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Abstract: Under the combined impact of climatic, socioeconomic, and environmental factors, the
vegetation NPP change process and its responses to drive factors in the sub-regions of Mainland China
are not clear. This study analyzes the changing pattern of vegetation NPP in China from 2000 to 2022
from the perspective of zoning and clarifies its response mechanism to climate-human interaction
based on the gravity center model, third-order partial correlation coefficient and geographical detector.
The results showed that: (1) There was an overall decreasing trend of vegetation NPP in China from
the southeast to the northwest; (2) The vegetation NPP gravity center in Northeast, Northwest, and
North China migrated southwards, while that of Southwest, Central South, and East China showed
northward migration.;(3) Human activities played a dominant role in zones with increasing vegetation
NPP from 2000 to 2010, while climate change greatly contributed to the increase in vegetation NPP
during 2011–2022; (4) Human activities, such as deforestation and overgrazing, in Northeast and
North China should be reduced to prevent vegetation ecosystem degradation, and the negative
impact of human activities should be reduced to maintain the growth of vegetation NPP. This study
was conducted to support decision-making for the precise restoration of ecosystems.

Keywords: geographic demarcation; spatio-temporal variations; driving mechanisms; dominant
factors; geographical detector

1. Introduction

Net Primary Productivity (NPP) refers to the total amount of organic matter accu-
mulated by green plants per unit area per unit time [1]. Vegetation plays a major role
in terrestrial ecosystems, which can better indicate the changes in regional ecological en-
vironments. To achieve the dual carbon goals, it is particularly important to clarify the
spatial and temporal evolution patterns of vegetation NPP and its response mechanism to
climate–human impacts [2].

Recently, research on vegetation NPP has been further conducted. Many scholars
have conducted a series of studies on the estimation and analysis of vegetation NPP based
on MODIS data [3,4]. Running et al. [5] estimated NPP by considering the difference be-
tween Gross Primary Productivity (GPP) and respiration and solving important ecological
problems on time and space scales. Potter et al. [6] established a Carnegie–Ames–Stanford
Approach (CASA) model to calculate vegetation NPP, aiming to control the seasonal pro-
duction of terrestrial ecosystems and soil microbial respiration patterns associated with
global climate and soil. Field et al. [7] proposed a simple modeling method for global NPP,
which combines ecological principles with satellite data to obtain global estimates with an
operational monitoring resolution. Mowll et al. [8] pointed out that precipitation played
an important role in affecting vegetation NPP. Domestic scholars have conducted many
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studies on the influencing factors and driving mechanisms of vegetation NPP, such as
spatio-temporal change patterns, dominant factors, and driving mechanisms, in different
sub-regions of China [9–13]. Relevant studies have shown there is an increasing trend
of vegetation in China, and the driving mechanisms of changes in NPP are different in
different study areas [14–17].

Previous studies on vegetation NPP in China mainly focused on ecologically fragile
areas. For example, Zhu et al. [18] applied the CASA model to analyze the change patterns
of vegetation NPP in Inner Mongolia. Wang et al. [19] used the Hurst index to analyze NPP
in the Qinling–Daba Mountains during 2000–2015. Yang et al. [20] analyzed the change
patterns of vegetation NPP of Qinghai–Tibet Plateau utilizing a gravity center model [21].
Due to the vast territory of China, scholars have conducted many studies on different
regions. For example, Xu et al. [22] investigated the evolution process and the influencing
factors of different types of vegetation NPP in Southwest China. Li et al. [23] explored the
change process of vegetation NPP in the Yangtze River Basin and its relationships with
topographic factors. Based on the CASA model, Mao et al. [24] found that climate and land
use are important factors affecting the change patterns of vegetation in Northeast China.
Liu et al. [25] found that the NPP of vegetation in the Qinghai–Tibet Plateau is significantly
positively correlated with temperature and precipitation.

The aims of this study are as follows: (1) To reveal the spatio-temporal evolution
patterns of vegetation NPP and its differences in different sub-regions; (2) to systematically
determine and clarify the differences in the dominant factors in different sub-regions from
the perspective of partition; and (3) to explore the changes in the dominant factors during
different historical periods in the same sub-region.

