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Abstract: Implementing approaches based on process mining in inter-organizational collaboration
environments presents challenges related to the granularity of event logs, the privacy and autonomy
of business processes, and the alignment of event data generated in inter-organizational business
process (IOBP) execution. Therefore, this paper proposes a complete and modular data-driven
approach that implements natural language processing techniques, text similarity, and process
mining techniques (discovery and conformance checking) through a set of methods and formal rules
that enable analysis of the data contained in the event logs and the intra-organizational process models
of the participants in the collaboration, to identify patterns that allow the discovery of the process
choreography. The approach enables merging the event logs of the inter-organizational collaboration
participants from the identified message interactions, enabling the automatic construction of an
IOBP model. The proposed approach was evaluated using four real-life and two artificial event logs.
In discovering the choreography process, average values of 0.86, 0.89, and 0.86 were obtained for
relationship precision, relation recall, and relationship F-score metrics. In evaluating the quality of
the built IOBP models, values of 0.95 and 1.00 were achieved for the precision and recall metrics,
respectively. The performance obtained in the different scenarios is encouraging, demonstrating the
ability of the approach to discover the process choreography and the construction of business process
models in inter-organizational environments.

Keywords: process choreography; IOBP; data-driven; process mining; discovery

1. Introduction

In collaborative networks, the partners work together to create competitive advantages
by defining the activities to be carried out by each organization, the business processes
to be executed, the roles to be played, the communication channels, and the definition of
interoperability at both the process and system levels in order to achieve common business
goals [1–3]; e.g., a supply chain process may involve several organizations [4]. Collabo-
rative networks foster joint problem-solving through resource sharing and the fusion of
complementary skills. This collaborative environment enhances organizations’ potential
to create and acquire knowledge, leading to the innovation of products or services [5]. In
this context of collaborative innovation, members of the supply chain plan and implement
actions for knowledge sharing and knowledge application to develop new products and
services quickly and efficiently, enabling them to maintain and improve their performance
in the long term [6]. Furthermore, in Industry 4.0, end-to-end digital integration is re-
quired in the supply chain, with a business process design logic that crosses organizational
boundaries. These business processes can be defined using the business process model
and notion (BPMN) language [7,8], a standard for graphically representing the logic of the
business process and its subsequent automation [9], which not only makes the logic more
understandable but also makes it easier to integrate the perspective of the control flow,
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the subprocesses, the data flows (internal or external), and the resources involved in the
processes into a BPMN diagram [10].

Data-driven approaches are characterized by decision-making based on the analysis
and interpretation of data, rather than observations, allowing decisions and solutions to
be supported by facts [11,12]. Process mining techniques are implemented through data-
driven approaches, making it possible to discover process patterns within event logs and
detect and diagnose differences between observed and modeled behavior [10,13], which
helps in decision-making to improve and optimize business processes [14,15]. In this way,
approaches based on process mining techniques have been implemented to verify and
enhance business processes. These techniques are characterized by supporting discovery,
conformance checking, enhancement, and predictive analytic tasks [16–18]. In a discovery
approach to the business process model, event data generated by the execution of business
processes are analyzed, making it possible to identify the logic and behavior of the process
from these event data, known as event logs. Process conformance checking consists of
evaluating the alignment of the behavior of the actual business process model against the
behavior discovered in the event log (generated by the business process itself), to detect
any possible deviations. In the process improvement task, various analyses are carried out,
considering all the attributes available in the event log and in the real business process
model to detect possible bottlenecks, high time consumption in task execution, deviations,
and duplication of the execution of tasks by different resources, among others; making it
possible to identify opportunities for improvement in the business process.

In approaches based on process mining techniques that implement tasks such as
predictive process monitoring or trace clustering, an event log preprocessing stage is
included, in which the input data must be encoded to feed the prediction or inference
algorithm. At this stage, an encoding method is typically implemented to transform
complex event data into a numerical or representative feature space [19]. One of the
most important methods for this purpose is Doc2Vec, based on representation learning,
developed in natural language processing (NLP) [20]. This learning uses neural network
architecture models to automatically learn distributed vector representations of a concept
of interest (for example, an activity or a trace) with high quality. Doc2Vec is an architecture
for computing continuous vector representations of words from large datasets with high
dimensionality. In the process mining domain, several approaches based on representation
learning techniques have been presented to significantly improve the performance of the
inference algorithm. In [21], the authors proposed several activity-level models, traces,
models, and logs to deal with the high dimensionality of real-life event logs and to generate
a distributed representation that can be used in different process mining tasks. In [22], the
authors presented a case-level solution that uses word embeddings for business process
data to better encode process instances. For their part, ref. [23] expounded an approach
for conformance verification based on vector representations of each activity/task present
in the model and the event log. Therefore, the vectors generated by Doc2Vec can be used
to find similarities between traces, allowing for the quick analysis of large event logs by
expressing words in the vector-space model and considering the context when learning
through the co-occurrence of activities.

Recent studies have proposed solutions for different process mining tasks applied in
intra-organizational business processes [24–27]. However, when process mining solutions
are implemented in inter-organizational business processes (IOBP), aspects such as the
process’s privacy and autonomy; data with different levels of granularity; and event data
stored in other sources, formats, and distribution form must be considered. Therefore,
managing independently generated event logs requires methodologies and algorithms
to process, align, and merge the event logs generated by process-oriented information
systems [28]. Importantly, events need to be correlated across organizational boundaries.
Then, by implementing process mining techniques, the tasks of discovery, monitoring,
compliance, and improvement of IOBPs, which have yet to be studied to date, can be
carried out. Furthermore, the analysis can be extended to discover and verify the process
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choreography, which represents the formalization of interactions through messages from
the participants in an inter-organizational collaboration [29].

In this sense, automatic analysis of the historical information recorded from the
execution of the business processes of the participating organizations can help to find
relationships within the IOBP. The above can be achieved through data-driven and process
model-level analysis. At the structured data level, the organizations participating in
the IOBP are responsible for selecting and structuring the data from their information
systems and consequently choosing the appropriate level of abstraction and the point
of view of the data. At the level of process models, the business process flow of the
participating organizations is analyzed, in search of patterns that can complement the
analysis of structured data, to obtain sufficient information for identifying collaboration
patterns between organizations and discovering the IOBP model. Different approaches are
available in the state of the art that partially address analyzing and discovering process
choreography, focusing on the analysis of the information contained in event logs [30–32],
in business process models [33–37], document electronics, and information related to the
business process [38].

