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Abstract: Restoring current ponderosa pine (Pinus ponderosa Dougl. Ex P. and C. Laws)-dominated
forests (also known as “dry forests”) to spatially resilient stand structures requires an adequate
understanding of the overstory spatial variation of forests least impacted by Euro-American settlers
(also known as “reference conditions”) and how much contemporary forests (2016) deviate from
reference conditions. Because of increased tree density, dry forests are more spatially homogeneous
in contemporary conditions compared to reference conditions, forests minimally impacted by Euro-
American settlers. Little information is available that can be used by managers to accurately depict
the spatial variation of reference conditions and the differences between reference and contemporary
conditions. Especially, forest managers need this information as they are continuously designing
management treatments to promote contemporary dry forest resiliency against fire, disease, and
insects. To fill this knowledge gap, our study utilized field inventory data from reference conditions
(1934) along with light detection and ranging and ground-truthing data from contemporary conditions
(2016) associated with various research units of Blacks Mountain Experimental Forest, California, USA.
Our results showed that in reference conditions, above-ground biomass—a component of overstory
stand structure—was more spatially heterogeneous compared to contemporary forests. Based on
semivariogram analyses, the 1934 conditions exhibited spatial variation at a spatial scale < 50 m
and showed spatial autocorrelation at shorter ranges (150–200 m) compared to those observed in
contemporary conditions (>250 m). In contemporary conditions, prescribed burn with high structural
diversity treatment enhanced spatial heterogeneity as indicated by a greater number of peaks in the
correlograms compared to the low structural diversity treatment. High structural diversity treatment
units exhibited small patches of above-ground biomass at shorter ranges (~120 to 440 m) compared
to the low structural diversity treatment units (~165 to 599 m). Understanding how spatial variation
in contemporary conditions deviates from reference conditions and identifying specific management
treatments that can be used to restore spatial variation observed in reference conditions will help
managers to promote spatial variation in stand structure that has been resilient to wildfire, insects,
and disease.

Keywords: Blacks Mountain Experimental Forest; LiDAR; overstory spatial variation; above-ground
biomass; semivariogram; Moran’s I correlogram
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1. Introduction

Overstory stand structure of ponderosa pine-dominated forests—hereafter “dry
forests” [1]—has undergone substantive changes since the Euro-American settlement of
California, USA. Such changes have included shifts in species composition, an increase in
the density of small trees [2], and a decline in the density of large trees [3–5]. An increase in
densities of small trees and shifts in species composition are attributed to a wide range of
factors, including fire suppression, logging, grazing, and climate change [2,3].

In California, tree-ring reconstructions indicate that spatial variation in the overstory
of dry forests impacted by indigenous land use but prior to harvesting activities following
Euro-American settlement (hereafter termed “reference conditions”) consisted of a mo-
saic of individual trees, tree groups, and gaps at small scales (<0.4 ha or 40–70 m). Such
spatial variation in overstory stand structure resulted in open forests with sparse, large
individuals of fire-resistant species [6,7]. Spatial variations in stand structure are the result
of interactions among prior processes such as fire, regeneration, competition, and mortal-
ity [8,9]. However, spatial variations in stand structure such as tree density, basal-area,
and above-ground biomass (AGB) have substantially changed following Euro-American
settlement [10,11].

Within the dry forests of California, following Euro-American settlement, spatial
variation in overstory stand structure has shifted from fire resilient to fire prone forests
due to increased tree density of shade-tolerant species such as white fir (Abies concolor
(Grod. & Glend)) and incense-cedar (Calocedrus decurrens (Torr.)) [10–12]. Frequent fires with
return intervals of about 25 years are among the most important drivers of spatial variation
in dry forests [13,14]. However, it is unclear how overstory stand structures may have
been altered spatially due to the exceptionally long fire-free period after Euro-American
settlement [3,15]. Therefore, quantitative descriptions of spatial changes in overstory stand
structures are crucial for land managers as they can be used to assess the potential of
wildfire due to increased fuel loads in the forest overstory [16,17].

The spatial variations in overstory stand structure over time have rarely been studied,
which is potentially a result of both a general lack of spatially-explicit data collected prior
to active management [3] and the fact that such data collection is extremely labor intensive
and expensive. Hence, it is practically impossible to obtain census data over large areas [18].
Remote sensing technology, especially light detection and ranging (LiDAR), provides
the capacity to obtain spatially explicit data over large areas in a timely and cost-effective
manner [18]. Although LiDAR data are being extensively used in enhanced forest inventory,
ground data are still required [19]. LiDAR-derived variables such as height metrics can
be utilized with ground-based observations such as basal area (m2/ha), volume (m3/ha),
and AGB (Mg/ha) to predict forest overstory stand structure at different times [20]. Thus,
LiDAR data complement and can be used in conjunction with ground-based inventories to
identify spatial changes in the forest overstory structure [21].

Furthermore, many studies examining the spatial variation of forest structure in
California, USA, have been restricted to particular elevation ranges [2,22], management
units [23,24], certain functional types, and small study areas [3,25,26]. Numerous studies
have provided a general description of dry forests prior to active management following
Euro-American settlement [27,28]. However, a description of the spatial variation of
overstory stand structure over time is generally lacking. Many studies have investigated
spatial variation in tree density and tree size (e.g., [9,29]), and at different scales based
on averages (e.g., [30,31]). However, they have failed to capture the spatial variation of
overstory over a larger landscape utilizing different metrics such as AGB as a measure of
overstory stand structure. AGB is closely related to forest productivity and can be more
accurately predicted and modeled from ground-measured biomass and LiDAR height
metrics compared to trees per hectare or basal area per hectare [20]. Metrics such as trees
per hectare and basal area per hectare are sensitive to the inability of LiDAR to capture
small and understory trees very accurately [31].
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This study was conducted in the dry forests of Blacks Mountain Experimental Forest
(BMEF) in northern California, USA. BMEF remained untouched by selective logging oper-
ations from the late 1800s through 1940s [32], but may have been impacted by indigenous
land use for hunting mule deer [33]. Within BMEF, our study focused on the section defined
as the Blacks Mountain Ecological Research Project (BMERP), initiated in 1991. Within
BMERP, two structural diversity thinning treatments with or without prescribed burn were
implemented [32]. A low structural diversity treatment (LOD) was designed to produce a
single canopy layer by removing dominant and large-sized trees [32]. A high structural
diversity treatment (HID) was designed to leave all the dominant trees, abundant snags,
and multiple canopy and forest openings [32]. To quantify the spatial variation of AGB, we
utilized three types of data collected for the BMERP project area: ground inventory data
from 1934 as reference data, as well as contemporary 2015 LiDAR data, and 2016 ground
verification data. The specific objectives of our study were to:

1. compare the spatial variation of overstory AGB between contemporary forests and
reference conditions using 2015 LiDAR data and 1934 census data;

2. compare the spatial variation of overstory AGB among various structural diversity
treatments in contemporary conditions.

