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Abstract: In this paper, Cu-6 wt%Ag alloy sheets were prepared using vacuum induction melting,
heat treatment, and cold working rolling. We investigated the influence of the aging cooling rate
on the microstructure and properties of Cu-6 wt%Ag alloy sheets. By reducing the cooling rate of
the aging treatment, the mechanical properties of the cold-rolled Cu-6 wt%Ag alloy sheets were
improved. The cold-rolled Cu-6 wt%Ag alloy sheet achieves a tensile strength of 1003 MPa and an
electrical conductivity of 75% IACS (International Annealing Copper Standard), which is superior to
the alloy fabricated with other methods. SEM characterization shows that the change in properties
of the Cu-6 wt%Ag alloy sheets with the same deformation is due to a precipitation of the nano-Ag
phase. The high-performance Cu-Ag sheets are expected to be used as Bitter disks for water-cooled
high-field magnets.

Keywords: high strength-high conductivity; Cu-Ag sheet; aging treatment; cooling rate; Ag
precipitated phase

1. Introduction

Cu-Ag alloys are widely used as conductors for high field magnets due to their high
conductivity and high strength, which can reduce Joule heat and resist Lorentz’s force [1–7].
At present, most water-cooled magnets above 30 T are made of Cu-Ag alloy sheets [8–10].
Since Ag is expensive, low Ag content (<8 wt.%) Cu-Ag alloys have been widely studied to
reduce the cost [11–17]. Zhang et al. [18] prepared a Cu-5Ag alloy sheet with a strength of
870 MPa and an electrical conductivity of 78% IACS by obtaining a deformation nanotwin
structure at liquid nitrogen temperature. Gaganov et al. increased the tensile strength from
1220 MPa to 1360 MPa by adding the Zr element into Cu-7Ag alloy, but the conductivity of
the alloy was significantly reduced from 68% IACS to 58% IACS [19]. An et al. [16] added
the Sc element into Cu-6 wt%Ag alloy and the alloy strength increased to 1080 MPa but
the conductivity decreased from 77% IACS to 66% IACS. Although researchers have made
some breakthroughs by regulating the microstructure of Cu-Ag alloys, low Ag content Cu-
Ag alloy sheets with high strength and high conductivity fabricated by simple processing
methods have not been realized so far.

Compared with solid solution strengthening, work hardening, fine crystal strength-
ening, and other strengthening mechanisms, aging strengthening can not only improve
the mechanical properties of the alloy but also significantly reduce the resistivity of the
copper matrix [20–25]. At present, it is known that the precipitated phase obtained by
aging treatment has an important effect on the preparation of high-performance Cu-Ag
alloys. The aging precipitation of Cu-Ag alloy can be divided into continuous precipitation
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(CP) and discontinuous precipitation (DP). The main difference between these two precip-
itations is that the discontinuous precipitated phase nucleates and grows by way of the
movement of the grain boundary, while the continuous precipitated phase nucleates and
grows within the grain [19,26,27]. In Cu-Ag alloys with low Ag content, there is almost
no continuous precipitated phase, only a discontinuous precipitated phase exists at the
grain boundary. Compared with the discontinuous precipitated phase, the continuous
precipitated phase generated by aging treatment can lead the alloy to high conductivity
and higher strength [11,16,19,23,26]. Therefore, the regulation of the precipitated phase
in Cu-Ag alloy (inhibition of discontinuous precipitated phase, promotion of continuous
precipitated phase) is the key factor in achieving high strength and high conductivity in
Cu-Ag alloy with low Ag content.

A large number of studies have shown that aging temperature and time have an
important influence on the microstructure and properties of Cu-Ag alloy [26–29]. The
aging cooling process can also affect the precipitation kinetics, such as the diffusion,
migration, and precipitation of the solidly dissolved atoms in the alloy [28]. In addition,
Cu-Ag alloy is in a high-temperature state for a long time; the cooling rate also affects the
coarsening of the precipitated phase. However, all these have not been well understood
until now.

In this paper, a Cu-Ag alloy sheet with high strength and great conductivity was
prepared using methods of vacuum induction melting, forging, aging treatment, and cold
rolling. The influence of the aging cooling rate on the microstructures and properties of
Cu-Ag alloys was thoroughly studied.