Therefore, this paper proposes a data-driven methodology supported by semi-automatic
methods that enable the discovery of the IOBP model and the process choreography in a
collaborative environment. The relationships between the organizations participating in the
business process are identified, labeled, and defined using a method based on the Doc2Vec
algorithm and by calculating the cosine similarity measure between events to identify possible
message-type tasks and their task subtype (send/receive), for which a set of definitions are
specified to formalize the relationships, as well as a group of rules for assigning the message
task subtype. These criteria are formulated in terms of relationships at the trace level and
the event level. Next, each collaboration participant’s intra-organizational business process
model is determined, marking in the model the tasks previously identified as message-type
tasks and their subtype, and defining the relationship between the processes through flow
message connectors, which allows building an IOBP, including its process choreography.
Subsequently, an inter-organizational event log is generated from the intra-organizational
event logs, applying a fusion of traces from the relationships identified by the message-
type tasks and their subtype, containing the event data of both traces. Finally, the process
choreography and intra- and inter-organizational models are evaluated using the metrics of
precision, recall, F-score, and generalization. The proposed approach was evaluated using
four event logs derived from real-life IOBPs and two artificial event logs. The results achieved
are very acceptable, with an overall performance in the discovery of the process choreography
of 0.86 for the relationship precision metric, a relationship recall of 0.89, and with a measurement
F-score of the relationship of 0.86, with a performance over 89% in the message-type task
identification task. On the other hand, for the average evaluation of the quality level of the
IOBP discovered, a precision of 0.94 was achieved, with a recall value of 0.99, and generalization
indicator of 0.63, which indicates that the model of the inter-organizational process discovered
could reflect more than 94% of the behavior contained in the merged event log.

2. Related Work

In [39], a technique to discover collaboration models from intra-organizational event
logs was proposed. The structure of the event log was extended to support interaction data
between participants by adding attributes to contain the message name, message identifier,
participant role, and type of communication between participants. Interactions between
participants are identified through an event data analysis in the event log, determining
the correlation between the messages exchanged. Subsequently, the intra-organizational
models discovered with the information from the interaction of messages are combined,
which enables the generation of an inter-organizational business process model aligned
with the BPMN language. Intra-organizational business process models are discovered for
each participant in the collaboration by applying algorithms available in the state of the art.
Similarly, ref. [40] presented a process mining approach to discover inter-organizational
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business processes and process choreography from an extended event log. This log requires
information about the participants and the messages exchanged between the participants,
to discover a model of the inter-organizational process represented by the BPMN language.
The extended event log includes information required for the inter-organizational process
model and process choreography. For example, the participant attribute identifies the
participant that executes the event, and an attribute contains the type of event; in the case
of message-type events, the information of the participant who receives the message is
required. A fundamental stage in this proposal is extracting all message-type events and
the information related to the message: the participant who sends or receives it. With
this extra event log, a model of the process with the message interactions between the
participants involved in the collaboration is discovered. This model is used to build process
choreography and inter-organizational models in conjunction with the intra-organizational
process models discovered for each participant. Our proposal takes a different approach
from the studies mentioned above. It does not require the extension of the event log or
adding information about the messages and resources exchanged between the collaboration
participants. Instead, our method is based on a unique set of methods and formal rules.
These tools allow for the identification of potential message tasks and the determination of
the task’s subtype, which in turn defines the message’s meaning (send/receive).

On the other hand, ref. [41] proposed a process mining technique to merge intra-
organizational event logs and discover an inter-organizational process model represented
by a directly-follows graph. This approach is characterized by only using the common
elements of an event log: case ID, timestamps, and activity. Furthermore, it is based on the
premise that two activities of different organizations occur consecutively with a very short
time difference, for which several time thresholds are defined. Therefore, adjacent activities
with the minimum time difference should be interconnected and extracted, since they
belong to the same trace within an inter-organizational event log, forming the sequence
of the activities of the merged event log, ordered by the timestamp value. Each extracted
activity pair will be identified in this log by concatenation with the original case IDs.
The rest of the events of the same trace (which were not extracted) of each participant are
embedded in the trace according to the timestamp value, with which the trace is constructed
with all its events. This procedure is executed until no adjacent activities are identified
in the event logs of each collaboration participant. In our case, the relationship between
message tasks is determined by a cosine similarity measure that ensures that two tasks
(from different participants) are close and possibly related. Furthermore, the task’s subtype
is determined through a set of rules that allow analyzing the context of the message-type
task, that is, the antecedent and consequent tasks for both parties of the collaboration.

Differently, ref. [42] presented an approach based on a Petri net extension that supports
the management of message attributes and resources exchanged in workflows (called
RM_WF_net) to formalize healthcare processes in hospitals, particularly inter-departmental
processes. From the formalization, algorithms are applied to discover intra-departmental
models and identify collaboration patterns in each intra-departmental model, with which a
collaboration model is built. The first algorithm discovers a control-flow structure based
on WF-net. Subsequently, the event log is processed to identify messages and resources,
which generates a RM_WF_net for each department. On the other hand, ref. [43] presented
a process mining approach in an inter-organizational environment for a cloud computing
multi-tenancy architecture through declarative models. Through a set of business rules,
information related to the processes of systems that run in the cloud is extracted, and
distributed data are identified, enabling the building of an event log. This approach makes
it possible to represent processes with high variability. The previous proposals differ
from our approach since using Petri nets reduces the expressiveness of the discovered
model notation and does not support high-level notations compared to a BPMN-based
model. In addition, there may be some difficulties in representing complex behaviors
in the process logic, for example, in event-based gateways, which does not happen in
BPMN-based models.
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3. Preliminary Formalization

This section introduces the main foundations of the proposed approach, which for-
malizes the methodology phases and enables the identification of message-type tasks from
direct tasks (previous or subsequent) or non-direct tasks. The above facilitates the marking
of message tasks by their subtype (send/receive), making it possible to merge event logs
and discover the correlation of messages exchanged in a collaboration.

Definition 1 (Mapping an event to a sentence). This refers to a sentence of words that represent
each event Ej. The sentence of words is generated from the values of the attributes Etk that makeup
Ej, representing the sentence’s words.

Definition 2 (Mapping a trace to a document). This refers to statements representing each case
Ti in the event log L. This document is generated from the values of the Et attributes of each activity
Ej ∈ Ti, which represent the document’s words (see Definition 1).

Definition 3 (Incoming (•θ) and Outgoing edges (θ•) for the task θ). Given a BPMN model
M = (i, o, T, G, Em) and a task θ ∈ T, its incoming edges •θ = {(c, d) ∈ Em | d = θ} and its
outgoing edges θ• = {(c, d) ∈ Em | c = θ} [24].

Definition 4 (Direct predecessors of task m). Given a BPMN model M = (i, o, T, G, Em) and
a task m ∈ T, its set of t-predecessors of task m are all tasks p /∈ G, such that there is a direct path
between p and m; and this path is contained in its set of incoming edges •m (see Definition 3).

Definition 5 (Direct successors of task m). Given a BPMN model M = (i, o, T, G, Em) and an
event m ∈ T, its set of t-successors of m are all tasks s /∈ G such that there is a direct path between
m and s, and this path is contained in the set of outgoing edges m• (see Definition 3).

Definition 6 (Non-direct predecessors of task m). Given a BPMN model M = (i, o, T, G, Em)
and a task m ∈ T, the set of its t-non-directpredecessors is the set of tasks TSK ∈ T such that for
each tsk ∈ TSK, there are one or more paths between the tasks i and m that visit the event tsk /∈ G.

4. Materials and Methods

This section describes a conceptual representation of the scheme for discovering
process choreography in inter-organizational environments. Figure 1 shows, in general
terms, the phases and methods that compose the proposed methodology.