The variogram analyses implemented in this study, provide information on the inher-
ent patch size and spatial heterogeneity for overstory AGB in both contemporary forests
and reference conditions. Understanding the spatial differences in overstory AGB at two
points in time across a landscape has various applications in forest management poli-
cies such as fuel classification, fire spread prediction, and post-disturbance vegetation
changes [34–36]. Such information can improve our understanding of how trees and forests
respond and will continue to respond towards changes in disturbance regimes [37] and
help silviculturists design restoration treatments that move forests towards more resilient
conditions similar to reference conditions.

2. Materials and Methods
2.1. Study Area

The BMEF, managed by the USDA Forest Service Pacific Southwest Research Station,
is located in northeastern California (Figure 1) (40◦40′ N, 10 121◦10′ W), northeast of Lassen
Volcanic National Park. The elevation of BMEF ranges between 1700 and 2100 m [32].
Slopes rarely exceed 30 percent [32]. Aspects are primarily west- and south-facing. At
lower elevations, stands are dominated by ponderosa pine (Pinus ponderosa Dougl. Ex P.
and C. Laws) with occasional occurrence of some Jeffrey pine (Pinus jeffreyi (Grev. And
Balf.) [32]. At higher elevations, white fir (Abies concolor (Gord. And Glend.) Lindl.) and
incense-cedar (Calocedrus decurrens (Torr.) Florin) dominate the stands. Classified as an
interior ponderosa pine forest type [38], the 4358 ha forest has a wide range of stand
conditions as a result of past research and management activities, as well as disturbance
events [39].

For this study, we focused on ten of the twelve research units in the BMERP and
four research natural areas (RNA, Figure 1C). BMERP was initiated as an interdisciplinary
large-scale, long-term ecological research project at BMEF in 1991 [32]. The goals of BMERP
were to: (a) understand the effects of forest structural complexity on the health and vigor of
ponderosa pine ecosystems, (b) quantify the ecosystem’s resilience to natural and human-
caused disturbances, and (c) determine how these ecosystems can be managed for sustained
resource values [32]. The forests in the ten BMERP research units were subjected to two
different types of treatments (Figure 1C, for details about treatments see Appendix A,
Table A1). The first treatment consisted of three stand structures: low structural diversity
(LOD), high structural diversity (HID), and research natural areas (RNAs) (Figure 1C; [32]).
LOD and HID treatments had been randomly assigned to the ten BMERP research units
ranging in size from 77 to 144 ha (Figure 1C). Each research unit was then split in half with
one randomly assigned half receiving prescribed burn treatments (hereafter “burned”),
whereas the other half did not receive the prescribed burn treatment (hereafter “unburned”)
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(Figure 1C). Collectively, the twelve units consisted of a total of twenty-four stands in
our study: four RNAs, ten LOD stands, and ten HID stands (Figure 1C and Table A1).
LOD stands were thinned to a uniformly spaced density of ~40 trees ha−1 retaining a
single canopy layer of intermediate trees with height ranging from 12 to 30 m and a crown
ratio > 50% [32]. In contrast, thinning in HID stands was conducted to retain all canopy
layers that represented an overstory stand structure of a forest with multiple age classes
and varying crown structures [32]. All large old trees were maintained with one smaller
tree retained within the larger tree’s crown circumference [32]. As a part of the prescription,
within the HID units, caches of high-density and small-diameter conifers were left [32,38].
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Figure 1. Study area map. Panel (A) represents the United States of America with California being
highlighted in grey. California with its county boundaries is shown in Panel (B). Blacks Mountain
Experimental Forest is represented in Panel (C) with the 1 ha plots used for the 1934 census survey.
Panel (C) also includes the polygons for the Blacks Mountain Ecological Research project (BMERP).
Inside the BMERP polygons, the blue dots represent the permanent grid system within BMEF as
shown in panel (D). The ground-truthing data were collected using a staggered pattern in 2016, as
shown in Panel (D).
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The four RNAs (~40 ha each; Figure 1C) were set aside to serve as unmanaged,
qualitative controls representative of the interior ponderosa pine type [32]. These RNAs
have never received mechanical treatments, but fire exclusion has greatly increased their
understory tree densities [32]. Two of the four RNA stands (RNA-B and RNA-C) received
one application of prescribed burn in the late 1990s [32].

2.2. Data
2.2.1. 1934 Survey Data

During the fall of 1934, BMEF was divided into a total of 4074 rectangular plots of 1 ha
(hereafter referred to as “1 ha plots”) in size to conduct a census survey ([40], Figure 1C).
Within each 1 ha plot, all live overstory trees > 8.9 cm (3.5 inches) were tallied by species
group and diameter class [40]. Diameter classes were 5.08 cm (2 inches) wide and labeled
by even inches (i.e., 4, 6, 8, 10, etc.). Tree species were recorded as pine (Jeffrey or ponderosa
pine), white fir, and incense-cedar [40].

2.2.2. 2015 LiDAR Data Acquisition and Processing

An airborne Light Detection and Ranging (LiDAR) dataset was acquired during the
summer of 2015 using a Leica ALS50 PHASE II laser system (near-infrared) discrete return
sensor mounted on a fixed-wing aircraft [41]. The aircraft was flown at an altitude of 900 m
using an opposing-flight line with a side lap of at least 50% [41]. The scanning angle of
the sensor was ±14◦ with an average return of 6.9 points per m2 and a standard deviation
of 5.9 points per m2 (see [41]). LiDAR point cloud was processed and LiDAR metrics
were calculated using the ‘lidR’ package in R ([42], see Appendix B for a full description of
the process).

2.2.3. 2016 Field Data

The ten research units and four RNAs each have a permanent 100 m lattice grid
(Figure 1D; [32]). The grid serves as the center points for most of the plot-level research
conducted in BMEF [32]. In the summer of 2016, at every other grid point in all diagonal
directions (282 m spacing, Figure 1D), 16 m radius plots (804 m2, hereafter referred to as
“circular plots”) were measured within each treatment unit [43]. Standing live and dead
trees ≥ 9 cm diameter at breast height (DBH) were stem mapped from the plot center and
measured for total height and DBH [43]. These ground-truthing data were collected in a
total of 154 circular plots: 65 LOD, 69 HID, and 20 RNA plots (Figure 1C; blue dots).