2. Materials and Methods

The raw materials used were high-purity Ag (99.99% purity) and high-purity Cu
(99.99% purity). A Cu-6 wt%Ag ingot with a size of 26 mm× 26 mm× 70 mm was prepared
using vacuum induction melting. After melting, the ingot underwent a solution treatment
at 780 ◦C for 2 h, then was quenched into water. Then, the block was deformed using
a hydraulic press machine at a deformation of 22.12% and the cross-sectional area went
from 26 mm× 26 mm to 23.4 mm× 26 mm. After that, the Cu-Ag alloy was aging-treated
at 450 ◦C for 15 h and cooled at different rates (furnace cooling, 28 ◦C/h, 21 ◦C/h, and
17 ◦C/h), as shown in Figure 1a. Finally, the aged Cu-6 wt%Ag alloy was rolled to a
thickness of about 0.3 mm at room temperature. The rolling reduction of the sheet ε% is
defined as 100% × (t0 − t)/t0, where t0 and t are the thickness of the initial sample and that
after cold rolling.

Scanning electron microscopy (SEM, Zeiss Sigma, Carl Zeiss AG, Oberkochen,
Germany) and energy-dispersive X-ray spectroscopy (EDS) were used to characterize
the microstructure. X-ray diffraction (XRD, Bruke D8, Bruker, Karlsruhe, Germany)
was also used to characterize the crystallographic integrity of phases after thermome-
chanical treatment. The electrical conductivity was measured using an eddy current
conductivity meter (ECCM, Sigma 2008B, Xiamen Tianyan Instrument Co., Ltd., Xia-
men, China). The tensile strength–strain curve of the sample was measured using a
universal tensile machine (UTM, CMT6104, Yunnan Xuecu Technology Co., Ltd., Yun-
nan, China) at a strain rate of 1 × 10−3 s−1. Three dog-bone-shaped tensile specimens
were selected, each with a gauge length of 30 mm, a width of 4 mm, and a thickness of
0.3 mm. The hardness was measured with a hardness tester with a load of 200 g and
a holding time of 15 s. The samples for the tensile test were cut at the center of the
Cu-Ag sheet and the samples for the hardness test were taken from the center of the
Cu-Ag alloy.
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Figure 1. (a) Change of aging temperature with time. (b) Change of electrical conductivity with the
deformation of the Cu-6 wt%Ag alloy sheet. (c) Change of strength with the deformation of the Cu-6
wt%Ag alloy sheet. (d) Comprehensive performance diagram of the Cu-6 wt%Ag alloy sheet.

3. Results

Figure 1a shows the aging treatment curves for the Cu-6 wt% Ag alloys. The samples
were all aged at a constant temperature of 450 ◦C for 15 h with different cooling rates in
the furnace, which were furnace cooling, 28 ◦C/h, 21 ◦C/h, and 17 ◦C/h. The variation
of conductivity with deformation for the Cu-Ag alloy sheets under different cooling rates
showed a similar trend, that is, a continuous decrease as the deformation increased, as
shown in Figure 1b. The rolling was performed on the two-high mill with a diameter of
the roll of 80 mm, a rotational velocity of the roll of 0.2 r/s, and a reduction per press of
about 0.1~0.2%. A larger deformation can lead to more defects, which will cause a greater
scattering of electrons. At the same deformation, the Cu-Ag alloy cooled in the furnace
showed higher conductivity.

Compared with the conductivity, different aging cooling rates caused the Cu-Ag alloy
to show different trends in tensile strength, as shown in Figure 1c. The strength of the
furnace-cooled samples continued to increase as the rolling reduction increased, reaching a
maximum strength of 1091.45 MPa. Although the strength of the sheets that underwent
aging treatment at lower aging cooling rates decreased by 99.3% with rolling reduction, the
strength of the samples at lower cooling rates was still higher than that at furnace cooling
before the reduction reached 99.3%. In Sakai’s research [29], the Cu-Ag alloy has shown the
same tendency when undergoing a certain aging treatment.

Figure 1d shows the relationship between the strength and conductivity of the Cu-Ag
alloy sheets after aging treatment at different cooling rates. The Cu-Ag alloy sheet with
a reduced aging cooling rate showed better strength when the conductivity was higher
than 76% IACS. With the decrease in cooling rate, the conductivity of the Cu-Ag alloy
sheet reached 82% IACS and the tensile strength reached 970 MPa, while the strength
of the sample of furnace cooling was only 850 MPa at the same conductivity. When the
conductivity of the alloy reached 75% IACS, the strength of the sample of furnace cooling
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could reach 1003 MPa, which is higher than that of the other alloy samples whose cooling
rate was reduced.