4.1. Event Log Processing

Our approach assumes that the event logs do not have empty or missing attributes.
Furthermore, our methodology requires at least three common attributes in event logs:
case ID, activity name, and timestamp. If additional attributes are available, they can be
integrated and processed. However, only the value in the activity name attribute is used
when marking and labeling the message-type task.

4.1.1. Method 1: Construction of the Vector Representation Matrix (VRM) of the Cases

For each event log L and L’, a VRM and VRM’ matrix of dimensions of m × n is
generated, respectively. Where one row (a trace in the event log) of the matrix is a VRM
representation of T ∈ L and VRM’ of T′ ∈ L′, and this representation is mathematically im-
plemented using the Doc2Vec word embedding technique, storing contextual information,
in a low-dimensional vector, of all the attributes of a case (within the event log) that describe
each of the events of the event logs L and L′. Next, the value of each attribute is identified
to separate it into the words contained. The set of identified words form the vocabulary of
the word embedding model, enabling the construction of a Doc2Vec representation, where
a trace is treated as a document. The size of each word document is equal to the number of
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different values within the attributes that describe the event contained in a trace. The VRM
and VRM’ matrices are generated using the following rules:

• Consider any case Ti ∈ L.
• The mapping of a trace Ti to a Di document is defined, considering all the values of

the attributes etk of each task ej ∈ Ti, according to Definition 2.
• Stop-words in each Di document are identified and removed.
• The remaining words in the Di document form the Ti document. This procedure is

performed for L and L′, generating a corpus of D and D’ documents.
• The cDoc2Vec model is built using the Doc2Vec method.
• The D and D’ corpus create a general vocabulary of words.
• The cDoc2Vec model is trained with the corpus of D and D’ documents.
• Then, the VRM and VRM’ matrices are built from the representation VRMi ←

cDoc2Vec.in f er(Di) and VRM′j← cDoc2Vec.in f er(D′j), where the function cDoc2Vec.-
in f er(Di) and cDoc2Vec.in f er(D′j) allows extracting a mathematical representation of
each document Di and D′j through cDoc2Vec model inference.

Inter-organizational business process

Event log processing

Identification of correlation between events

Event log L

Process choreography discovery

Method 7: Discovery of the intra-organizational business process

 Method 9: Specification of the IOBP and
the process choreography

Method 2: Construction of the scoring matrix of cases 

Event log  L'

Inter-organizational event log Lf

Method 1:Construction of
the vector representation

matrix (VRM)
of the cases

Method 3: Case-level selection

Method 5: Construction of the event scoring matrix

Method 4: Construction of the vector representation
matrix of events

Method 6: Event-level selection

Method 8: Assignment of the sub-type in message type tasks

b1a1

b....a...

bmam

set of pairs of message-type

events (PME)

b1a1

a... b....

Event log n org n

Event log 1 Event log ..

org 1
org ...

org 2
Event log 2

Event logs pair
BPMNI

set of pairs of message-type

events (PME) with sub-type
am bm

Event log L

Event log L' BPMNR

BPMNI

BPMNR

 Method 10: Generation of
inter-organizational event log

Figure 1. Overview of the proposed data-driven methodology.

4.1.2. Method 2: Construction of the Scoring Matrix of Cases

In this method, for each representation VRMi contained in VRM, the cosine similarity
measure is calculated with all representations contained in VRM’. The value obtained in
the measure calculation allows us to know the similarity between vectors representing
the traces in an internal product space. Then, a score matrix (SM) is generated with
the similarity values between the VRM and VRM’ vectors, constructing a matrix of size
|L| ∗ |L′|.

4.2. Identification of the Correlation between Events
4.2.1. Method 3: Case-Level Selection

The scoring matrix SM is filtered by applying the condition that, for each value SMi,j
that exceeds threshold Ut, it must be extracted, generating a set of document pairs Di
and D′j. For these documents Di ← Ti ∈ L y D′j ← T′j ∈ L′, there is a relationship at the
case level, since they share information of the IOBP. The pair of traces of these selected
documents are stored in the set SCP← (Ti, T′j ).
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4.2.2. Method 4: Construction of the Vector Representation Matrix of Events

From the set of case pairs (SCP) selected in method 3, the event attributes that can
provide information on the exchange of messages and business documents of the collab-
orative process are identified. Then, for each event Ej ∈ Ti and E′l ∈ T′k of each pair of
cases Ti ∈ L and T′k ∈ L′ contained in SCP, this is mapped as an event-level statement
REj and RE′l , according to Definition 1. Their event representation vector is generated
through the REj and RE′l statements by inferring the previously trained eDoc2Vec model.
This model is trained similarly to the cDoc2Vec model, but using event-level input data.
The representations REj and RE′l for each of the pairs of cases T, T′ ∈ SCP are generated
by the following rules:

• We consider a pair of cases T, T′ ∈ SCP.
• The events contained in Ej ∈ T and E′l ∈ T′ are mapped to a statement document

SDj ← Ej and SD′l ← El , considering all the values of their attributes Etk ∈ Ej and
E′tk ∈ E′l , according to Definition 1.

• Stop-words are identified and removed from the SDj and SD′l statement documents.
The remaining words in SDj and SD′l form the final version of these statement docu-
ments.

• Finally, the vectors REj and RE′l are generated from the representation REj ←
eDoc2Vec.in f er(SDj) and RE′l ← eDoc2Vec.in f er(SD′l), where the inference function
allows you to extract a mathematical representation of each document SDj and SD′l ,
using the previously trained eDoc2Vec model.

4.2.3. Method 5: Construction of the Event Scoring Matrix

For each of the representations REj, their similarity with all representations of RE′

is measured using the cosine distance metric. The similarity measure values allow the
construction of an event-level scoring matrix (ESM), where each row of ESMj,l contains
the similarity measure of the representations REj and RE′1,2,...,l .

4.2.4. Method 6: Event-Level Selection

The event score matrix (ESM) is traversed row-wise for each position within ESMj to
identify the highest similarity value in ESMj,l . This similarity value will be selected if it
meets the condition of exceeding the threshold Ua. The event pairs Ej and E′l that satisfy the
condition are considered possible message-type events, allowing a vector to be generated
that stores all pairs of message-type events (PME). Subsequently, filtering is applied to
select the pair of events with the highest similarity value, since the case may arise that
an event Ej or E′l may have more than one relationship with another event that contains
similar information and exceeded the threshold Ua. Then, each of the events Ej that is
related to the event E′l with the highest similarity value is added to PME.

4.3. Process Choreography Discovery
4.3.1. Method 7: Discovery of the Intra-Organizational Business Process

In our experiment, considering the event logs L and L′ (for the minimum number of
participants required in a collaborative process), the BPMN process models of the initiating
participant and the receiving participant are generated, denoted as BPMNI ← L and
BPMNR ← L′. This method uses the split-miner algorithm [24] to perform business
process discovery. The essential operation of the algorithm is as follows:

• Consider an event log L.
• From the event log L, a directly-follows graph (DFG) is generated. This graph is a

component g = N, E, where N represents the set of events (nodes) identified in the
event log, and the set E represents the edges or paths that connect the set of nodes N.