2. Materials and Methods
2.1. Study Area

China is located in the eastern part of Asia, east to the junction of Heilongjiang and the
Ussuri (135◦2′30′′ E), west to the Pamirs (73◦29′59.79′′ E), south to the Cape Zengmuansha
at the southern tip of the Nansha Archipelago (4◦15′00′′ N), north to the center line of the
main channel of Heilongjiang (53◦33′ N), with a total area of 9.6 million km2 (Figure 1).
Its terrain decreases from west to east, showing a three-stage ladder-like distribution.
China has five types of territories based on relief: plateau, mountain, plain, hill, and basin.
Due to its vast land area as well as its large latitude and longitude span, it has formed a
variety of temperature and precipitation combinations, forming a complex and diverse
climate [22]. There are five climate types in China, which include temperate monsoon,
temperate continental, and alpine plateau climates. Yang et al. [26] studied the difference
in plateau climate change in Tibet. Due to the large span of the north–south latitude, the
north–south spatial heterogeneity of temperature is obvious [23]. There are a variety of veg-
etation types, which mainly include grasslands, tropical rainforests, and coniferous forests.
The soil types (WRB) are complex and diverse and include 15 soil types, such as latosol,
latosolic red, and reddish-yellow soils; their distribution varies based on geographical
location and terrain height [27].

2.2. Data Source and Preprocessing

NPPs that were derived from the MODIS17A3H dataset were available at https://
ladsweb.nascom.nasa.gov/ (accessed on 21 January 2023), with temporal and spatial resolu-
tion resolutions of 1 year and 500 m. The MRT (MODIS Reprojection Tool) tool was utilized
to reproject and format the vegetation NPP data. The climate data came from the China
Meteorological Data Network (http://data.cma.cn/ (accessed on 24 January 2023)), which
included daily precipitation, daily average temperature, accumulated temperature (sum of
temperatures greater than 10 ◦C), and sunshine data. Because kriging interpolation may
cause interpolation errors compared with traditional methods, the difference result is more
accurate. These datasets were interpolated into 1 km grids using ArcGIS 10.7 (Environmental
Systems Research Institute, Inc., Redlands, CA, USA). Land use, socioeconomic (population
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density and GDP), and geographic partition data were retrieved from http://www.resdc.cn/
(accessed on 21 January 2023). The elevation and slope data were extracted from SRTM 90 m,
which was downloaded at http://www.Gscloud.cn (accessed on 23 January 2023). Based on
the Arcgis10.7 Clip tool for cutting, the abnormal values for the vegetation NPP data were
removed, resampled to 1 km, and projected to a Krasovskii projection. The related driving
factors and references are shown in Table 1. The soil distribution map, temperature and
precipitation distribution map selected by driving factors are shown in Figures 2 and 3.
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2.3. Methods

Most of the research is based on one partition, and few studies are based on different
partitions. This study focuses on these differences, which are of great significance to
protecting ecosystems according to local conditions. In addition, against the backdrop
of global climate change, the dominant factors in the change process of vegetation NPP
have also changed. It is not clear how the evolution mechanisms of vegetation NPP
varied across different periods and ecological sub-regions. The related research is mostly
based on the driving mechanisms of temperature, precipitation, population, and other
factors [24,25,28,29]. Based on the research status, most relevant research has selected
these data; in the size of the influence of the driving factors, these factors can well explain
the reasons for the change. A series of ecological and environmental problems caused
by climate change, such as air pollution and dust storms, are not only troubled. People’s
lives have also had a negative impact on industrial production, which has hindered the
sustainable development of the social economy to a certain extent. Therefore, it is of
scientific significance to understand and understand the impact of climate change on
vegetation. Therefore, this study selects two climatic factors (temperature and precipitation),
two social factors (population density and Gross Domestic Product), and two geographical
factors (altitude and slope).