2.2.4. Overstory Above-Ground Biomass for 1935 and 2016

Using the 1934 survey data, I calculated biomass (Mg) for foliage, branch, and bole of
individual trees > 9 cm DBH using species-dependent equations that were developed locally
at BMEF [44]. Then, the above-ground biomass (AGB, Mg) for each tree was calculated
by summing the individual biomass from foliage, bole, and branch. The height values
used in the equations were estimated from local height–diameter equations developed by
Dolph et al. [45]. For white fir and incense-cedar overstory AGB, we used equations and
parameters suggested by Jenkins et al. [46]. The total plot overstory AGB was calculated
by adding the overstory AGB of each species. We then converted plot AGB to AGB per
hectare (Mg/ha) based on the given plot sizes.

For the 2016 field data, we calculated the AGB for individual trees using the same
species equation parameters that were used for the 1934 biomass calculations. The total
overstory AGB for each circular plot was calculated by taking the sum of the AGB calculated
for individual trees of each species and converted into per ha values.

2.2.5. Biomass Model to Link LiDAR Metrics to 1 ha Plots for 2016

The distribution of the response variable—overstory above-ground biomass (AGB,
Mg/ha)—was skewed to the right with values > 0 (Figure A1). Therefore, we fit generalized
linear mixed effect models (glm) with a ‘gamma’ distribution and a ‘log link’ function to
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ensure that the expected value of AGB is always positive [47]. Modeling was performed
in R using the ‘lme4’ package ([48]; see Appendix C for full details on the model building
process and sumary results).

We divided the study area within BMERP into cells of size 32 × 32 m to match the
resolution of the ground-truthing plots (Figure A4). LiDAR metrics were extracted at
the cell level following the method described in Mauro et al. [43]. There was a total of
12,647 cells. The selected biomass model was then applied to the cells to predict overstory
AGB. To calculate the overstory AGB for 1 ha plots in 2016, first, the predicted values of
overstory AGB at cell level were created as a map (Figure A4). Then, the map was overlaid
with the 1 ha plot map with the BMERP units. The intersect function in ArcMap 10.4.1 was
used to extract the cells that fell within 1 ha plots [49]. If a cell straddled multiple 1 ha plots,
overstory AGB was weighted based on the area of the cell, and area weighted values of
cells that fell within the plots were summed to calculate the overstory AGB (Mg/ha) for
1 ha plots.

2.3. Data Analysis

We computed semivariograms at the scale of each BMERP unit and Moran’s I correlo-
grams as a measure of spatial variation to evaluate our research objectives.

2.3.1. Comparing Semivariogram Components and Moran’s Correlogram between 1934
and 2016

Semivariograms—To meet our first research objective, we used semivariogram models
following the methods of Rossi et al. [50] with the assumption of stationarity, i.e., that the
variance in above-ground biomass (AGB) is the function of separation distance only [51].
The semivariance was calculated for a pair of observations of overstory AGB as a function
of the separation distance (hereafter “lag distance”) between the sampled locations [51].
Using the ‘gstat’ spatial package in R version 4.1.1 [52], semivariogram models were built
for all fourteen units using a 1 ha plot-level overstory AGB for 1934 and 2016. For the
2016 study units, we did not differentiate between the burned and unburned halves; hence,
variograms represent the pooled variogram for each unit. Following the method of Fry and
Stephens [53], we fit three semivariogram models—exponential, Gaussian, and spherical—
for each unit in 1934 and 2016. We also checked the assumption of stationarity in our
exploratory analysis using directional variograms and found that ranges were not different;
hence, semivariance was only distance dependent and not direction dependent [53]. Fur-
thermore, to allow for comparisons at a common scale, all variograms were standardized
by dividing the semivariance by the overall sample variance [50]. For both 1934 and 2016,
the best semivariogram models were selected based on the minimized root mean squared
error (RMSE, [53]). Following the method suggested by Fry and Stephens [53], we used
the selected semivariograms from both points in time and compared the values of range,
nugget, and sill for all fourteen units using dot plots. The range describes the distance up
to which overstory AGB values exhibited spatial autocorrelation and provides information
on the inherent patch size and spatial heterogeneity for overstory AGB [54]. The sill values
were compared to understand whether the amount of spatially dependent variance within a
given range in overstory AGB differed between 1934 and 2016 [53,55]. Nugget values were
compared to understand if there was spatial variation at a scale smaller than 50 m (hereafter
referred as “fine-scale spatial variation”), which was the shortest distance between adjacent
1 ha plots in overstory AGB [55].

Moran’s I correlogram—For a more local measure of spatial autocorrelation, we followed
the method of Jaquette et al. [56] and calculated Moran’s I over the range of 20 lags at an
interval of 50 m between lags, which was the shortest possible distance between 1 ha plot
centers. From our exploratory analysis, we found that Moran’s I could be calculated up to a
distance of 1000 m for all units except RNA-D because the number of observations was <5%
of total observations for the given unit and the spatial variation could not be interpreted
easily with so few observations [57]. RNA-D was an exception and only allowed 800 m
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for the Moran’s I calculations. We also tested if Moran’s I at each lag was significantly
different from 0 (alpha = 0.05) using Monte Carlo simulations with 1000 permutations [56].
Using the results from the 1000th permutation, all directional Moran’s I correlograms were
constructed with lag distance (m) on the x-axis and Moran’s I value on the y-axis [57,58]
for all units. We used the Moran’s I correlograms for 1934 and 2016 to compare spatial
variation in overstory AGB in terms of the differences in:

(a) fine-scale spatial variation—We evaluated whether the magnitude of Moran’s I at the
first lag was significantly different from 0 (p < 0.05) for each unit in both years. A
Moran’s I value at the first lag that is significantly different from 0 indicates a lack of
fine-scale spatial variation within study units, i.e., patches of overstory AGB < 50 m
do not exist [57]. If Moran’s I was not significantly different from 0, patches of
AGB < 50 m exist in the study units.

(b) periodicity in Moran’s I correlogram—Moran’s I values that are significantly different
from 0 at different lag distances result in peaks (positive Moran’s I) and troughs
(negative Moran’s I) at different lag intervals creating a periodic correlogram for
overstory AGB [57,58]. A greater number of peaks and troughs in the correlogram
indicates greater spatial variation, whereas fewer peaks in the correlogram suggest
less spatial variation in AGB [57,58]. We visually compared if the number of peaks
and troughs combined (collectively referred to as “peaks”) in the correlograms for the
units were different between years as an indicator of greater or less spatial variation
in AGB [57,58].