In Figure 2, the morphology and distribution of the Ag precipitated phase (Ag β
phase) of the Cu-6 wt%Ag alloy after aging treatment can be divided into two main regions.
The first region is the discontinuous precipitated phase area, as shown in Figure 2a,c,e,g.
Ag precipitates of approximately 0.5–2 µm in size are surrounded by a deeper color Cu
matrix. These forms of Ag precipitates are shown as dots and strips. In Figure 2a,c,e,g, the
discontinuous precipitated phase is banded and the region of the discontinuous precipitated
phase gradually expands as the cooling rate decreases. When Cu-Ag was cooled at 17 ◦C/h,
the discontinuous Ag precipitated phase had a bandwidth of 12 µm. The second region is
the continuous precipitated phase, as shown in Figure 2b,d,f,h. The higher brightness of this
part of the Cu matrix is due to the distribution of the nanoscale Ag precipitates. In Figure 2b,
the nanoscale Ag precipitates cooled in the furnace are 50 nm in width and 70–460 nm in
length. However, the size of these nanoscale Ag precipitates becomes smaller as the cooling
rate decreases. The change between continuous and discontinuous precipitated phases of
Ag implies that Ag atoms migrate during the aging treatment process. Differences in the
microstructure of the Cu-Ag alloy after aging treatment will affect the trend of strength
and electrical conductivity in the cold rolling process. It should be emphasized that the
distribution of the Ag phase after heat treatment is an important factor in the properties of
Cu-Ag alloys.
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Figure 2. The BSE images of Cu-6 wt%Ag alloy after aging treatment at different cooling rates
(a,b) furnace colling rate; (c,d) 28 ◦C/h; (e,f) 21 ◦C/h; (g,h) 17 ◦C/h. The arrows shown in
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Figure 3 shows the EDS results of Cu-6 wt%Ag alloy aged at 450 ◦C for 15 h with the
17 ◦C/h cooling rate. Spot 1 is the Ag-rich phase, showing that the Ag content is 46.37%.
Spot 2 is the Cu matrix portion of the discontinuous precipitation phase. Spot 3 is the area
of nanoscale Ag precipitates with an Ag content of 5.79%. This discontinuous precipitation
phase structure reduces the interfacial density of the Cu and Ag phases and contributes to
improved electrical conductivity.
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Figure 3. The EDS results of Cu-6 wt%Ag alloy heat-treated at 450 ◦C for 15 h and 17 ◦C/h cooling rate.

Figure 4a shows the XRD spectra of the Cu-Ag alloy before and after aging. Before the
aging treatment, the Cu-Ag alloy was homogenized, the Ag atoms were solidly dissolved in
the Cu lattice, and there are only diffraction peaks of Cu. After the aging treatment, a weaker
Ag peak appears in the XRD spectrum due to the precipitation of the Ag phase during the
aging process, and the diffraction peaks of the Cu matrix shift to the high angle (Figure 4b,c).
The lattice parameters of Cu calculated using the Cu (111) peak in Figure 4a are shown in
Figure 4d. The obvious decrease in the lattice constant of Cu after aging treatment is due
to the precipitation of more Ag atoms from the Cu lattice, which reduces the distortion of
the Cu lattice. This is similar to the result of Choi’s research [30]. The lattice constant of
Cu decreases as the aging cooling rate slows down, which means there are more Ag atoms
precipitating from the Cu matrix as the aging cooling rate decreases. According to the
thermodynamics of precipitation, the slower the cooling rate is, the more time the Ag atoms
have to move and precipitate. However, the content of Ag precipitates decreases in the
continuous precipitated phase, which implies an increase in the discontinuous precipitated
phase. This distribution of the Ag precipitated phase directly affects its mechanical and
electrical properties.

Figure 5a shows the hardness of the Cu-6 wt%Ag alloy before and after the aging
treatment. Due to structural defects, such as vacancies, dislocations, and the distortion
energy accumulated in the alloy by plastic deformation, the hardness of the alloy is as high
as 170.77 HV. During aging treatment, although the Ag phase precipitates, the process of
recovery, recrystallization, and grain growth occurs and the hardness of the alloy decreases,
which is lower than 100 HV.