• With the resulting DFG graph, a process model is generated based on the syntax of
the BPMN language.
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4.3.2. Method 8: Assignment of the Sub-Type in Message Type Tasks

In the discovered BPMN business process models (intra-organizational level), the
message type tasks and the subtype of these tasks are identified. For each pair of events
(a, b) ∈ PMEi, where a ∈ L and b ∈ L′, the message subtype is defined, which can have the
value of (send or receive). This subtype specifies the flow and direction of the message in
the interaction between the participants in the collaboration. The assignment of the task
subtype for each pair of events (a, b) ∈ PMEi is performed based on the rules described in
Table 1, complying with at least one condition defined in the rules.

Table 1. Rules for marking the subtype of the message-type task.

Description Graphic Representation

Rule 1: Given the BPMNI and BPMNR models, if the name of
one of the events in its set of direct a-predecessors of the event a
(see Definition 4) is a compound of one of the elements included
in the set A = {Get, Preparation, Notice, Need, Generate, Evaluate,
Information Request, Approval, Process, Analyze, Make a decision, Ac-
ceptance, Validate, Communicate, Transport, Calculate, Demand, Or-
der}, then the event a will be a message-type task and subtype send
(a.subtype = send), and task b will be a message-type task and
subtype receive (b.subtype = receive).

Rule 2: Given the BPMNI and BPMNR models, if the name of
one of the events in the set of direct b-successors of the event b (see
Definition 5) is a compound of one of the elements included in
the set C = {Question, Notification, Decision Making, Request, Ap-
plication, Transfer, Order, Manage, Confirm, Delivery, Safety, Evaluate,
Approval}, then event b will be a message-type task and subtype
receive (b.subtype = receive), and task a will be a message-type task
and subtype send (a.subtype = send).

Rule 3: Given the BPMNI model, if a non-direct predecessor event
to event a is a message-type task and the subtype is to send (see
Definition 6), then event a will be assigned as a message-type task
and subtype receive (a.subtype = receive). On the other hand, if the
non-direct predecessor event to event a is a task of type message
and subtype receive (see Definition 6), then event a will be assigned
as a message task with subtype send (a.subtype = send). In the case
of event b, the same rules are applied using the BPMNR model and
event b to assign its task type and subtype.

Rule 4: Given the models BPMNI, BPMNR; the events a and b, if the
name of the event a is a compound of one of the elements included
in the set S = {Generate, Send, Communicate, Make, Confirm, Set Up,
Turn, Order, Report, Transportation}, then event a will be a message-
type task and subtype send (a.subtype = send), and the task b will
be message-type task and subtype receive (b.subtype = receive).
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Table 1. Cont.

Description Graphic Representation

Rule 5: Given the models BPMNI, BPMNR; the events a and b, if the
name of the event a is compound of one of the elements included
in the set R = {Receive, Accept, Status, Arrival, Notice, Admit}, then
event a will be a message-type task and subtype receive (a.subtype =
receive), and the task b will be message-type task and subtype send
(b.subtype = send)

4.3.3. Method 9: Specification of the IOBP and the Process Choreography

The construction of the IOBP model and the process choreography representation are
defined using the results (data and models) generated by implementing methods 7 and
8. Therefore, the exchange of messages is specified on the IOBP model based on the data
discovered in the previous methods, enabling the process choreography to be visualized
through the formalization of the interaction between the participants of the collaboration.
The IOBP model and process choreography are built through the following steps:

• Let us consider a pair of BPMN process models from participants BPMNI = (i, o, T, G,
Em) and BPMNR = (i, o, T, G, Em).

• The set of nodes T ∈ BPMNI and T′ ∈ BPMNR refers to the set of events contained
in the event registers L and L′, considering that each node in T and T′ has a label with
the name of the events in L and L′, respectively. This means that a ⊆ T is represented
by the events a ∈ PME and ⊆ T′ is represented by the events b ∈ PME.

• The inter-organizational business process (IOBP) is generated by adding the process
models BPMNI and BPMNR, each model within a pool element identified with the
name of the participant.

• With the set of task event pairs of type message and its subtype (PME), the message
flow connection (M f c) between the subsets of nodes ⊆ T and ⊆ T′ is specified. M f c
represents the links that relate message-type tasks (events) between the pools of the
IOBP model. Connectors M f c are added to the IOBPmodel ← M f c, representing the
process choreography that supports the message exchange logic between the process
models BPMNI and BPMNR.

• The direction of each flow connector M f c is given by the following conditions (1):

M f c←


(a ∈ PME)x(b ∈ PME) | |a→ b| = 1, if a.subtype = send

and b.subtype = receive,
(a ∈ PME)x(b ∈ PME) | |b→ a| = 1, if a.subtype = receive

and b.subtype = send

(1)

4.3.4. Method 10: Generation of Inter-Organizational Event Log

The inter-organizational event log is constructed by merging the event logs L and L′

and the output data from the previous methods, applying the following procedure.

• Consider the event logs L and L′, the set of pairs of the cases (T, T′) ∈ SCP, and the
set of pairs of the events considered message-type tasks (a, b) ∈ PME.

• A new L f event log is created, which will contain the values of the merged event log.
• For each pair of cases (T, T′) ∈ SCP:

– In the case of T, the message-type tasks found in case T′ are added. Therefore,
T ← E ∈ T ∪ E′ ∈ T′ as long as (a, b) ∈ PME|E′ ∈ b.

– In the case of T′, the message-type tasks found in case T are added. Therefore,
T′ ← E′ ∈ T′ ∪ E ∈ T as long as (a, b) ∈ PME|E ∈ a.

• Cases T and T′ are added to the event log L f ← T and L f ← T′.
• Cases Tl ∈ L not found in SCP(Tl /∈ SCP) are added to the event log L f ← Tl.
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• Cases Tl′ ∈ L′ not found in SCP(Tl′ /∈ SCP) are added to the event log L f ← Tl′.

The resulting event log L f (merged) allows you to visualize the IOBP model, including
all participants and their interactions. In this log, the event attributes that compound the
cases contain information about the interaction through messages from the participants
involved in the inter-organizational collaboration.

4.4. Evaluation Metrics

The discovered process choreography is evaluated in a supervised manner, for which a
reference inter-organizational process model (RIOBP) is required. This model contains the
process logic, behavior, and real interaction of the participants of the IOBP. Then, process
choreography data are extracted from the RIOBP model, including the message-type tasks,
the subtype of each message-type task, and the message exchange sequence (noted as
relevant relationships previously). Furthermore, in the set PME (see Method 6), the rela-
tionships selected by our proposal are searched and counted because they met the condition
of exceeding the threshold Ua and with the highest value in the measure of cosine similar-
ity, which we call f ound relationships. Moreover, relations with a cosine similarity value
greater than or equal to the threshold Ua are recovered. These relationships are identified as
recovered relationships. Then, f ound relationships are the subset of relevant relationships
found by our proposal in the set recovered relationships; that is,

f ound relationships ⊂ recovered relationships| f ound relationships ∈ relevant relationships (2)

Considering the above, we propose the following metrics to evaluate the discovered
process choreography:

• Relationship Precision (RP) is the proportion of relevant relationships encountered
out of all recovered relationships. This metric evaluates whether the complete process
choreography has been discovered ( f ound relationships = |relevant relationships ∩
recovered relationships|) without adding relations not found in the process choreogra-
phy of the reference model (relevant relationships).