2.3.2. Effect of Management Treatments on Spatial Variation of Above-Ground Biomass in
the Contemporary Forests

To compare the effect of management treatments on spatial variation of overstory
AGB, we used semivariogram models built for each of the burned and unburned halves of
the HID and LOD treatment units (Table A1). A total of 20 semivariograms—10 each for
the burned and unburned halves of HID and LOD treatment units—were selected based on
low RMSE values and used to compare the range, nugget, and sill. We also used Moran’s I
correlogram constructed for both burned and unburned halves of HID and LOD treatment
units to compare the fine-scale spatial variation and periodicity in spatial variation in
overstory AGB as described in Section 2.3.1. From our exploratory analysis, we found that
maximum distance for which we could construct Moran’s I correlograms was 1000 m for
all the burned and unburned halves of the units.

3. Results
3.1. Spatial Variation between 1934 and 2016
3.1.1. Spatial Autocorrelation in Above-Ground Biomass Exhibited at Larger Ranges
in 2016

Within research natural areas (RNAs), Gaussian and spherical models for various
units exhibited low RMSE; thus, they were selected for comparison of spatial variation in
overstory above-ground biomass (AGB) between 1934 and 2016 (Table 1, Figure A5). The
models that did not converge for either year are not presented in the results. Within RNAs,
the values of range did not differ substantially between RNA-A and RAN-B for both years
(Figures 2 and A5). However, within RNA-C and RNA-D, we observed larger ranges of
~400 m and 250 m, respectively, in 2016 compared to 1934 (~243 m for RNA-C and 167 m
for RNA-D, Figures 2 and A5). RNAs exhibited larger nugget values in 1934 compared to
extremely small values in 2016 indicating the presence of fine-scale spatial variation in 1934
compared to 2016 (Figure 3 and Table 1). In 2016, the sill values were generally similar to
those observed in 1934. We only observed higher sill values in RNA-D in 2016 compared to
1934, without much difference in other RNAs (Table 1).
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Figure 2. Range values for above-ground biomass for the selected variogram models between 1934
vs. 2016. The top panel shows the range for research natural areas (RNA), the middle panel shows
the range for the low structural diversity (LOD) units, and the bottom panel shows the range for the
high structural diversity (HID) units in Blacks Mountain Ecological Research Project.

Within units other than RNAs, spherical and Gaussian models exhibited low RMSE
values and were selected (Table 1 and Figure A6). All units except 41 and 44 exhibited short
ranges in 1934 compared to longer ranges in 2016 (Figures 2, A6 and A7). There was a very
small difference in range values between both years in units 41, 43, 44, and 45 (Figure 2).
Nugget values observed in 1934 were larger than those observed in 2016 within 14 units
of the study, which indicated the presence of fine-scale spatial variation (Figure 3). The
amount of spatial autocorrelation indicated by the sill values was greater in 1934 compared
to 2016 in most of the units (Table 1 and Figures A6 and A7).
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Table 1. Summary of the root mean square error (RMSE), and nugget values for the models that
converged. The selected variogram models for each unit are highlighted with bold font.

Units Models RMSE Sill

Research natural areas (RNA) 1934 2016 1934 2016

RNA-A Spherical 0.81 0.85 1.15 1.09
Exponential 0.82 0.84 1.91 1.75
Gaussian 0.74 0.80 1.01 0.99

RNA-B Spherical 0.83 0.96 1.21 1.28
Exponential 0.82 0.95 2.69 3.84
Gaussian 0.79 0.94 1.09 0.99

RNA-C Spherical 0.63 0.80 0.93 1.11
Exponential 0.72 0.82 1.01 1.49

RNA-D Gaussian 0.50 0.65 1.01 1.56

Low structural diversity (LOD)

UNIT-39 Spherical 0.52 0.74 0.99 1.06
Exponential 0.57 0.74 1.94 1.92
Gaussian 0.49 0.70 0.95 0.98

UNIT-40 Spherical 0.76 0.73 1.04 1.11
Exponential 0.75 0.75 1.92 1.94

UNIT-43 Spherical 0.65 0.70 1.03 0.91
Exponential 0.69 0.71 1.16 1.06
Gaussian 0.63 0.67 0.98 0.87

UNIT-44 Spherical 0.30 0.51 1.42 0.96
Exponential 0.31 0.53 2.62 1.47
Gaussian 0.28 0.48 0.80 0.76

UNIT-45 Spherical 0.69 0.80 2.50 1.12
Gaussian 0.64 0.80 1.10 1.27

High structural diversity (HID)

UNIT-38 Spherical 0.48 0.67 0.81 0.95
Exponential 0.52 0.69 0.85 1.07
Gaussian 0.47 0.64 0.79 0.89

UNIT-41 Spherical 0.72 0.71 1.03 0.94
Exponential 0.75 0.71 1.20 1.35

UNIT-42 Spherical 0.63 0.71 0.98 0.95
Exponential 0.86 0.84 1.54 2.52

UNIT-47 Spherical 0.85 0.84 1.14 1.18
Exponential 0.84 0.86 0.92 1.55

UNIT-48 Spherical 0.64 0.75 0.83 1.04
Exponential 0.66 0.75 0.00 0.00

3.1.2. Moran’s I Correlogram Exhibited Differences in Fine-Scale Spatial Variation and
Periodicity between Two Years

Moran’s I correlogram suggested that fine-scale spatial variation was more pronounced
in 1934 conditions compared to 2016, as indicated by the Moran’s I values—not significantly
different from 0—at the first lag in most of the units (Table 2). For example, in 1934, nine
out of fourteen units exhibited a Moran’s I value at the first lag that was not significantly
different from 0, but in 2016, ten out of fourteen units had Moran’s I values at the first lag
that were significantly different from 0 (Table 2). This was in agreement with all the higher
nugget values found in 1934 as compared to low nugget values in 2016 (Figure 3). Thus,
only four out of fourteen units exhibited fine-scale spatial variation in 2016 (Table 2).
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Figure 3. Nugget values for above-ground biomass for the selected variogram models for 1934 and
2016. The top panel shows the nuggets for research natural areas (RNA), the middle panel shows the
nuggets for the low structural diversity (LOD) units, and the bottom panel shows the nuggets for the
high structural diversity (HID) units in Blacks Mountain Ecological Research Project.

