5 and
Figures 9 and 10.
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Table 5. Values of normalised stress intensity factors FI calculated for the rectangular plate with a central sharp corner
under uniaxial/biaxial tension, a/w = 0.4.

Γ

FI

2ψ = 0◦ 2ψ = 30◦ 2ψ = 60◦ 2ψ = 90◦

σx = 0 σx/σy1 = 2 σx = 0 σx/σy1 = 2 σx = 0 σx/σy1 = 2 σx = 0 σx/σy1 = 2

0.1 4.146 3.395 5.818 3.766 8.740 3.793 12.36 2.415
0.2 2.742 2.410 3.497 2.460 4.600 2.300 6.12 1.270
0.5 1.620 1.500 1.767 1.464 2.067 1.304 2.56 0.710

1
1.109

1.004 * 1.109
1.146

1.027 * 1.076
1.254

1.112 * 0.953
1.47

1.263 * 0.596
0.996 ** 1.028 ** 1.115 ** 1.267 **

2 0.771 0.803 0.782 0.797 0.818 0.821 0.91 0.512
5 0.482 0.505 0.498 0.526 0.502 0.508 0.53 0.406
10 0.345 0.353 0.366 0.381 0.379 0.385 0.39 0.337

**—From reference [39], *—calculated for a/w = 0.1.

The performed analyses showed that the factors Fj always increase with a decrease in
the relative stiffness Γ and an increase in the height of the notch and its apex angle.

For samples subjected to the biaxial tension load, similarly to the problem of the
double-sided notch, an increase in the load σx causes either a decrease in the values of the
FI (for Γ ≤ 1) coefficients or their increase (for Γ > 1).
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3.4. Rectangular Plate with a Central Sharp Corner under Pure Shear Loading

The test results for the notched samples subjected to tangential load (Mode II) are
shown in Table 6 and Figure 11.

Table 6. Values of normalised stress intensity factors FII calculated for a rectangular plate with a
central sharp corner under pure shear loading, a/w = 0.4.

Γ
FII

2ψ = 0◦ 2ψ = 30◦ 2ψ = 60◦ 2ψ = 90◦

0.1 13.739 16.146 19.152 -
0.2 6.501 7.796 9.387 -
0.5 2.279 2.845 3.530 4.669
1 1.034 1.345 1.731 2.124
2 0.451 0.613 0.836 1.074
5 0.139 0.197 0.293 0.425
10 0.062 0.088 0.135 0.218

As for elements subjected to shear loads, the values of the normalised factors FII
(Table 6) change in the same way as in the case of applying tensile loads (increase with the
decrease of the relative stiffness and the increase of the notch tip angle).

In Figure 11, for an element with a central notch subjected to pure shear (for arbitrarily
selected geometric and material parameters), the stress distributions obtained from the
analytical solution were compared with the results obtained through FEM. Good agreement
of both solutions was obtained in the apex region of about 10% of the notch height. Similar
comparisons were also made for the specimens discussed in Sections 3.1–3.3 (not included
in the paper). In each case, a similar compliance of the analytical description with the FEM
solution was obtained.
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4. Conclusions

The paper presents analytical and numerical solutions for the plane problem of a sharp
corner, assuming that its tip touches the line separating two different elastic materials.

Two variants of loading were considered—tensile (transverse and/or longitudinal
to the interface) and shear in the plane of symmetry of the notch. For both load cases,
eigenequations were determined, which depended on the mechanical properties of both
components of the composite and the notch tip angle. It was found that for each loading
variant, there is always one singular term described by the real eigenvalues λj. Moreover,
it was observed that the stress singularity strength decreased with increasing notch apex
angle and relative stiffness Γ.

Furthermore, formulas were derived to determine the individual components of the
stress tensor occurring in the notch tip area with the use of generalised stress intensity
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factors Kj. The Kj coefficients were also calculated for three variants of the notch location: a
single edge sharp notch, a double edge sharp, and a central sharp notch. The calculations
were made for various notch apex angles as a function of material constants.

It was found that the normalised values of generalised stress intensity factors increase
with a decrease in the relative stiffness Γ and an increase in the notch height and its apex
angle. Moreover, it was found that in the case of specimens subjected to biaxial tension,
an increase in the load perpendicular to the interface (σx) causes either a decrease in the
values of the normalised stress intensity factors (Γ ≤ 1) or their increase (Γ ≤ 1).

The derived analytical solution describing the individual stress components was
compared with the results obtained using the FEM. Both solutions were found to be very
compatible in the apex region of about 10% of the notch height.

The research results presented in this article can be used by other researchers in many
ways, e.g., as comparative data. The analytical and numerical description of singular stress
fields can also be used to develop a fracture criterion of structural elements with this type
of material defect. The development of such a criterion will be the aim of the future works
of the author.
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