Moreover, previous studies mostly applied second-order partial correlation to explore
the effects of different climatic factors on vegetation NPP but ignored the comprehensive
and interactive effects of regional multi-type climatic factors. In the past, partial correlation
analysis was mostly based on single factor and double factors. In this paper, third-order
partial correlation analysis is used as an innovation point, which allows for comprehensively
considering the complex effects of three factors on the evolution of vegetation, thereby
more truly reflecting ecological processes.

Geodetectors detect the spatial stratification heterogeneity of elements and reveal
the driving forces behind them [30], thus making it advantageous for exploring driving
mechanisms across different partitions. In this study, we utilized a Geodetector, third-
order partial correlation analysis, and a gravity center model to analyze the change pro-
cess of vegetation NPP in China from the perspective of partitions. The relative role of
climate–human interactions during different historical periods was quantitatively distin-
guished, and the dominant factors of changes in vegetation NPP across different sub-regions
and historical periods were revealed. The effects of global change on Chinese vegetation
NPP response mechanisms were clarified, which provides support for important decisions
regarding the restoration of regional vegetation ecosystems.

The process was mainly divided into three parts: The first part was data preprocessing.
The NPP, climate, land (land use, soil type), and socioeconomic (GDP, population density)
datasets were preprocessed via kriging interpolation (Co-Kriging), re-projection, and clip-
ping. The second part was the analysis of the spatio-temporal change process. Spatial
distribution analysis was carried out from the perspective of mean distribution, different
levels of vegetation NPP transfer scenarios, and mean comparative analysis. The analysis
of temporal evolution was conducted from the perspective of gravity center migration. The
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third part was the analysis of the driving mechanisms. The driving factors were explored
using a geographic detector. A flow chart of this study is presented in Figure 4.
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2.3.1. Gravity Center Model

In physics, the gravity center refers to a point in a certain space where forces in
all directions reach phase equilibrium [31]. Two common barycenter models are the
quality gravity center model and the ecological gravity center model. The gravity mass
center model is mainly used to describe the mass distribution, while the ecological gravity
center model is suitable for describing the spatial distribution of biological communities or
ecosystems. In addition, the gravity center model has also been widely applied in life, land
use, and other fields. The migration trajectory and direction of the gravity center can directly
indicate the change unevenness and the bias of certain phenomena from the perspective of
spatial distribution [15,18,26]. Moreover, as typical geophysical and ecological indicators,
there were obvious differences in change patterns for vegetation NPP across different
periods and sub-regions. However, traditional statistical methods cannot reveal the laws
governing changes in temporal and spatial distribution on a large scale [16]. Meanwhile,
the migration distance and direction of vegetation NPP gravity center can indicate the
increments and growth rate of vegetation NPP in different parts within the study region.
The gravity center model can be applied to investigate the variation characteristics of
vegetation NPP. The center of gravity model [32] is a mature tool in ArcGIS software with
the following formulae:

x =

n
∑

i=1
zixi

n
∑

i=1
zi

(1)

y =

n
∑

i=1
ziyi

n
∑

i=1
zi

(2)
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where (x, y) is the barycenter coordinates, zi is the attribute value of the i-th plane space
element, and (xi, yi) is the attribute value of the i-th plane space element.

2.3.2. Third-Order Partial Correlation Coefficient and Significance Test

A correlation coefficient represents the degree of correlation between different ele-
ments [33]. The Pearson correlation coefficient was applied to analyze the correlation
between vegetation NPP and typical climatic factors and their significance level. Because a
first-order partial correlation coefficient can only control one variable, a high-order partial
correlation coefficient can reflect the correlations between vegetation NPP and multiple
variables. Therefore, this study utilized a third-order partial correlation coefficient to ex-
plore the correlations between climate variables and vegetation NPP at the p < 0.05 and
p < 0.01 confidence levels. The formula can be expressed as follows:

rx,y =

n
∑

i=1
(xi − x)(yi − y)√

n
∑

i=1
(xi − x)2 n

∑
i=1

(yi − y)2

(3)

In the formula, rx,y denotes the correlation coefficient (rxy1 , rxy2 , and ry1y2 are similar)
between variables x and y, where a positive value denotes a positive correlation; conversely,
xi and yi represent the values of the two variables in year i. rxy1,y2 represents the partial
correlation coefficient of x and y1 in the case of the control variable y2.