In general, periodicity did not vary substantially between 2016 and 1934, as indicated
by similar numbers of peaks between both years (Table 2, Figure A8). However, the
presence of periodicity in the Moran’s I correlograms in both years indicated that overstory
AGB occurred in heterogeneous patches (Figure A8). Exceptions were RNA-A and RNA-C,
where the spatial variation in overstory AGB was more pronounced in 2016, as indicated by
a larger number of peaks in 2016 compared to 1934 (Table 2 and Figure 4). The periodicity
in the correlogram occurred at larger lag intervals (>250 m) for units 39, 43, and 48 in 2016,
which is an indication of the presence of bigger patches of overstory AGB (Figure A8).
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Table 2. Summary of the number of peaks and troughs of the Moran’s I correlograms and p-values
for the Moran’s I at the first lag for research natural areas (RNAs) and other units in 1934 and 2016.

Unit First Lag

1934 2016 1934 2016

# Peaks # Peaks

Research natural area (RNA)

RNA-A 5 3 p = 0.009 * p = 0.009 *
RNA-B 3 3 p = 0.23 ns p = 0.35 ns

RNA-C 3 5 p = 0.13 ns p = 0.06 *
RNA-D 1 3 p = 0.16 ns p = 0.47 ns

Low structural diversity (LOD)

UNIT-39 1 1 p = 0.009 * p = 0.009 *
UNIT-40 2 2 p = 0.06 ns p = 0.02 *
UNIT-43 2 4 p = 0.13 ns p = 0.009 *
UNIT-44 0 2 p = 0.16 ns p = 0.03 *
UNIT-45 1 1 p = 0.009 * p = 0.009 *

High Structural diversity (HID)

UNIT-38 2 2 p = 0.009 * p = 0.009 *
UNIT-41 2 4 p = 0.06 ns p = 0.17 ns

UNIT-42 0 2 p = 0.72 ns p = 0.93 ns

UNIT-47 1 1 p = 0.75 ns p = 0.05 *
UNIT-48 2 2 p = 0.009 * p = 0.009 *

* indicates significant at alpha = 0.05; ns = non-significant; # = number.

3.2. 2016 Spatial Variation in Treatment Units
3.2.1. HID Burned Halves Exhibited Spatial Autocorrelation at Short Ranges

Variogram models with the lowest RMSE for both burned and unburned halves of
HID and LOD treatments were selected for comparing range, nugget, and sill (Table A5).
Irrespective of the burned and unburned halves, all the HID treatment units exhibited
spatial autocorrelation for overstory AGB at shorter ranges (~120 to 440 m) compared to
the LOD treatment units (~165 to 599 m, Figures 5, A9 and A10). All the burned halves
of HID showed larger nugget values compared to unburned halves and most of the LOD
treatments, indicating the presence of fine-scale spatial variation in overstory AGB within
burned halves (Figure 6).
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Figure 4. Moran’s I correlogram for 1934 vs. 2016 within the four research natural areas (RNAs) in
Blacks Mountain Ecological Research Project. RNA-B and RNA-C received prescribed burn treatments
in 1997 and 1998, respectively. Dotted lines represent the lower and upper limit of the non-significant
spatial autocorrelation using 95% confidence envelopes for 1934 (red) and 2016 (blue) from Monte
Carlo simulations [56]. Points connected with solid lines indicate Moran’s I at a given lag distance
(m). Points above the dotted lines in the upper part of the envelope indicate a positive Moran’s I
that is significantly different from 0, whereas points below the dotted lines in the lower part of the
envelope show a negative Moran’s I that is significantly different from 0. Points within the dotted
envelope show Moran’s I values that are not significantly different from 0.
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Within LOD treatment units, most of the burned halves exhibited spatial autocorrela-
tion of overstory AGB at a smaller range compared to unburned halves, but the difference
was very small (Figure 5). Exceptions were units 43 and 44, where spatial autocorrelation
in overstory AGB was exhibited at shorter ranges in unburned halves compared to burned
halves (Figure 5). Within HID treatment units, all the unburned halves exhibited spatial
autocorrelation in overstory AGB at larger ranges than the burned halves, except for units
38 and 48, where the differences in range between burned and unburned halves was very
small (Figures 5 and A10). The presence of fine-scale spatial variation in overstory AGB
was indicated by larger nugget values in burned halves compared to unburned halves,
except for units 41 and 42, which exhibited no nuggets (Figure 6).

3.2.2. HID Burned Halves Exhibited Greater Spatial Variation Indicated by Periodicity at
Shorter Lag Distances

Irrespective of treatments, most of the burned and unburned halves exhibited Moran’s
I values at the first lag that were significantly different from 0, which indicated the absence
of spatial variation at distances below 50 m (Table 3, Figure A11). We found a greater
number of peaks that were significantly different from 0 at shorter lag distances within
burned halves of HID treatments than within unburned halves of HID and LOD treatments
(Figure A11). For example, the burned half of unit 38, showed eight peaks at the interval
of 100–150 m lag distances compared to only two peaks in the unburned half of unit 39,
and three peaks in the burned half of unit 39, all of which occurred at larger lag distances
between 300 and 400 m (Table 3, Figure A11A–F).

Table 3. Summary of the number of peaks and troughs of Moran’s I correlogram and p-values for
Moran’s I at first lag for burned and unburned halves of low structural diversity treatment (LOD)
and high structural diversity treatment (HID) units.

Unit First Lag

Burned Unburned Burned Unburned

# Peak # Peaks

Low structural diversity

UNIT-39 3 2 p = 0.009 * p = 0.009 *
UNIT-40 5 4 p = 0.11 ns p = 0.009 *
UNIT-43 5 2 p = 0.009 * p = 0.009 *
UNIT-44 3 2 p = 0.005 * p = 0.009 *
UNIT-45 6 5 p = 0.009 * p = 0.009 *

High structural diversity

UNIT-38 8 3 p = 0.009 * p = 0.002 *
UNIT-41 4 3 p = 0.007 * p = 0.27 ns

UNIT-42 4 4 p = 0.009 * p = 0.009 *
UNIT-47 5 3 p = 0.009 * p = 0.009 *
UNIT-48 5 3 p = 0.009 * p = 0.009 *

* indicates significant at alpha = 0.05; ns = non-significant; # = number.