RP :
|relevant relationships ∩ recovered relationships|

recovered relationships
(3)

• Relationship Recall (RR) is the proportion of f ound relationships matching relevant
relationships. This metric indicates the percentage of the process choreography discov-
ered versus the process choreography of the reference IOBP model relevant relationships.

RR :
|relevant relationships ∩ recovered relationships|

relevant relationships
(4)

• F-score of the Relationship (FsR) is the harmonic mean between the RP and RR,
which allows us to determine the performance of the proposed approach. This metric
indicates the ability of the method to discriminate between relevant and non-relevant
relationships.

FsR = 2× RP × RR
RP + RR

(5)

Furthermore, the quality of intra-organizational business process models are evaluated
through the metrics precision, recall, and generalization, as defined in [44,45]. These metrics
have as input an event log and an intra-organizational business process model, comparing
the information available in the event log and the discovered business process model.
In our experimentation, it is also required to evaluate the inter-organizational business
process model (IOBP) built from the merged event log (L f ), for which it is required to
implement the following modifications in the process logic of the IOBP model, to represent
it as an intra-organizational model, making it possible to determine the quality of the model
discovered through the application of the precision, recall, and generalization metrics.
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• Let us consider the IOBP model and the collaborative Lf model previously generated.
• In the IOBP model, the following elements contained in the pools BPMNI = (i, o, T, G, Em)

and BPMNR = (i′, o′, T′, G′, E′m) are updated:

1. the initial activity i and i′ of the BPMNI and BPMNR models, respectively, are
eliminated, and

2. a unique initial activity I is added, from which the intra-organizational models
start, formed as BPMNI = (I, o, T, G, Em) and BPMNR = (I, o′, T′, G′, E′m).

• Next, the IOBP models BPMNI = (I, o, T, G, Em) and BPMNR = (I, o′, T′, G′, E′m) are
updated in the following way:

1. their final activities o and o′ are eliminated, respectively, and
2. a unique final activity O is added, where the two IOBP models end with the

following structure BPMNI = (I, O, T, G, Em) and BPMNR = (I, O, T′, G′, E′m).

• A set of edges or paths Exor is created between the activities/nodes of message type;
for each pair of activities/nodes (a, b) ∈ PME, the virtual edges are created according
to the following conditions:

1. if a.subtype = send, then a gateway of the XOR (Gxor ← gxor) type is created,
and the paths connecting the nodes Exor ← (a→ gxor), Exor ← ( f or → b) and
Exor ← ( f or → a− successor) are added to Exor; removing the message flow
connector (a, b) ∈ IOBP.

2. if b.subtype = send, then a gateway XOR (Gxor ← gxor) type is created and
the paths that connect the nodes Exor ← (b → gxor), Exor ← (gxor → a) and
Exor ← (gxor → b− successor) are added to Exor, removing the message flow
connector (a, b) ∈ IOBP.

• The resulting model is made up of the following components: IOBP f = (I, O, (T ∪
T′), (G ∪ G′ ∪ Gxor), (Em ∪ E′m ∪ Exor)).

5. Experimentation
5.1. Inter-Organizational Event Logs

The proposed approach was evaluated using the event logs of 4 real-life scenarios and
2 artificial scenarios of IOBPs. Table 2 summarizes the characteristics of each event log
corresponding to the scenarios used in our experimentation.

1. Air quality system. This scenario was derived from an autonomous air quality
monitoring system based on IoT technology. The collaborative process includes the
interaction between 3 participants; consult the description at [46] for more details. The
first participant, the IoT Air quality monitor, includes activities regarding the validation
of the monitoring system’s sensors, requests for access to the system, and assigning
a valid network address for the monitoring system. Furthermore, it manages all
activities for data census through sensors, validation, and sending of air pollution data
and meteorological factors through a web service and system shutdown information.
The second participant, the System Access Service, manages system access requests
(accepted and rejected), assigns network addresses for the operation to the IoT air
quality monitoring system, and registers active clients. This participant establishes
communication with each instance of the IoT Air quality monitor participant. The third
participant’s Repository Management Service manages each request for data storage
in a database located in a cloud service. It also manages the validation activities of
the data sent by the participant IoT Air quality monitor (with acceptance or rejection
options) and inserts these data into the database.

2. Healthcare. This scenario is made up of the activities of 4 participants (Patient, Gy-
necologist, Laboratory, and Hospital) involved in an IOBP within a healthcare scenario
(e-healthcare) [31]. The process begins when the Patient participant provides infor-
mation regarding her health status and waits for a response about her treatment or,
if applicable, a request for hospitalization. The participant Gynecologist coordinates
laboratory blood studies and hospitalization activities with the participant Laboratory
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and the participant Hospital. The collaboration begins when a Patient sends informa-
tion about her illness to the Gynecologist. The Gynecologist examines the Patient and,
in parallel, takes blood samples from the Patient and sends them to the Laboratory
for analysis. The Laboratory studies the blood samples, generating a report with the
study results for the participant Gynecologist. Subsequently, the Gynecologist decides
whether the Patient should be prescribed medicine or needs hospitalization, informing
the Patient. When hospitalization is required, the Gynecologist communicates with
the hospital to request the patient’s admission and sends the clinical analysis results.
When the Hospital begins its process, the patient’s clinical history is created. Then, it
decides whether to consider the blood test results sent by the Gynecologist or request a
new analysis; in either case, the login information is sent to the Patient.

3. Travel Agency. This collaborative process involves the participants Customer and
Travel Agency [31]. The process begins with the Travel Agency proposing a travel offer
to the Customer. The Customer reviews the offer and can request a reservation for the
trip. Next, the negotiation is executed to confirm the reservation, the payment of
the services, and the generation of a reservation confirmation by the Travel Agency.
Finally, the Travel Agency confirms the reservation number to the Customer and sends
the electronic tickets.

4. Purchase order. The event log contains instances of the execution of the purchase order
management process from 2017 to 2018 involving two organizations in the telecommu-
nications industry [47]. The organization M-Repair plays the role of customer, and the
organization M-Parts plays the role of the supplier of electronic components. The col-
laborative business process has the business goal of reducing component acquisition
management time and accelerating the purchasing process in M-Repair, electronically
automating confirmation decisions by the supplier.