When controlling multiple variables, there are high-order partial correlation coeffi-
cients. The formula can be expressed as follows:

rxy,y1y2 ...yg =
rxy,y1y2 ...yg−1 − rxyg ,y1y2 ...yg−1 ryyg ,y1y2 ...yg−1√

1− r2
xyg ,y1y2 ...yg−1

√
1− r2

yyg ,y1y2 ...yg−1

(4)

2.3.3. Climate–Human Interaction Distinction

The Miami model proposed by H. Lieth [34] is a widely used model to calculate
potential vegetation NPP, and it can be expressed as follows:

NPPc = min{(1 + 3000
exp(1.315− 0.119T)

), 3000[1− exp(−0.000664P)]} (5)

In the formula, NPPc refers to potential NPP (gC·m−2·a−1); T refers to the average
annual temperature (◦C); and P refers to annual precipitation (mm).

Vegetation NPP is always influenced by the combined actions of climate–human
activities. The residual method has been widely used to separate human-affected NPP
from actual NPP [35]. Based on the residual method, NPP affected by human activities was
calculated. Meanwhile, the change slope of the potential NPP was calculated to distinguish
climate–human interactions according to the positive and negative slopes. This can be
expressed as follows:

NPPh = NPPa −NPPc (6)

In the formula, NPPh is the human-influenced NPP, NPPa is the actual NPP, and NPPc
is the potential NPP. If NPPh < 0, this indicates that human activities inhibit the increase in
NPP. If NPPh > 0, this indicates that human activities promote an increase in NPP.

The formula to calculate the variation in vegetation NPP is as follows [36]:

∆NPP = (n− 1)× Kslope (7)

where n represents the study time scale, and Kslope is the change slope of NPP.
Based on the slope of NPPa, NPPc, and NPPh, six scenarios were established to assess

the relative contributions of climate-human to NPP change, as shown in Table 2:
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Table 1. Different types of index references and contributions.

Index Factor References

Climate
Annual precipitation, average
temperature, accumulated
temperature, and sunshine [8,9,25,30,32,36]

Terrain Slope and altitude

Social development Population density and GDP

Table 2. Six scenarios involving the contribution of human–climate interactions to the change in
vegetation NPP.

NPPa
Status Scenario Kc Kh

Climate Change
Contribution Ratio

Human Activity
Contribution Ratio

Increased
NPPa

(Ka > 0)

Scenario 1 Kc > 0 Kh < 0 100 0
Scenario 2 Kc < 0 Kh > 0 0 100
Scenario 3 Kc > 0 Kh > 0 |∆NPPc |

|∆NPPc |+|∆NPPh |
|∆NPPh |

|∆NPPc |+|∆NPPh |

Reduced
NPPa

(Ka < 0)

Scenario 4 Kc < 0 Kh > 0 100 0
Scenario 5 Kc > 0 Kh < 0 0 100
Scenario 6 Kc < 0 Kh < 0 |∆NPPc |

|∆NPPc |+|∆NPPh |
|∆NPPh |

|∆NPPc |+|∆NPPh |

In Table 2, Ki represents the slope of NPPi, where i = a, b, h.

2.3.4. Geodetector

The Geodetector model can determine a factor’s contribution rate to vegetation NPP,
which is measured by its q-value [37]. The greater the value is, the greater the impact of
this factor on NPP is, and vice versa. In this study, temperature, precipitation, population
density, GDP, altitude, slope, land use, and soil type were selected, and the q-values of
different factors were calculated via the Geodetector model to reveal the influences of
different factors on vegetation NPP [28].

q = 1−

L
∑

h=1
Nhσh

2

Nσ2 = 1−SSW
SST

(8)

SSW =
L

∑
h=1

Nhσh
2 (9)

SST = Nσ2 (10)

In the formula, h = 1, ..., L represents the classification of variable Y or factor X; Nh
and N are the layer h and the number of pixels units in the whole region; σh the variance
in the Y value produces the class h, which is the variance in the Y value of the whole
region; SSW and SST are the sum of intra-layer variance and the total variance in the whole
region, respectively.

