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Abstract: In this study, terbium-doped ZnO-SiO2-B2O3-Na2O glasses were fabricated with the
conventional melt-quenching method. The effect of altering the concentration of the host matrix on
luminescence performance was investigated in terms of different ZnO/B2O3 and ZnO/SiO2 ratios.
FT-IR results indicate that bridging oxygens (Bos) were converted to non-bridging oxygens (NBOs)
with increments of ZnO. Furthermore, the emission intensity and luminescence lifetime of samples
were influenced by the amount of ZnO; this was proven with photoluminescence spectra results.
The maximum emission intensity was observed at a 1.1 ZnO/B2O3 ratio and a 0.8 ZnO/SiO2 ratio;
however, the highest luminescence lifetime was observed at a 1.1 ZnO/SiO2 ratio. The emission
intensity and luminescence lifetime of glass samples were improved by heat treatment as a result
of the formation of willemite and zinc oxide phases. An increase in the ZnO/SiO2 ratio facilitated
the formation of willemite and zinc oxide phases; therefore, crystallinity was directly related to the
luminescence behavior of glass samples.

Keywords: zinc borosilicate glasses; luminescence; Tb3+; glass structure

1. Introduction

Borosilicate glasses activated with rare earth ions have gained prominence in a wide
range of luminescent applications, including solid-state lighting, laser technology, display
panels, and optical devices, owing to their good optical transmission, thermal stability,
chemical resistance, low manufacturing cost, and ease of fabrication into various forms. The
high transmittance of borosilicate glasses allows the emission of light without creating a
barrier in phosphorescence applications. B2O3 and SiO2 are excellent network formers that
create bridging oxygen structures. However, the high phonon energies of these network
formers lead to reduced luminescence efficiency as a result of non-radiative losses in the
glass [1–5]. In order to prevent non-radiative energy losses and improve the luminescence
performance of the glass system, modifier oxides can be added to borosilicate glasses. In
particular, modifier oxides facilitate the formation of coordinated defects by disrupting
Si-O-Si and B-O-B bonds. Zinc oxide is a promising modifier oxide that has low phonon
energies and good rare earth ion solubility. ZnO has a wide band gap (eV); furthermore,
the presence of ZnO in borosilicate glasses enhances light emission in the ultra-violet
region [6–8]. ZnO acts as a modifier oxide by occupying the interstitial position in the glass
network. This leads to a disruption of network connectivity, an alteration in bond formation,
and the creation of non-bridging oxygens [4,9,10]. Moreover, the crystallization behavior
of a glass matrix depends on the amount of ZnO. The formation of zinc oxide (ZnO) and
willemite (Zn2SiO4) phases affects the optical properties of glass. Zn2SiO4 is recognized
as a good candidate for hosting phosphors and optical materials thanks to its wide band
gap, which allows for efficient light emission, chemical stability, and transparency in the
UV-visible region [11–13]. The addition of an alkaline metal such as Na2O to the glass
composition contributes to stabilization during melting by increasing its stiffness [14].

Materials 2024, 17, 2154. https://doi.org/10.3390/ma17092154 https://www.mdpi.com/journal/materials

https://doi.org/10.3390/ma17092154
https://doi.org/10.3390/ma17092154
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/materials
https://www.mdpi.com
https://orcid.org/0009-0006-7930-2280
https://orcid.org/0000-0002-6493-7711
https://doi.org/10.3390/ma17092154
https://www.mdpi.com/journal/materials
https://www.mdpi.com/article/10.3390/ma17092154?type=check_update&version=1


Materials 2024, 17, 2154 2 of 16

Prior works indicated that various rare earth (Tb3+, Sm3+, Pr3+, and Ce3+)- and transi-
tion metals (Mn2+, Cu2+, and Co2+)-activated zinc borosilicate glasses have been studied to
investigate luminescence properties [15–22]. Furthermore, the effect of adding transition
metals (Nb, Mn, V, and Co) on the crystallization behavior of zinc borosilicate glasses has
been examined [18,22–24]. However, in those studies, the effect of substituting zinc oxide
with silicon dioxide and boron oxide on the luminescence behavior of zinc borosilicate
glasses was not investigated in detail.