Correlograms for LOD treatments were more uniform with few significant peaks
(p = 0.0009) of Moran’s I at longer lag distances compared to HID treatments (Figure A11,
LOD vs. HID). However, between burned and unburned halves of LOD treatment units,
we observed a greater number of significant (p = 0.0009) negative and positive Moran’s I
values at short lag distances for the burned halves (Table 3, Figure A11, LOD). In addition,
between unburned halves of HID and LOD, HID unburned halves for units 41, 42, 47, and
48 exhibited a greater number of peaks in Moran’s I values significantly different from 0 at
shorter lag distances (Figure A11). Hence, both HID burned and unburned halves exhibited
more spatial variation in AGB compared to LOD treatments (Figure A11, LOD vs. HID).
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4. Discussion

Results showed that ranges, fine-scale variation, and periodicity in spatial variation
of overstory above-ground biomass (AGB) were different among units in BMEF based on
management and the point in time. Forests of 1934 were heterogeneous without marked
human-induced management. In contrast, by 2016 these forests had been subjected to some
form of thinning, burning, or a combination of both at various points in time [32,59]. Hence,
spatial variation in overstory AGB for 2016 was likely influenced by these treatments. Our
results showed that spatial variation in 2016 was more pronounced in prescribed burns.

4.1. The 1934 Forest Was Spatially Heterogeneous Particularly at Fine Scales

Most forest units had greater spatial variation in overstory AGB biomass in 1934
compared to 2016, as indicated by the short value of ranges (<200 m) from semivariogram,
periodicity of Moran’s I correlogram and Moran’s I value at first lag not significantly
different from 0 in RNAs [57,58]. The spatial variation in overstory AGB in BMEF is
consistent with several other studies describing small and frequent patch size distributions
(ranging from 60 to 150 m) of the overstory in old growth ponderosa pine forests in northern
California [9,60] and Washington [1].

Further, our results identifying fine-scale variation in most of the units were consistent
with other studies, which attributed the presence of fine-scale variation to frequent fire [61]
and fine-scale variation in growing environmental conditions [62]. Exceptions occurred in
units such as RNA-A and units 45 and 48, which lacked fine-scale (<50 m) spatial variation.
The absence of fine-scale spatial variation is likely due to the absence of frequent fire after
around 1880s at BMEF (unpublished data from Carl Skinner). In the absence of frequent
fire, stand density possibly increased due to the infilling of gaps with shade-tolerant species
such as incense-cedar and white fir [9] in units such as RNA-A and units 45 and 48, which
occurred at higher elevations with abundant shade-tolerant species.

4.2. Spatial Autocorrelation at Long Ranges and Less Spatial Varaitons in 2016 except
When Burned

The long ranges (>250 m) of the variograms suggested that overstory AGB in most
units in 2016 consisted of small patch size and spatial variations, possibly due to increases
in tree densities within 1934 forest gaps [3,63]. With the long-term (century-long) absence
of frequent fire, heterogeneity at small scales (<50 m) could have decreased via a loss of
fine-scale patches along with expansion of existing patches into gaps [3]. The loss of fine-
scale patchiness in BMEF was evidenced by the decrease in nugget values and significant
Moran’s I at first lag in 2016 compared to 1934, consistent with [61]. On the other hand,
no difference in periodicity between 1934 and 2016 within prescribed burn RNA units
indicates that at localized scales, prescribed burns likely emulated much of the 1934 spatial
structure by killing trees in patches [64].

4.3. Prescribed Burns Enhanced Spatial Variation in Both LOD and HID Treatments

The high structural diversity (HID) treatment for BMEF was designed to approxi-
mately emulate a heterogeneous overstory stand structure, with numerous small openings
and patches of large old trees [59]. Therefore, our results regarding spatial variation in over-
story AGB—presence of fine-scale spatial variation, periodicity in patchiness at short lags,
and short ranges—for HID treatments suggest that treatments were effective in creating
greater spatial variation of overstory stand structure [58]. Furthermore, when prescribed
burns were coupled with the HID treatment, spatial variation in overstory AGB was fur-
ther enhanced as evidenced by greater periodicity in overstory AGB as compared to the
unburned half of the HID units.

Prescribed burns can be patchy and localized due to a slow rate of spread and thus can
kill small trees in groups and create openings [64,65]. In addition, second-order post-fire
mortality of trees can also remove patches of trees [65,66]. For example, low-severity
prescribed burns can leave fire-injured conifers that are receptive hosts for bark beetles [66].
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The subsequent mortality of weakened trees—especially large old ponderosa pine—due
to beetle attacks can produce openings and gaps within stands [66,67], therefore creating
a heterogeneous overstory similar to our HID burned halves. Our results in HID burned
units are consistent with Dodson and Peterson [68], who found that thinning increased
spatial aggregation of residual trees at fine scales (50–150 m) and that prescribed fire of
different burning intensity further promoted a mosaic of gaps with burned and unburned
trees followed by beetle-related mortality.

The LOD treatment was designed to create open, even-aged stand conditions with
a single-layer canopy consisting of evenly spaced trees [59]. The largest and smallest
trees were removed from these stands for a unimodal diameter distribution only leaving
intermediate-sized trees [32]. Especially within the unburned halves of the treatments,
the long ranges from the semivariograms and the uniform correlograms with few peaks
at greater lag distances suggested that LOD unburned halves consist of a more spatially
homogeneous overstory AGB compared to HID and LOD burned units. Our results
from unburned halves of the LOD units are consistent with [69], who found that after
uniform removal of trees, mixed-conifer stands showed little spatial variation at broad
scales. Similarly little spatial variation in spruce-fir forests was found by Kuehne et al. [70]
when using thinning treatments involving the removal of small and large dominant trees.
Irrespective of both LOD and HID treatments, burned halves consistently showed more
periodicity in overstory AGB, indicating that fire is a key component in enhancing spatial
heterogeneity in overstory AGB.

4.4. Management Implications

Our findings about enhanced spatial variation after post-treatment prescribed burns
are similar to what other studies have reported for dry forests across California (e.g., [7,71]).
Our comparison of spatial variation between reference and contemporary forests provides
a multi-faceted, quantitative approach for evaluating forests over different time periods
with a variety of potential implications. First, the spatial variation of overstory AGB that we
detected in the 1934 reference forests helps portray the types of variation associated with
very few forest management activities (i.e., in the absence of harvest or prescribed burning)
and thus can serve as a useful point of reference for managers. Then, in utilizing the values
of ranges from the semivariograms across time, managers can understand the distance or
scale over which spatial variation in the overstory in contemporary forests have potentially
departed from that of reference conditions. Secondly, it is important to remember that
these reference conditions represent the accumulated overstory stand structures of dry
forests that have been influenced by multiple past disturbances, rather than a condition
at a single point in time. Nonetheless, when examined over time, changes in spatial
heterogeneity can be used to understand and disentangle the fundamental environmental
factors driving forest overstory variation. We were unable to quantify changes in species
composition, because our data from 1934 were not spatially explicit at the individual tree
level. However, in future work the evaluation of species composition changes over time
may reveal different spatial variation than we have detected here in both reference and
contemporary dry forests.