Figure 5b shows the variation of electrical conductivity of the Cu-6 wt%Ag alloy before
and after the aging treatment. Since the conductivity is closely related to the point defects
(vacancies, interstitial atoms, etc.), the deformed Cu-6 wt%Ag alloy before aging treatment
shows a low electrical conductivity of 76.26% IACS. A significant increase in conductivity
occurs due to the recovery, recrystallization, grain growth, and Ag phase precipitates from
the matrix in the aging treatment. In addition, as the cooling rate of the aging treatment
slows down, the discontinuous precipitation phase region in the Cu-Ag alloy broadens, the
Ag precipitation phase size becomes larger, and the content of the Ag precipitation phase in
the continuous precipitation phase region reduces, which reduces the two-phase interfaces
and improves the electrical conductivity of the alloy.
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Figure 6 shows the microstructure of the cold-rolled Cu-6 wt%Ag alloy sheet with a
99.3% reduction followed by the furnace-cooled aging treatment. At low magnification
(Figure 6a), the microstructure is very uniform, and no obvious contrast difference is
observed. However, at high magnification (Figure 6b), the stripe-like Ag-rich phase, which
stretches parallel to the rolling direction, is clearly seen. The size of this Ag-rich phase
is refined, and its distribution is uniform. The EDX result shows that the average Ag
content of the sheet is about 6% (the red box in Figure 6c), while the Ag content of the
refined Ag-rich phase is about 10 wt% (Spot 1 in Figure 6c). The size of the Ag-rich phase
ranges from 0.78 µm to 0.22 µm and the distribution becomes more uniform with increasing
deformation. Since the evolution of the Ag-precipitated phases in Figure 2 is noteworthy,
the shape of the Ag-rich phase evolved during the rolling process. Therefore, one key
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method for achieving high strength and high conductivity of Cu-Ag alloys is to control the
morphology of Ag precipitates by using aging treatment before cold rolling.
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Figure 7a shows the uniaxial tensile stress–strain curve of the Cu-6 wt%Ag sheet at
a 99.3% reduction. Compared with the sample with furnace cooling, the tensile strength
is significantly improved when the cooling rate decreases, which can exceed 1000 MPa at
28 ◦C/h. This high strength is attributed to the combined effects of precipitate strengthen-
ing and cold-work strengthening after severe deformation. Figure 7b shows the comparison
of tensile strength and electrical conductivity of Cu-6 wt%Ag sheets prepared using dif-
ferent methods [31,32]. The Cu-6 wt%Ag sheets produced in this work show an excellent
combination of high tensile strength and high electrical conductivity.
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4. Discussion

From the above analysis, the Cu-Ag alloy sheets in this work show excellent com-
prehensive strength and electrical conductivity properties, which can be attributed to the
dispersed continuous precipitates in the alloy. According to the literature, the precipi-
tated phase is closely related to Ag atom diffusion at grain boundaries, and the nucleation
and growth of the discontinuous precipitated phase are relatively easy for large-angle
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grains [27,33]. In Cu-Ag alloys with low Ag content, there are mainly large-angle grain
boundaries, so Ag often forms discontinuous precipitated phases after aging treatment
and it is difficult to obtain a large number of continuous precipitated phases [34,35]. The
researchers found that the addition of Zr, Sc, and other elements can significantly inhibit the
discontinuous precipitated phase and increase the continuous precipitated phase [16,19].
However, the addition of a third element significantly reduced the electrical conductivity of
the alloy despite its high strength. In this work, the content of the continuous precipitated
phase was increased by changing the aging process with different cooling rates. The contin-
uous precipitated Ag phases were refined and elongated into the nanofiber after plastic
deformation processing, which can further improve the strength of the alloy. However, the
mechanism of the formation of the continuous precipitated phase at low Ag content still
needs to be investigated further.

By considering the relationship between the cooling rate of aging treatment and the
final properties, we put forward a method to regulate the comprehensive properties of
alloys by adjusting the cooling rate of aging treatment. When higher tensile strength and
relatively lower electrical conductivity (e.g., 1091 MPa, 73.6% IACS) are desired, the aging
cooling rate needs to be increased so that more continuous precipitation occurs in the
Cu-Ag alloy and large plastic deformation (e.g., deformation rate of 99.3%) is achieved. On
the contrary, when higher electrical conductivity and lower tensile strength (e.g., 1003 MPa,
75% IACS) are expected, the cooling rate of aging treatment should be reduced to increase
the discontinuous precipitated phase of the Cu-Ag alloy, and the alloy undergoes less
plastic deformation (deformation rate 98.8%). This strategy lays a foundation for accurately
controlling the comprehensive properties of Cu-Ag alloys in the future.

5. Conclusions

This work investigated the effect of the aging cooling rate on the microstructures
and properties of Cu-6 wt%Ag alloy. The microstructural characterization showed that
decreasing the aging cooling rate can affect the migration of Ag atoms, which increases
the discontinuous precipitation phase and decreases the continuous precipitation phase of
Ag. After severe cold rolling, the grains of Cu-Ag alloy and Ag precipitates were refined
and the dislocation density was largely increased, which further improved the strength of
the alloy. By controlling the cooling rate of the aging process and the rolling deformation,
the Cu-6 wt%Ag alloy sheet (28 ◦C/h) can achieve an electrical conductivity of 75% IACS
and a tensile strength of 1003 MPa. The Cu-Ag alloy sheets produced by this method are
expected to serve as key conductors in water-cooled high-field magnets.
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