For these reasons, ZnO-B2O3-SiO2-Na2O glasses appear to be an attractive host matrix
for doped-with-rare-earth ions. The electron shell structure of all trivalent lanthanide ions
is unfilled and consists of 4f N electrons, where N ranges from 1 to 14. Optical transitions
are related to 4f electrons [25]. Terbium ions are preferred as an activator material, as Tb3+

ions, which exhibit green emission even at low concentrations, have a high luminescence
behavior in the visible band. The transition of Tb3+ ions arises from the Laporte-forbidden
metastable state 5D4 to the lower states 7F6 (487 nm), 7F5 (542 nm), 7F4 (585 nm), and 7F3
(620 nm). Even small quantities of Tb3+ ions can be added to the host matrix; a strong green
emission at 542 nm has been observed with the naked eye [26,27].

In this study, the dependence of phosphorescence properties on the composition of
the glass matrix was investigated. The role of ZnO, B2O3, and SiO2 on luminescence phe-
nomenon was explored via a ternary phase diagram of ZnO-B2O3-SiO2 glass systems with
constant Na2O and Tb2O3. In addition, the effects of different heat treatment temperatures
on crystallization behavior and of crystallization on luminescence behavior of glass systems
were analyzed.

2. Materials and Methods

Terbium-activated ZnO-B2O3-SiO2-10Na2O wt% glass samples were synthesized by
the conventional melt-quenching technique (Table 1). Five terbium-activated glass samples
were selected from the ternary phase diagram shown in Figure 1. In the first group of
samples, the ratio of ZnO/B2O3 was varied, with a constant amount of SiO2. In the second
group of samples, the ratio of ZnO/ SiO2 was varied, with a constant amount of B2O3. In
all glass samples, the weight percentages of Tb2O3 and Na2O were constant.
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Table 1. Composition of glass samples doped with Tb3+.

ID
Batch Composition wt%

ZnO B2O3 SiO2 Na2O Tb2O3 ZnO/B2O3 ZnO/SiO2

ZnB2036 20 36 34 10 0.35 0.5
ZnB2630 26 30 34 10 0.35 0.9
ZnB2927 29 27 34 10 0.35 1.1 0.8
ZnSi3231 32 27 31 10 0.35 1.1
ZnSi3825 38 27 25 10 0.35 1.5

Zinc oxide (ZnO), 99.5% (Merck, Darmstadt, Germany), boric acid (H3BO3), 99.5%
(Merck, Darmstadt, Germany), sodium carbonate monohydrate (Na2CO3), 99.95% (Merck,
Darmstadt, Germany), silicon (IV) oxide (SiO2), 99.9% (Alfa Aesar, Massachusetts, MA,
USA) and terbium (III, IV) oxide (Tb4O7), 99.99% (Jiaton, Shanghai, China) were used as raw
materials. Tb2O3 (0.35% mol) was added without disturbing the chemical composition of
the host material. Raw materials were weighed in stoichiometric proportions and mixed in
an agate mortar to provide homogeneity. Mixed batches were melted in platinum crucibles
at a 1500 ◦C ambient atmosphere for 30 min. Melts were quenched to room temperature
and poured into a stainless-steel plate. After obtaining transparent glass samples, heat
treatment was applied at 650 ◦C, 750 ◦C, and 800 ◦C to investigate crystal structures; 650 ◦C
and 750 ◦C were chosen for examination of phosphorescence properties of glass samples.