In addition, our comparison of reference and contemporary overstory spatial variation
can help managers to explore the impact of fire exclusion on driving overstory spatial
variation in dry forests [56]. Furthermore, our deeper comparison between reference
conditions and contemporary forests that subsequently received different management
treatments provides information on which treatments are useful in dry conifer forests such
as BMEF for emulating overstory spatial variation in reference conditions. For example,
in managing contemporary forests, treatments similar to HID with prescribed burns that
preserve and/or create patchy spatial variation similar to reference conditions, may be
warranted. Similarly, LOD with prescribed burn may be warranted whenever the goal
of management is to reduce canopy fuel to promote resiliency against fire. In addition,
comparing spatial variation among various management treatments in contemporary
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forests will allow managers to understand the effectiveness of restoration treatments such
as HID with prescribed burns in creating desirable spatial variation for contemporary
dry forests.

5. Conclusions

This study provides a unique opportunity to examine the spatial variation of overstory
stand structure in forest reference conditions using field-collected data as opposed to
using tree size and density variables derived from dendro-chronological reconstructions.
Furthermore, we were able to fill a gap in the literature related to understanding the spatial
variation of overstory above-ground biomass between contemporary and reference forests.

The spatial variation of above-ground biomass in reference conditions described in
this study comes from forests that have minimum human impact following Euro-American
settlement and hence represent a relatively intact dry forest ecosystem. Therefore, knowl-
edge about spatial variation in such intact forests in reference conditions provides insights
into stand development, tree interactions with each other, regeneration, and mortality. Such
information can help guide sustainable forest management in the face of growing natural
environmental disturbances. Our results further indicate that low-severity fire seems to
be key for emulating the mosaic of alternating patches of biomass at regular intervals
throughout these dry forests. Therefore, managers seeking to enhance ecological resilience
are advised to use prescribed burning alone or in combination with treatments that include
some degree of thinning.
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Appendix A. Data Summary

Table A1. Summary of the applied combination of structural diversity treatments and prescribed
burn in various units of BMERP.

Unit Structural Treatments * Treatment Year Prescribed Burn Burn Year # of 1 ha Plots

RNA-A No treatment - Unburned - 55
RNA-B No treatment - Burned 1997 63
RNA-C No treatment - Burned 1997 76
RNA-D No treatment - Unburned - 35
UNIT-39 LOD 1996 Burned 1997 89
UNIT-39 LOD 1996 Unburned - 85
UNIT-40 LOD 1998 Burned 2000 87
UNIT40 LOD 1998 Unburned - 79
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Table A1. Cont.

Unit Structural Treatments * Treatment Year Prescribed Burn Burn Year # of 1 ha Plots

UNIT-43 LOD 1996 Burned 1997 68
UNIT-43 LOD 1996 Unburned - 90
UNIT-44 LOD 1997 Burned 1999 56
UNIT-44 LOD 1997 Unburned - 49
UNIT-45 LOD 1997 Burned 1999 57
UNIT-45 LOD 1997 Unburned - 75
UNIT-38 HID 1996 Burned 1997 87
UNIT-38 HID 1996 Unburned - 93
UNIT-41 HID 1996 Burned 1997 82
UNIT-41 HID 1996 Unburned - 79
UNIT-42 HID 1997 Burned 1999 83
UNIT-42 HID 1997 Unburned - 101
UNIT-47 HID 1997 Burned 1999 59
UNIT-47 HID 1997 Unburned - 48
UNIT-48 HID 1998 Burned 2000 81
UNIT-48 HID 1998 Unburned - 76
Total 1720

* HID: high structural diversity treatment; LOD: low structural diversity treatment; RNA: research natural areas;
# = number.
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Figure A1. Histogram for above-ground biomass (Mg/ha) for 2016 ground data. The red and blue
lines indicate the mean and median, respectively.

Appendix B. LiDAR Point Cloud Processing and Model Building Process

The LiDAR point cloud was processed using the ‘lidR’ package in R [42]. We filtered
duplicates for the overlapping region of the point clouds and then classified the ground
returns [42]. All the ground returns were used to obtain a digital terrain model of 1 × 1 m
grid cell size [42]. The point cloud was normalized by subtracting the digital terrain model
from all returns to remove the influence of terrain on above-ground returns [42]. From
the normalized point cloud, we used the area-based approach [42] to calculate the LiDAR
metrics (Table A2)—hereafter referred to as auxiliary variables—using the ‘cloudmetrics’
function related to the 154 circular ground plots. We also extracted average elevation
(Table A2) for each ground plot in 2016 from a digital elevation model at 1 m resolution
provided by the Pacific Southwest Research Station, Redding, USA, using the zonal statistics
function in ArcMap 10.4.4. [72].
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Table A2. LiDAR-derived and topographic auxiliary variables were used for biomass modeling.

Groups LiDAR Variables Description

Group A

zmean Mean elevation for all first returns above 2 m
zq5 Elevation for first return in 5th percentile
zq10 Elevation for first return in 10th percentile
zq15 Elevation for first return in 15th percentile
zq20 Elevation for first return in 20th percentile
zq25 Elevation for first return in 25th percentile

Group B

zq30 Elevation for first return in 30th percentile
zq35 Elevation for first return in 35th percentile
zq40 Elevation for first return in 40th percentile
zq45 Elevation for first return in 45th percentile
zq50 Elevation for first return in 50th percentile

Group C

zq55 Elevation for first return in 55th percentile
zq60 Elevation for first return in 60th percentile
zq65 Elevation for first return in 65th percentile
zq70 Elevation for first return in 70th percentile
zq75 Elevation for first return in 75th percentile

Group D

zq80 Elevation for first return in 80th percentile
zq85 Elevation for first return in 85th percentile
zq90 Elevation for first return in 90th percentile
zq95 Elevation for first return in 95th percentile
pzmean Percentage of first return above mean
Elev (m) Elevation from digital elevation model @1 m
Treatment × prescribed burn

Appendix C. Model Building, Selection Process, and Biomass Prediction Summary

To avoid over fitting of the model and to have about 10–15 observations per auxiliary
variable, we divided the auxiliary variables into four groups (Table A2, [43,73]). Within
each variable group, following the top-down model-building strategy for glm models
described by Zuur et al. [47], the LiDAR-derived variables and the six treatments—three
structural diversity treatments crossed with two prescribed burn treatments—were used
as fixed effects. A random unit effect was also included in the model [43]. The variables
that were not statistically significant (p-value > 0.05) and had a variance inflation factor
(VIF) of 10 or greater were dropped sequentially [47,74]. The variables that were retained
from each auxiliary variable group were combined into a single model and were retained if
they were statistically significant (p < 0.05) and had VIF < 10 [47,74]. Variables that were
not statistically significant during group-wise selection were brought back into the model
to check if the performance of the combined model improved. The model goodness-of-fit
at each model building step was assessed using a graph showing observed vs. predicted
values (Figure A2) and graphs of the residual deviance [47]. We selected the biomass model
with the lowest AIC and lowest residual deviance (Table A3) as our final model. Our final
model consisted of the mean height for all first returns above 2 m (zmean, p = 1.4 × 10−7),
the height for the first return in the 5th percentile (zq5, p = 0.05), crossed treatments as fixed
effects (p = 0.05), and unit level random effects (Table A3).