5. Transfer of goods. This case study explores the management of multimodal trans-
portation business processes, artificially generated [48]. The global business process
involves the processes of the participants Sender and Buyer (owner of the goods), Con-
signer (responsible for carrying out the procedure for transporting the goods through
two types of transport), Carrier (first means of transport), and Shipper (second means
of transport). The business process begins with the Sender and Buyer organization,
which generates and sends a merchandise order request to the Consigner organization.
The request is processed, and a transport contract is generated, which both partic-
ipants sign. Subsequently, the participant Consigner requests the reservation from
the participant’s Carrier and Shipper. The participant, Carrier and Shipper, evaluate
the reservation request and return a response to the participant’s Consigner. When
acceptance of reservation requests is received, the Consigner receives a notification
to prepare the packaging of the merchandise and transmits the merchandise to the
Carrier. The participant Carrier loads the received goods onto a means of transport and
generates an invoice for the Consigner. Then, payment for the service is processed by
the participant Consigner. At the end of the merchandise transfer journey, the partici-
pant Carrier transfers the merchandise to the participant Shipper, who is responsible
for continuing the transportation of the merchandise. The Shipper then generates an
invoice corresponding to the service and requests the corresponding payment from
the participant Consigner, who processes the request. Finally, the Consigner manages
the fee for the service made with his client Sender and Buyer and notifies the data to
track the merchandise transfer.

6. Manufacturing process. This artificial collaborative business process describes a
supply chain management scenario, considering the manufacturing and delivery
process of product orders, and involves six business partners [49,50]. First, the Bulk
Buyer orders a set of products from the Manufacturer. The manufacturing of these
products requires that different suppliers supply the raw materials. In this scenario,
assume that Supplier A and Supplier B are raw materials suppliers named A and B.
Based on the order, the Manufacturer calculates the demand for materials A and B
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(for example, the fuselage and engines). Supplier B can supply raw material B, while
material A is sent to Middleman. The Middleman forwards the order to Supplier A, who
obtains permission from the authority and coordinates with the participant’s Special
Carrier to deliver material A to the Manufacturer. When the delivery process starts, the
Special Carrier informs the Manufacturer, so that he can prepare the pre-processing pro-
cedure for material A. When the raw material is received, the Manufacturer performs
a quality test, and if it is favorable, pre-processes matter A. In the case of matter B,
the quality test is carried out by Supplier B. When the pre-processing of material A
is completed and the test results of material B have been validated, the Manufacturer
begins manufacturing the product. Additionally, the Manufacturer sends status reports
to the Bulk Buyer before and after production, with a final testing process and product
delivery completing the process.

Table 2. Characteristics of the event log of each inter-organizational scenario.

Scenario Participants Collaborations Cases Events Unique Events

Air quality system IoT Air Quality Monitor (IAQM) 2 9180 511,049 24
Repository Management Service (RMS) 9180 215,651 8
System Access Service (SAS) 9180 64,260 7

Healthcare Patient 4 100 250 4
Laboratory 100 300 3
Hospital 50 200 5
Gynecologist 100 700 9

Travel Agency Travel Agency 1 100 869 5
Customer 100 607 5

Purchase order M-Repair 1 100 714 19
M-Parts 100 686 18

Transfer of goods Shipper 4 2 24 12
Sender and Buyer 2 20 10
Consigner 2 40 20
Carrier 2 20 10

Manufacturing process Bulkbuyer 8 5 60 4
Middleman 5 56 4
Manufacturer 5 202 20
Supplier A 5 78 8
Supplier B 5 19 4
Special Carrier 5 39 8

5.2. Experiment Results

This section presents a detailed evaluation (for each scenario) of implementing the
proposed methodology for discovering process choreography by identifying message-type
events. The performance achieved by the implementation of the approach was measured us-
ing the metrics relationship Precision (PR) (Equation (3)), relationship Recall (RR) (Equation (4)),
and F-score of the relationship (FsR) (Equation (5)). Moreover, a quantitative evaluation of the
quality of the intra-organizational and inter-organizational process models discovered by
the proposed approach is presented using the precision, Recall, and Generalization metrics.

Table 3 presents the values obtained for each evaluation metric of the process chore-
ography discovered for each inter-organizational scenario. The second column shows the
pairs of participants for which a message exchange was identified. Columns 3, 4, and 5
display the metrics PR, RR, and FsR achieved in the evaluation of the discovered chore-
ography. In addition, Table 3 shows the Ut and Ua thresholds defined for each scenario.
The sensitivity of each threshold can be interpreted as follows: If the value of the threshold



Algorithms 2024, 17, 188 14 of 22

Ut is close to 0, a greater number of cases from the event log are analyzed to find the
message-type events. On the contrary, if the value of Ut is close to 1, the method analyzes
fewer cases, reducing the search space. The Ua threshold is highly sensitive, because a
change in this parameter’s value will impact the values achieved in the RP, RR, and FsR
metrics. So, if the threshold Ua is decreased close to 0, this will allow more relevant rela-
tionships to be recovered, making the value of the RP metric high. However, this will cause
more non-relevant relationships to be recovered, which will harm (reduce) the RR metric.
Otherwise, if the Ua threshold is increased close to 1, this can cause the relationships found
to be true and relevant relationships. Therefore, the RR metric would increase, while the RP
metric would decrease, because some relevant relationships would not be recovered due to
a low value in the similarity measure. In our experiment, the value of Ua was assigned by
maximizing the FsR metric, in order to recover the greatest number of relevant relationships
and the least number of non-relevant relationships, since FsR represents the weighting of
the RP and RR metrics.

Table 3. Results of the evaluation of the proposed methods to identify the message-type tasks and
their subtype.

Scenario Collaboration RP RR FsR Parameters Time (s)

Air quality system IAQM-SAS 1 1 1 Ut ≥ 0.5, Ua ≥ 0.98 105,371
IAQM-RMS 1 1 1 Ut ≥ 0.5, Ua ≥ 0.98 83,419

Healthcare Patient-Gynecologist 1 1 1 Ut ≥ 0.2, Ua ≥ 0.96 60
Gynecologist-Laboratory 1 0.5 0.66 Ut ≥ 0.2, Ua ≥ 0.50 46
Hospital-Gynecologist 0.5 0.5 0.5 Ut ≥ 0.2, Ua ≥ 0.96 57
Hospital-Patient – – – Ut ≥ –, Ua ≥ – 21

Travel agency Customer-Travel agency 1 1 1 Ut ≥ 0.2, Ua ≥ 0.89 158

Purchase order M-Repair-M-Parts 0.83 1 0.90 Ut ≥ 0.5, Ua ≥ 0.9 203

Transfer of goods Sender and Buyer-Consigner 0.8 1 0.88 Ut ≥ 0.5, Ua ≥ 0.6 1
Carrier-Consigner 0.8 0.8 0.8 Ut ≥ 0.5, Ua ≥ 0.6 1
Consigner-Shipper 0.75 0.75 0.75 Ut ≥ 0.5, Ua ≥ 0.6 1
Carrier-Shipper 1 1 1 Ut ≥ 0.5, Ua ≥ 0.4 1

Manufacturing process Bulkbuyer-Manufacturer 1 1 1 Ut ≥ 0.2, Ua ≥ 0.9 1
Supplier B-Manufacturer 1 1 1 Ut ≥ 0.2, Ua ≥ 0.95 1
Middleman-Manufacturer 1 1 1 Ut ≥ 0.2, Ua ≥ 0.98 1
Middleman-Special Carrier 1 1 1 Ut ≥ 0.2, Ua ≥ 0.9 1
Middleman-Supplier A 1 1 1 Ut ≥ 0.2, Ua ≥ 0.9 1
Special Carrier-Supplier A 0.28 1 0.43 Ut ≥ 0.2, Ua ≥ 0.9 1
Supplier A-Manufacturer 1 1 1 Ut ≥ 0.2, Ua ≥ 0.98 2
Special Carrier-Manufacturer 1 1 1 Ut ≥ 0.2, Ua ≥ 0.98 2