Glass structures were investigated using an X-ray diffractometer (XRD, Panalytical
Aeris, Malvern, UK) using Co-Kα radiation. Powder and bulk forms of samples were used
in XRD analysis. In order to determine glass transition and crystallization temperatures,
differential scanning calorimeter (DSC; Netzsch STA 449F3 Jupiter, Selb, Germany) analysis
was performed by heating the samples from room temperature to 1000 ◦C at a rate of
5 K/min under an argon atmosphere. A Fourier transform infrared spectrometer (FT-IR;
Bruker Alpha-II, Billerica, MA, USA) was used in the spectral range of 400–4000 cm−1

at room temperature to investigate the presence of network structural and functional
groups. Powder forms of glass samples were used in DSC and FT-IR analysis. The UV-
visible absorption spectra analysis of glass samples was performed by an UV-VIS-NIR
spectrometer (Agilent Cary 5000, Santa Clara, CA, USA) in ABS mode in the spectral
range of 300–500 nm. The emission intensity and afterglow time of obtained glasses were
determined using an Ocean Optics Flame spectrophotometer (Ocean Insight, Orlando,
FL, USA) equipped with a 363 nm wavelength UV light lamp as an excitation source at
room temperature.

3. Results and Discussion
3.1. XRD and DSC Analysis

XRD patterns of glass samples are given in Figure S1. As-cast transparent glass
samples exhibited an amorphous structure without any peak formation.

The characteristic glass temperatures of the samples were investigated by DSC analysis.
Glass characteristic temperatures, detected as weak signals, were recorded at a heating rate
of 5 K/min, and are shown in Figure 2. According to these DSC curves, endothermic peaks
indicate glass transition temperatures (Tg), while the first exothermic peaks correspond to
the onset crystallization temperatures (Tx) of glass samples. ZnSi glass samples exhibited
two exothermic peaks that were related to crystallization temperatures (Tp); however,
crystallization peaks were not observed in ZnB2036 and ZnB2630 glass samples.
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Figure 2. DSC curves of glass samples.

Characteristic glass temperatures (Tg, Tx, Tp1, and Tp2) are summarized in Table 2. DSC
data results indicate that glass characteristic temperatures changed with the compositions
of the glasses. The maximum amount of ZnO content was in the ZnSi3825 sample, which
had the lowest Tg value. The decrease in the glass transition temperature may be explained
by the strength of chemical bonds. The incorporation of ZnO into a host matrix facilitates
the formation of non-bridging oxygens by breaking the bonds between oxygen ions and
glass-forming ions [28–31].

Table 2. Characteristic glass temperatures (Tg, Tx, Tp1 and Tp2) of samples calculated from DSC data.

Tg (◦C) Tx (◦C) Tp1 (◦C) Tp2 (◦C)

ZnB2036 526 - - -
ZnB2630 529 - - -
ZnB2927 527 674 724 824
ZnSi3231 519 685 733 826
ZnSi3825 517 601 696 766

A heat treatment process was applied to ZnB2927, ZnSi3231, and ZnSi3825 glass
samples at 650 ◦C, 750 ◦C, and 800 ◦C to determine structural changes. Figure 3 shows XRD
patterns of both powder and bulk forms of samples at 650 ◦C for 1 h. Crystallization peaks
for ZnO, Zn2SiO4, and B2O3 phases were detected in the ZnSi3825 bulk forms of samples;
however, the powder forms of samples had amorphous structures. No crystallization peaks
were revealed for ZnB2927 and ZnSi3231 samples, indicating the presence of amorphous
structures. These two samples preserved the transparent appearance.
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 Figure 3. XRD patterns of ZnB2927, ZnSi3231, and ZnSi3825 glass samples after heat treatment at
650 ◦C for 1 h. (a) Powder samples and (b) bulk samples.

Figure 4 illustrates XRD patterns of both bulk and powder forms of samples at 750 ◦C
for 1 h. As a result of heat treatment, ZnSi3825 bulk samples exhibited mainly opaque
appearances, and ZnB2927 and ZnSi3231 bulk samples were opaque only on the surface.
ZnO (zinc oxide) and Zn2SiO4 (willemite) phases were identified in the XRD patterns of
powder and bulk forms of ZnSi3825. Although powder ZnB2927 and ZnSi3231 samples
showed amorphous structures, surface crystallization was observed in these samples. ZnO
and willemite phase peaks were present in the XRD pattern. When comparing XRD results
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at 750 ◦C, the formation of the willemite phase was more intense in the ZnSi3825 sample,
which had the maximum amount of ZnO.
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The transparency of the samples was lost as a result of heat treatment at 800 ◦C for 1 h.
According to the XRD patterns of the samples, only the willemite phase was present, as
shown in Figure 5. The conversion of ZnO phases to willemite phases occurred by heating
samples to 800 ◦C.
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Consequently, the degree of crystallization increased with the increments of the
ZnO/SiO2 ratio. Crystallization behavior was related to the amount of ZnO (modifier
oxide) in the host matrix. A higher amount of ZnO facilitated the formation of the willemite
phase at lower temperatures [29–33].