The range of predicted values of overstory AGB for the cells was within the range
of the observed values for the circular ground plots (Table A4, Figure A3). The mean
and median predicted values were very close to the mean and median observed values
(Table A4, Figure A3). Overstory AGB predicted within the low structural diversity (LOD)
units was low and consistent with observed overstory AGB (Figure A4). Predicted overstory
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AGB in high structural diversity (HID) units and research natural areas (RNAs) was high
compared to LOD but within the range of observed overstory AGB for HID and RNA units
(Figure A4).

Table A3. Summary of the best-selected models from each auxiliary variable group. Highlighted in
bold is the final model selected for above-ground biomass (Mg/ha) prediction.

Variable Group Model AIC Residual Deviance p-Value

Group A Fixed effects = zmean + zq5 + Treatment × prescribed burn
Random effect = units 1577.9 1557.9

zmean
(p < 0.0001)

zq5
(p = 0.00087)

Group B Fixed effects = zq50+ Treatment × prescribed burn
Random effect = units 1590.01 1572.0 zq50

(p = 0.00034)

Group C Fixed effects = zq75+ Treatment × prescribed burn
Random effect = units 1582.9 1564.1 zq75

(p < 0.0001)

Group D Fixed effects = zq95+ Treatment × prescribed burn
Random effect = units 1581.9 1561.9 zq95

(p < 0.0001)

Final Fixed effects = zmean + zq5 + Elev Random effects =
Treatments × prescribed fire 15,916.6 1577.6

Zmean (<0.001)
Zq5 (<0.001)
Elev (<0.05)
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Table A4. Summary statistics of the observed and predicted overstory above-ground biomass
(Mg/ha) values for circular plots (n = 153) and cells (n = 12,647).

Above-Ground Biomass (Mg/ha) Min Max Mean Median

Observed (Circular plots) 4.33 327.53 101.71 83.48
Predicted
(32 × 32 m cells) 10.33 381.65 101.02 89.03

Forests 2023, 14, x FOR PEER REVIEW  22  of  31 
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Figure A3. Predicted above-ground biomass (AGB, Mg/ha). The predictions were made at the cell
level for overstory AGB and compared with the overstory AGB from the circular ground-truthing
plots. The blue and red lines represent the median and mean of overstory AGB, respectively.
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Figure A4. Predicted above-ground biomass (Mg/ha). The predictions were made using the final
model and LiDAR derived metrics in 2016 at 32 m × 32 m pixel level for high structural diversity
treatments (HID), low structural diversity treatments (LOD), and research natural areas (RNA) within
Blacks Mountain Experimental Forest (BMEF).
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Appendix D. Additional Table and Figures for the Results

Table A5. Summary of root mean squared error (RMSE) and values for the spherical, exponential,
and Gaussian models selected for burned and unburned halves of HID and LOD units.

Unit Fire Model RMSE Sill

Low structural Diversity (LOD)

UNIT-39 Burned Gaussian 0.54 0.86
UNIT-39 Unburned Gaussian 0.71 1.04
UNIT-40 Burned Gaussian 0.72 0.93
UNIT-40 Unburned Gaussian 0.73 1.05
UNIT-43 Burned Spherical 0.75 1.03
UNIT-43 Unburned Spherical 0.74 1.00
UNIT-44 Burned Gaussian 0.64 1.15
UNIT-44 Unburned Gaussian 0.49 0.92
UNIT-45 Burned Gaussian 0.58 1.14
UNIT-45 Unburned Gaussian 0.65 1.07

High structural diversity (HID)

UNIT-38 Burned Gaussian 0.65 0.92
UNIT-38 Unburned Gaussian 0.59 0.87
UNIT-41 Burned Spherical 0.74 0.84
UNIT-41 Unburned Spherical 0.76 0.98
UNIT-42 Burned Exponential 0.74 1.13
UNIT-42 Unburned Exponential 0.73 1.32
UNIT-47 Burned Gaussian 0.63 0.90
UNIT-47 Unburned Gaussian 0.68 2.81
UNIT-48 Burned Gaussian 0.70 0.92
UNIT-48 Unburned Gaussian 0.74 0.88
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Figure A6. Variogram models for low structural diversity units (LOD) in 1934 and 2016.
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Figure A7. Variogram models for high structural diversity units (HID) in 1934 and 2016.
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Figure A8. Moran’s I correlogram for 1934 vs. 2016 within different units under study in Blacks
Mountain Experimental Forest. Dotted lines represent the lower and upper limit of the non-significant
spatial autocorrelation using 95% confidence envelopes for 1934 (red) and 2016 (blue) from Monte
Carlo simulations [56]. Points connected with solid lines indicate Moran’s I at a given lag distance
(m). Points above the dotted lines in the upper part of the envelope indicate a positive Moran’s I
that is significantly different from 0, whereas points below the dotted lines in the lower part of the
envelope show a negative Moran’s I that is significantly different from 0. Points within the dotted
envelope show Moran’s I values that are not significantly different from 0.
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Figure A11. Moran’s I correlograms for burned and unburned halves within different HID and
LOD units in Blacks Mountain Experimental Forest. Dotted lines represent the lower and upper
limit of the non-significant spatial autocorrelation using 95% confidence envelopes for Burned (red)
and Unburned (blue) from Monte Carlo simulations [56]. Points connected with solid lines indicate
Moran’s I at a given lag distance (m). Points above the dotted lines in the upper part of the envelope
indicate a positive Moran’s I that is significantly different from 0, whereas points below the dotted
lines in the lower part of the envelope show a negative Moran’s I that is significantly different from 0.
Points within the dotted envelope show Moran’s I values that are not significantly different from 0.
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