2.3.5. Uncertainty Estimation Approaches

Uncertainty means that the potential and possible results of things cannot or cannot
make full use of reasonable and known probability distribution to objectively analyze and
characterize, and cannot subjectively analyze and estimate the results. The uncertainty of
water resources caused by climate change is difficult to estimate and analyze based on the
known probability distribution or subjectively. Therefore, quantitative estimation of the
uncertainty of water resources caused by climate change from various aspects can help to
understand the uncertainty of water resources.
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3. Results
3.1. Spatial Distribution Characteristics of Vegetation NPP

The mean vegetation NPP during 2000–2022 was calculated to analyze its spa-
tial distribution. Figure 5 showed that vegetation NPP in China ranged from 0 to
1933 gC·m−2·a−1. By using ArcGIS 10.7, the vegetation NPP was divided into five grades:
level I (<200 gC·m−2·a−1), level II (200–400 gC·m−2·a−1), level III (400–600 gC·m−2·a−1),
level IV (600–800 gC·m−2·a−1), and level V (>800 gC·m−2·a−1, as shown in Appendix A,
Figure A1). The level V region accounted for the smallest proportion (only 12.54%), which
was mostly located in the southern parts, including Guangdong Province, Guangxi, and
Yunnan Province. The level IV region accounted for 13%, being mostly located in the
central and southern regions, including Guizhou Province and Zhejiang Province. The
level III region accounted for 25%, which was mostly located in the central parts, including
Shaanxi Province and Anhui Province. The level II region accounted for 25.94%, being
distributed in northeast Tibet. The level I region accounted for 25.00%, mainly distributed
in the central and western regions, including the foothills of the Tianshan Mountains and
Qinghai Province. Overall, the mean vegetation NPP gradually increased from north to
south and from west to east.
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3.2. Spatial Distribution of Vegetation NPP

To reveal the changes in the different levels of vegetation NPP across different
periods, we divided this study into two periods: 2000–2010 and 2011–2022, as shown in
Appendix A Figure A2 and FigureA3.

Appendix A Figure A2a and FigureA3a showed that from 2000 to 2010, zones with lev-
els II and III accounted for the largest proportion at 36.56%, which were mainly distributed
across the Weihe Plain, Lesser Khingan, southern Henan, and northern Anhui. Secondly,
zones with level I converted to zones with level II accounted for 28.06%, mostly concen-
trated in eastern Inner Mongolia, northern Shaanxi, and southern Qinghai Province. Areas
comprising moderate to severe lushness accounted for 15.41%, being mainly distributed
in southern Shaanxi, western Hunan, and southern Guangxi. During 2000–2010, zones
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with levels I and II to zones with levels III, IV, and V had the largest area, indicating that
vegetation NPP showed an overall increasing trend.

Appendix A Figure A2b and FigureA3b showed that from 2011 to 2022, in the area
where the vegetation NPP level changes, the area transferred from zones with level II to
zones with level III accounted for the largest proportion, comprising 34.90%, which was
mainly distributed in the Changbai Mountains, Shanxi Province, and western Shandong.
The area transferred from zones with level III to zones with level IV accounted for 20.42%,
mostly distributed in the Sichuan Basin and the Liaodong Peninsula. The area transferred
from zones with level IV to zones with level V accounted for 16.45%, being mostly located
in the western part of Guizhou, the central part of Hubei, and the junction of Heilongjiang
and eastern Jilin. During 2011–2022, the area of zones with level II to zones with levels III,
IV, and V accounted for the largest proportion, indicating that the overall NPP of vegetation
showed an increasing trend. Overall, the vegetation NPP showed an increasing trend
during 2000–2022.