Moreover, the time costs required for the identification of the message tasks were
very acceptable. In event logs with a low level of complexity and a low number of cases
and events, the approach identified the message-type tasks in approximately 200 s, using
the threshold Ut and Ua parameters presented in Table 3. For the collaborations of the
Air Quality System scenario, which are characterized by real-life event logs with a high
number of cases and events, as well as a medium-high complexity, the algorithm required
105,371 and 83,419 s for collaborations IAQM-SAS and IAQM-RMS, respectively. The
time consumed in this scenario encouraged us to continue experimenting with large
event logs with greater complexity. The experimentation was carried out on a personal
computer with an AMD Ryzen 5 3400G processor, 3700 MHz, 4 cores, with Radeon Vega
Graphics, 16 Gb RAM, and 1 Tb SDD with Windows 10 operating system and the Python 3.7
programming language. The time consumed by the approach to the processing of message
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task identification in the event logs of the Air Quality System scenario could be decreased,
and the first action would be focused on improving the processing characteristics of the
computing equipment.

Table 4 shows the average value of the metrics RP, RR, and FsR per scenario in the
identification of message-type events. These averages are derived from the values achieved
for the metrics presented in Table 3. The overall evaluation of this task was 0.86 for the
RP metric, 0.89 for the RR metric, and a FsR of 0.86. The results presented are acceptable,
indicating that the approach had a performance greater than 89% in the task of finding
message-type events in an inter-organizational scenario; that is, it correctly identified
(89%) the interaction of messages between the participants, which is the basis for the
specification of the process choreography. Furthermore, 86% of the relationships found
were genuinely relevant.

Table 4. Average evaluation of the identification of events at the collaboration level.

Scenario RP RR FsR

Air quality system 1 1 1
Healthcare 0.62 0.50 0.54

Travel agency 1 1 1
Purchase order 0.83 1 0.90

Transfer of goods 0.83 0.88 0.83
Manufacturing process 0.91 1 0.92

Average 0.86 0.89 0.86

Table 5 shows the validation of the quality of the intra-organizational process models
discovered, which were recovered from the behavior identified in the event logs through
implementing the Split-miner algorithm. The level of quality of the recovered intra-
organizational process models is of great importance in the proposed approach, since
these models are the basis for discovering inter-organizational processes. Table 5 shows
the average value of the evaluation metrics per scenario based on the intra-organizational
process models discovered in each scenario. For the precision metric, a value between 0.85
and 1.00 was obtained, considering the six scenarios. For the recall metric, a value of 1.00
was obtained in all the scenarios evaluated. Values of 0.30 and 0.54 were obtained for
the generalization metric in the scenarios transfer of goods and manufacturing process; the
evaluation for the rest of the scenarios was between 0.79 and 0.96 for this metric. Overall,
these results indicate that the intra-organizational models replicated all behavior from
event logs and that the models accounted for 5% of behaviors not included in the event
logs. However, it is observed that there was a large number of infrequent events, according
to the values obtained for the generalization metric.

Table 5. Quality assessment of discovered intra-organizational business process models.

Intra-Organizational Business Process Precision Recall Generalization

Air quality system 1 1 0.96
Healthcare 0.98 1 0.87

Travel agency 0.85 1 0.89
Purchase order 1 1 0.79

Transfer of goods 1 1 0.30
Manufacturing process 0.88 1 0.54

Average 0.95 1 0.72

On the other hand, Table 6 presents the evaluation of the quality level of the IOBPs
discovered through the metrics of precision, recall, and generalization. In the experiment,
21 organizations participating in 20 peer collaborations were identified, derived from the
event logs analyzed. Considering a general evaluation, a value of 0.94 was obtained for the
precision metric, 0.99 for the recall measure, and a value of 0.63 for the generalization indicator.
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At that level, the results obtained are acceptable and indicate that the inter-organizational
process models discovered were capable of reflecting 99% of the behavior found in the
merged collaborative event logs. Furthermore, the discovered models only reflected 6% of
behaviors not seen in the event logs. However, low values remained for the generalization
metric, which denotes infrequent activities in the event log. It is essential to mention that
this metric is only informative for knowing the conformation of the event log and does
not express a performance value for the discovered model. Due to the nature of business
processes, it is common for there to be infrequent activities or behaviors in an event log.

Table 6. Quality assessment of discovered IOBP models.

IOBP Precision Recall Generalization

Air quality system 1 0.99 0.86
Healthcare 1 1 0.67

Travel agency 0.80 1 0.93
Purchase order 1 1 0.50

Transfer of goods 1 1 0.35
Manufacturing process 0.85 0.99 0.48

Average 0.94 0.99 0.63

Figure 2 shows a comparison between the reference IOBP model (see Figure 2a) and the
IOBP model discovered (see Figure 2b) for the scenario Travel Agency. The figure shows that
the process logic, tasks, and gateways discovered coincided with the behavior contained
in the reference IOBP. The process choreography deployed through the interaction of
messages between pools, represented by the message flow connectors, was similar among
the reference and discovered models, with the logic of the matching process and the logic
and sequence of the process choreography. In the validation of the discovered process
choreography, a value of 1.00 was obtained for all metrics (see Table 4), which indicates
that the proposed approach could identify all interactions between participants. On the
other hand, in the evaluation of the quality of the collaborative model, values of 0.80 and
1.00 were obtained for the precision and recall metrics, respectively, demonstrating that the
collaborative model could reproduce most of the behavior found in the merged event log,
without adding behaviors not included in the event log (see Table 6).

The process choreography between the participants Customer and Travel agency in both
models (see Figure 2a,b) contained interactions through five message flow connectors, as
described below.

1. The participant Travel agency sends a message using the task Make Travel Offer of the
subtype send and the participant Customer receives the message using the task Check
Travel Offer of the subtype receive. The interaction is represented by a message flow
connector named offer, deployed as message_4 in the discovered process model (see
Figure 2b).

2. The Customer confirms his interest in the travel proposal through the task Book Travel
of the subtype send, which establishes a communication with the participant Travel
agency using the message connector Travel (message_0). The message is received by the
company Travel agency in the task Book Received of the subtype receive.

3. The next interaction of Customer with the Travel agency is presented through the
message flow connector Payment (message_3), which links the task Pay Travel of the
subtype send with the Payment Received of subtype receive contained in the pool of the
participant Travel agency.

4. The participant Travel agency confirms the travel reservation through a message sent by
the task Confirm Booking, which is received with the Booking Confirmed of the subtype
receive from the participant Customer.

5. Finally, the participant Travel agency sends a business document about the paid order,
sending it in the message flow connector Ticket (message_1) using the task Order Ticket
of subtype send and the task (Ticket Received of the subtype receive.
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(a) Reference IOBP model.

(b) Discovered IOBP model.