3.2. FT-IR Analysis

FT-IR spectra were used to investigate network structural units present in ZnO-SiO2-
B2O3-Na2O glasses. Figure 6 shows absorption results of glass samples in the 400–1800 cm−1

wavenumber region. Two regions exist in the FT-IR spectrum. One consists of the main
characteristic absorption bands between 400 and 1500 cm−1, while the other region is weak
absorption peaks between 1500 to 4000 cm−1. It can be seen in Figure 6 that all glass samples
exhibited six absorption bands, and band positions of the samples are shown in Table 3. Bands
that appeared at ~470 cm−1 and ~505 cm−1 were assigned to weak absorption peaks of O-B-O
bending vibrations and symmetric stretching vibrations of ZnO4, respectively [34–38]. Bend-
ing vibrations of bridging oxygens between B-O-B bonds in BO3 units or Si-O-Si symmetric
stretching of bridging oxygen between SiO4 tetrahedral units can be induced to absorption
peaks at ~699 cm−1 [34,39]. Vibrational modes of tetrahedral BO4 groups may be observed
in the spectral range of 952–975 cm−1 [36]. A weak shoulder at 1235–1270 cm−1 can be
attributed to B–O stretching vibrations of (BO3) units with non-bridging oxygen atoms [40–42].
The broad band observed in the spectral range at 1356–1387 cm−1 may be assigned to the
asymmetrical stretching vibration of B-O-B in BO3 [39,40,42]. The asymmetrical stretching
vibration of B-O-B in the BO3 band shifted towards a lower wavenumber with an increase in
the ZnO content in the host matrix.
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Table 3. FT-IR band positions and assignments of vibrational mode.

Band Position (cm−1) Assignment of Vibrational Mode Ref.

~470 O-B-O bending vibrations/Silicate
network Si–O–Si and O–Si–O bending mode [34–38]

482–544 Symmetric stretching vibrations of ZnO4 [38]

~699 Bending vibrations of B-O-B bonds in BO3 units/
Si-O-Si symmetric stretching of SiO4 units [34,39]

952–975 B–O bond stretching vibrations of BO4 units [36,39]
1235–1270 B–O bond stretching vibrations of BO3 units [40–42]

1356–1387 Asymmetrical stretching vibration of B-O-B in
BO3 units [39,40,42]

In order to calculate the amount of non-bridging and bridging oxygen in the host
matrix, deconvoluted FT-IR spectra of the samples were analyzed. FT-IR curves were
deconvoluted to separate overlapping peaks to identify precise peak positions (PC) and
area under the curve (A). Deconvoluted FT-IR spectra of the samples were obtained by
the nonlinear curve fit module using the Gaussian function. The bands at ~699 cm−1,
~1270 cm−1, and 1370 cm−1 were related to bending vibrations of B-O-B bonds in BO3
units, B–O bond stretching vibrations of BO3 units, and asymmetrical stretching vibration
of B-O-B in BO3 units, respectively. Furthermore, these vibrational modes assisted the
formation of NBOs in the host matrix. Additionally, the band in the range of 900–1000 cm−1

was related to B–O bond stretching vibrations of BO4 units, which assisted the formation of
BOs in the host matrix. These values were estimated from the area under the defined peaks
and calculated using the following formulas [38,43–45].