Appendix A Figure A4 and FigureA5 showed that from 2000 to 2010, the average NPP of
vegetation in China ranged from 0 to 1959 gC·m−2·a−1. The area proportion of level I was the
largest, comprising 40.5%, which was mostly concentrated in the Qinghai–Tibet Plateau, Inner
Mongolia, and other regions. Level V zones accounted for 3.2%, being mainly distributed
in southern China, such as southern Fujian Province and the Guangxi Zhuang Autonomous
Region. The area proportion of level III zones was 21.6%, being mostly concentrated in central
and southern China, such as the Sichuan Basin and Hunan Province. Appendix A Figure A4
shows that the average annual NPP of vegetation in China from 2011 to 2022 had a similar
trend to the average NPP of vegetation from 2000 to 2010. The difference is that the proportion
of level I and level II zones decreased, and the proportion of level III zones and above had
increased. When combined with our quantitative analysis in Appendix A Figure A5, in 2000–
2010 and 2011–2022, we found that level I zones accounted for 40.5% and 38.4%, respectively,
and the level V zones accounted for 3.2% and 3.6%, respectively.

3.3. Gravity Center Migration of Vegetation NPP

In order to explore the discreteness and bias of vegetation NPP distribution in the
study area [38], the gravity center model was utilized to analyze the migration trend of
vegetation NPP gravity center from 2000 to 2022 (Figure 6). In the polar coordinate system,
the distance (polar diameter) and deflection angle (polar angle) of the gravity center of
NPP from 2000 to 2022 were calculated to reflect its dynamic migration (Table 3).
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Table 3. The standard deviation ellipse parameters of vegetation NPP in six sub-regions 2000 to 2022.

Standard Deviation
Ellipse Parameters

Northeast
China East China North China Northwest

China
Southwest

China
Central South

China

Rotating angle (◦) 170.61 167.46 21.81 114.63 72.35 7.17
Standard deviation along

x-axis (km) 8.317 3.068 7.702 48.940 14.128 3.532

Standard deviation along
y-axis (km) 19.194 18.925 34.859 10.548 6.201 19.735

Ellipse area (km2) 501.510 182.429 843.525 1621.792 275.257 219.001

The vegetation NPP gravity centers in Northeast China are mostly located in Acheng
City and Heilongjiang Province (Figure 6(a1,a2)). The ellipse angle was 170.617◦, and
the gravity centers showed a northwest–southeast distribution pattern. The ellipse area
was 501.510 km2 (Table 3). Under the polar coordinates, the northern half of the gravity
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center (northwest and northeast quadrants) accounted for 56% of the total gravity centers,
indicating that the vegetation NPP increments in the northern half were greater than
that of the southern half. The western half of the gravity center (northwest and southwest
quadrants) accounted for 56%, indicating that the vegetation NPP increments in the western
half were greater than that of the eastern half.

The vegetation NPP gravity centers in East China are mostly distributed in Kaihua
County, Quzhou City, and Zhejiang Province (Figure 6(b1,b2)). The standard deviation
ellipse angle was 167.459◦, which was significantly different from that of Northeast China
(170.617◦), showing a northwest–southeast distribution pattern. The standard deviation
ellipse area of 182.429 km2 was the smallest among the six distribution areas. The standard
deviations were 3.068 km and 18.925 km along the x- and y-axes, respectively. In 2001, the
gravity centers deviated the farthest (29.651 km) from the origin, distributed at the southern
end, indicating that, in 2001, the vegetation NPP increments were more significant in the
corresponding area.

The vegetation NPP gravity centers in North China were concentrated in Keshiketeng
Banner, Chifeng City, and Inner Mongolia (Figure 6(c1,c2)). The ellipse angle was small
(21.81◦), showing a northeast–southwest distribution pattern. The standard deviation
ellipse area was large, indicating that the gravity center distribution in North China was
more discrete. Approximately 56% of the gravity centers were distributed in the north.