Figure 2. Comparison of the reference IOBP/process choreography model versus the discovered
IOBP/process choreography model for the travel agency scenario.

6. Discussion

The approaches for discovering IOBP models and process choreography presented
in [39–41] exhibited a similar objective to our proposal. In [39], the authors described the
discovery of an IOBP model and the interaction of messages between the participants using
a healthcare scenario, as used in our experimentation. Their experiment obtained values
of 0.4 and 1.00 for the fitness and precision metrics, respectively, utilizing an extended
version of the event log to identify messages between participants. For their part [40], the
authors reported the discovery of an IOBP model using the same Healthcare scenario and
an extended event log to manage the message data, reporting independent diagrams for
the IOBP model and the choreography process discovered. In our experimentation, the
quality assessment of the IOBP model of the healthcare scenario obtained a value of 1.00
for the precision and recall metrics. Furthermore, in the quality assessment of the discovery
of the intra-organizational models that made up the IOBP model, values of 0.98 and 1.00
were achieved for the precision and recall, respectively.

On the other hand, ref. [41] obtained results between 0.94 and 1.00 for the precision
metric and 0.905 and 1.00 for the recall metric in their discovery of a collaborative model
using a classic event log (BPIC 2012) in the process mining domain. In their approach, no
additional information is required to determine which tasks can be correlated, applying a
technique of adjacent activities, and identifying the minimum execution time between the
tasks to assess their link. We presented an experiment with the event log of the Air Quality
System scenario, which had characteristics and complexity similar to the BPIC 2012 event
log. The results of the identification evaluation of the message task achieved a value of 1 for
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the precision and recall metrics. In discovering the IOBP model, a precision of 1 and 0.99
for recall was obtained. Our approach demonstrated a high performance on most event
logs considered in the experimentation, without including additional information in the
event log to identify message-type tasks.

In this way, the proposal to discover the choreography of a process in an inter-
organizational collaboration environment is governed by a set of configurable methods. For
example, the values of the variables Ut and Ua allow filtering cases with similar information
and selecting events that are potentially considered message-type tasks, respectively. The
word embedding representation used to calculate cosine similarity at the case and event level
is highly effective. However, it is limited to the quantity and quality of information within
the event logs, to generate a robust model that allows the discovery of the choreography be-
tween the participants of an IOBP. Furthermore, the patterns established in Table 1, as well
as the models of intra-organizational processes discovered by the Split-miner algorithm,
were fundamental elements for identifying the subtype in the message-type tasks, enabling
the discovery of the choreography of the process.

According to the results obtained in the evaluation of the discovery of the choreogra-
phy of the process (see Tables 3 and 4), the following classification can be defined based on
the characteristics identified in the experimentation:

• Complete choreography. This refers to the fact that the proposed approach can find
the complete process choreography in an inter-organizational environment, with the
same number and relationships as found in the reference choreography. In conclusion,
case-level and event-level representations of the event log only allow the discovery of
message-type events.

• Under-complete choreography. This refers to an approach that has the ability to find
a percentage of the relationships in the choreography of the process. This situation
may be because there was insufficient information for the representation obtained
from the word embedding model to obtain a high similarity, making it difficult to
relate all message-type events.

• Over-complete choreography. This refers to the fact that the method finds part of
the process’s choreography but also recovers irrelevant relationships not found in
the reference choreography. This behavior is because the information used to obtain
the representation from the event logs is very general. The above issue causes more
relationships to be recovered than the existing ones and to meet the condition that the
calculated similarity value exceeds the threshold Ua.

• Partially correct choreography. This refers to the model identifying a percentage of the
process choreography correctly. In addition, with the ability to find partially correct
relationships; that is, in a relationship of two identified events (a, b′), an event a or b′

is incorrect in the relationship, due to the relationship that is expected to be recovered,
according to the reference model, whether (a, c′) or (e, b′). The above may be because
the identified relationship (a, b′) has a higher degree of similarity than the expected
relationship (a, c′) or (e, b′). This behavior is caused by the fact that the information
used to obtain the representation is not sufficiently discriminating to separate the
relationships correctly and that the word-embedding model did not correctly learn
from the information in the event logs, causing the generation of relationships with
high similarity between message-type tasks and other event-types.

In the experimentation carried out, the scenario with the greatest complexity in iden-
tifying message-type tasks was Healthcare, according to the weighted value of 0.54 in the
FsR metric. In the Helthcare scenario, the process choreographies discovered had the char-
acteristics of a partially correct choreography and a under-complete choreography. In the Air
Quality System and Travel Agency scenarios, the process choreographies were classified
as a complete choreography, indicating that the information in the event logs, as well as
the patterns defined in the proposed methodology, supported the construction of a pro-
cess choreography similar to the expected one. Moreover, in the scenarios Purchase order
and Manufacturing process, process choreographies were generated with characteristics of
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Complete choreography and Over-complete choreography, which indicates that the complete
choreography was recovered but relationships that were not part of the choreography
were also recovered, as seen in the RP metric of 0.83 and 0.91, respectively. Finally, in the
Transfer of goods scenario, choreographies with characteristics of over-complete choreography
and under-complete choreography were obtained, which were reflected in the PR and RR
metrics, indicating that true relations and relations that were not part of the choreography
of the process were recovered.

7. Conclusions

This paper describes a data-driven methodology for discovering inter-organizational
business processes (IOBP) and process choreography. The methodology comprises a set of
methods and rules that allow information analysis from event logs and intra-organizational
models generated by each participant involved in a collaboration. The above enabled the
generation of the knowledge necessary for constructing an IOBP model and the interaction
between participants through message flow connectors, facilitating the discovery of the
process choreography. The results demonstrated the effectiveness of the methods and
rules for discovering the choreography of the process, and generating the IOBP models
obtained high values in the quality metrics, verifying the ability of the approach to faithfully
reproduce the behaviors found in the merged event logs. In summary, we contribute to
the process mining domain with formal methods that identify message-type tasks without
requiring information to be added to the event log. We provide a set of rules that support
defining message task subtypes. Additionally, we contribute a method for merging intra-
organizational event logs, which enables the creation of an inter-organizational event log.
Finally, three measurement indicators derived from the precision, recall, and f-score metrics
are provided to evaluate the quality of the process choreography discovered.

Finally, in future work, the thresholds Ua and Ut will be optimized, since the proposed
solution is parametric and the assigned values are individually functional through the
analyzed collaboration. Furthermore, we plan to implement a tool that supports the
proposed approach as a complement to the ProM process mining framework, as well as
incorporating into our tool the Inductive Miner [51] and the Evolutionary Tree Miner [52]
procedural algorithms for business process model discovery, which are based on the
extraction of process trees from the event log.
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Abbreviations
The following abbreviations are used in this manuscript:

BPMN Business process model and notation
VRM Vector representation matrix
SCP Set of case pair
ESM Event score matrix
PME Pair of message-type events
DFG Directly-follows graph
IOBP Inter-organizational business process
RIOBP Reference inter-organizational business process
RP Relationship precision
RR Relationship recall
FsR F-score of the relationship
IAQM IoT air quality monitor
RMS Repository management service
SAS System access service
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