BO3 (N3) =
A3

A3 + A4
(1)

BO4 (N4) =
A4

A3 + A4
(2)
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In Equations (1) and (2), A3 and A4 are defined by the area under the peaks, which
are related to BO3 and BO4 units, respectively. Deconvoluted FT-IR spectra of the ZnB2927
sample are given in Figure 7, and deconvolution peak center (cm−1) and area under the
peaks are given in Table 4. According to Table 4, the N3 value increased with the addition
of ZnO to the host matrix, which indicates that [BO4] units transformed into [BO3] units.
The maximum amount of NBOs was obtained using the ZnSi2927 sample.
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A 0.72837 0.44748 4.52 0.48003 3.21731 4.14482 4.52014 0.49 0.52

ZnSi3231
PC 541 685 957 1251 1367

A 0.64372 0.45881 4.88323 0.36963 2.76885 3.59729 4.88323 0.42 0.58

ZnSi3825
PC 544 693 952 1235 1356

A 1.80044 1.15739 12.73896 1.02464 7.43427 9.6163 12.73896 0.43 0.57

3.3. Photoluminescence Analysis

UV–vis room temperature absorption spectra for Tb3+-doped zinc borosilicate glass sam-
ples are given in Figure S2 [46–49]. Phosphorescence properties of 0.35 mol% of Tb2O3-doped
glasses were measured after samples were irradiated by a 363 nm wavelength UV light source
for 5 min, as given in Figure 8. According to phosphorescence spectrophotometer results, four
distinct emission peaks existed at 487 nm, 542 nm, 585 nm, and 620 nm, which arose from the
5D4→7F6, 5D4→7F5, 5D4→7F4, and 5D4→7F3 transitions of Tb3+ ions, respectively [15,46,50].
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Emission spectra can be described from a schematic energy level diagram of Tb3+ ions,
as illustrated in Figure 9. Tb3+ ions were excited from the ground state 7F6 to the upper
excited state 5D3 as a result of excitation with a 363 nm UV light. After stopping excitation,
a non-radiative (NR) energy transition could occur due to cross relaxation caused by the
interaction between Tb3+ ions in the glass matrix. Relaxation of Tb3+ ions to a metastable
5D4 state does not involve the emission of light. Consequently, radiative transition from
the 5D4 state to a different 7Fj (j = 6,5,4,3) lower energy states leads to the emission of
light. Glass samples had the highest intense peak centered at 542 nm, corresponding to the
5D4→7F5 transition [51–53].
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Compositional changes could not influence the position of the emission peaks; how-
ever, they could affect the emission intensity of the peaks. The emission intensity of the
first group of samples (with fixed SiO2 content) increased with the ZnO/B2O3 ratio. The
main reason for the increment was the substitution of ZnO for B2O3 in the host matrix,
which enabled the formation of NBOs. Furthermore, the concentration of the trap centers
increased with the addition of ZnO, which acted as a UV emission center [54]. Therefore,
the optimum amount of B2O3 was chosen at 30 wt%. In the second group of samples (with
fixed 30 wt% B2O3), ZnO was replaced by SiO2. The emission intensity of the second group
of samples was higher compared to that of the first group of samples. This behavior is
explained by the non-bridging oxygens phenomenon. The higher amount of NBOs made
it easier to excite samples due to weakened bonds [27–55]. Nevertheless, the emission
intensity of samples decreased with an increase in ZnO/SiO2. The ZnSi3825 sample had
the maximum amount of ZnO; however, its emission intensity was lowest due to zinc
abnormality. As a result, the maximum emission intensity was observed in the ZnB2927
sample, which corresponded to the intersection of the two groups in the ternary phase
diagram. The optimum ZnO/B2O3 and ZnO/SiO2 ratios were determined to be 1.1 and
0.8, respectively.

Figure 10 shows decay spectra analysis of glasses recorded for 542 nm emission under
363 nm excitation. The lifetimes of the samples were calculated by fitting experimental data
to a non-exponential decay model. The non-exponential decay model is expressed as [56]

I(t) = Ae
−t
τ (3)
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In Equation (3), the intensity of samples at t = 0 is defined by A, t is time, and τ is the
luminescence lifetime of samples. In Table 5, the luminescence lifetimes of samples are
shown as a result of fitting of decay curves.
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Table 5. Luminescence lifetimes (ms) of glass samples.

Sample Lifetime of Glass (ms)

ZnB2036 37.3
ZnB2630 51.7
ZnB2927 67.0
ZnSi3231 139.9
ZnSi3825 110.3

According to the decay curves, firstly, the luminescence lifetime increased from 51.7
to 139.9 ms with the increment in ZnO content; however, the lifetime of the ZnSi3825
sample decreased to 110.3 ms due to zinc abnormality. Consequently, the ZnSi3231 sample
exhibited the maximum luminescence lifetime.

After heat treatment at 650 and 750 ◦C for 1 h, photoluminescence spectra measure-
ments were taken to investigate the effect of willemite and zinc oxide phases on lumines-
cence behavior. Figure 11 illustrates phosphorescence spectra results for ZnSi3825 glass
and heat-treated glass samples. Wavelength position did not change with the heat treat-
ment, while the emission intensity of the samples increased. According to XRD patterns
of the samples, the increase in concentration of ZnO content facilitated the formation of
willemite and zinc oxide phases. Willemite and zinc oxide phases act as a UV emission
center; therefore, the emission intensity of heat-treated samples was higher compared with
that of the as-cast transparent samples [17,57].
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Figure 11. Phosphorescence spectra of untreated and heat-treated (at 650 ◦C and at 750 ◦C/1 h)
ZnSi3825 glass samples after excitation with the 363 nm UV lamp.

Decay spectra analysis of glasses and heat-treated glasses samples were recorded at
542 nm emission under 363 nm excitation. Decay curves and luminescence lifetimes of
glass samples are given in Figure 12 and Table 6, respectively. Luminescence lifetimes of
heat-treated samples at 650 and 750 ◦C indicate that the presence of willemite and zinc
oxide phases provided an increase in the afterglow time of samples. As a result, both
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emission intensity and lifetime of the samples improved with the crystallinity of willemite
and zinc oxide phases.
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Figure 12. Decay curves of untreated and heat-treated (at 650 ◦C and 750 ◦C /1 h) ZnSi3825 glass
samples after excitation with the 363 nm UV lamp.

Table 6. Luminescence lifetimes (ms) of glass and heat-treated samples.

Lifetime (ms)

Sample Glass Heat-Treated Samples
at 650 ◦C/1 h

Heat-Treated Samples
at 750 ◦C/1 h

ZnSi3825 110.3 138.0 145.6

4. Conclusions

Different compositions of ZnO-SiO2-B2O3-Na2O glasses with Tb3+ ions were prepared
by the melt-quenching method to understand the influence of composition on luminescence
behavior. Glass transition temperatures and crystallization temperatures decreased with an
increase in the ZnO/B2O3 and ZnO/SiO2 ratio. Glass characteristic temperatures depend
on the formation of non-bridging oxygens, which increase with the incorporation of ZnO
into the glass matrix. FT-IR results confirm that the amount of NBOs increased with an
increment of ZnO. Willemite and zinc oxide phases were observed in the heat-treated glass
samples by XRD analysis. These phases were formed at lower temperatures in the ZnSi3825
sample, which had a 1.5 ZnO/SiO2 ratio.

Photoluminescence spectra results show the characteristic emission transition of Tb+3

ions under 363 nm excitation. The maximum emission intensity arose from the 5D4→7F5
transition at a 542 nm wavelength. The highest emission intensity was observed at 0.8
ZnO/SiO2 and 1.1 ZnO/B2O3 ratios; however, the highest luminescence lifetime was
observed at a 1.1 ZnO/SiO2 ratio.

The increase in the ZnO/SiO2 ratio facilitated the formation of a willemite phase at
lower temperatures. The presence of willemite and zinc oxide phases directly improved the
phosphorescence properties of glass samples by creating a UV emission center; therefore,
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the emission intensity and lifetime of glass samples increased with heat treatment at
higher temperatures.

Supplementary Materials: The following supporting information can be download at: https://www.
mdpi.com/article/10.3390/ma17092154/s1, Figure S1. XRD patterns of as-cast transparent glass
samples. Figure S2. Absorption spectra of Tb3+-doped glass samples in the UV-Vis region.
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