The vegetation NPP gravity centers in Northwest China were mainly distributed
in Gangcha County and Haibei Tibetan Autonomous Prefecture, with a standard de-
viation ellipse angle of 114.625◦, showing a northwest–southeast distribution pattern
(Figure 6(d1,d2)). The area of standard deviation ellipse was the largest, at 1621.429 km2.
The distribution was the most discrete. The gravity center was the farthest from the origin
in 2001, with a distance of 70.931 km, indicating that, in 2001, the increase in vegetation
NPP was more significant in the corresponding area. In the polar coordinate system, the
distribution of the gravity centers in the north–south direction was relatively uniform.
Most of the gravity centers were distributed in the northwest quadrant, indicating that the
vegetation NPP increments in the northwest were greater than those in the southeast.

The vegetation NPP gravity centers in Southwest China were concentrated in Yanyuan
County and Liangshan Yi Autonomous Prefecture, with a deflection angle of 72.350◦

(Figure 6(e1,e2)). The area of standard deviation ellipse was 275.257 km2, and the dispersion
degree was not large. According to the polar coordinate image, 2006 and 2015 had the
farthest distances from the origin, at 18.857 km and 22.432 km, respectively, indicating that
the vegetation NPP changed considerably in the corresponding area. Moreover, 2009 and
2012 had the smallest distances from the origin, at 3.412 km and 1.595 km, respectively,
indicating that the vegetation NPP changed slightly in the corresponding area.

The vegetation NPP gravity centers in the central and southern regions were con-
centrated in Dong’an County and Yongzhou City, with a north–south spatial distribution
(Figure 6(f1,f2)). The standard ellipse angle was 7.17◦, and the standard ellipse area was
small, indicating that its dispersion was small. The long axis of the standard deviation
ellipse was 19.735 km in the north–south direction, and the short axis was 3.532 km in the
east–west direction. The ratio was 5.59, indicating that the dispersion in the north–south
direction was greater than that in the east–west direction. From the polar coordinates, it can
be observed that the gravity centers in the northern quadrant had the largest proportion of
65%, indicating that the vegetation NPP increments in the northern half were higher than
that in the southern quadrant. From the perspective of distance, in 2000 and 2001, it was
far from the origin, and the distances were 27.237 km and 39.186 km, respectively, indi-
cating that the vegetation NPP increased significantly in the corresponding areas in these
two years. In 2006 and 2007, it was close to the origin, and the distances were 3.08 km and
0.69 km, respectively, indicating that the vegetation NPP did not fluctuate much.

Figure 7a shows that the vegetation NPP gravity centers in Northeast China showed a
migration trend of southeast–northwest–northeast–southwest from 2000 to 2022. From 2001
to 2005, the gravity center shifted to the southeast compared with that of 2000, indicating
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that the vegetation NPP increments in the south were greater than those in the north. The
vegetation NPP gravity center from 2006 to 2010 and 2011 to 2015 shifted to the northwest
compared with that of 2001–2005, indicating that the increments of vegetation NPP in the
northwest were greater than those in the southeast during the study periods. From 2016
to 2020, the gravity center shifted slightly to the northeast, indicating that the growth and
increments of vegetation NPP in the northeast were greater than those in the southwest.
From 2021 to 2022, the vegetation NPP gravity center shifted significantly to the southwest,
indicating that the growth and increments of vegetation NPP in the southwest were greater
than those in the northeast. On the whole, the vegetation NPP gravity center showed
a trend of rotating from north to south to north and then moving south. However, the
distance moving south was greater than that moving north, which indicates that the growth
rate and increments in the south of Northeast China in the past 23 years were greater than
those in the north.
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Figure 7b shows that the gravity center migration trajectory of vegetation NPP in East
China showed a trend of moving northwestward. During 2001–2005 and 2006–2010, the
northwest migration distances were the largest, at 18.312 km, indicating that the growth
rate and increments of vegetation NPP in the northwest direction were the largest during
this period. During 2006–2010 and 2011–2015, the migration distances of the gravity
center of vegetation NPP were the smallest, at 0.768 km, indicating that the growth rate
and increments of vegetation NPP in the northwest direction were the smallest during
this period.

Figure 7c shows that the vegetation NPP gravity centers in Southwest China moved
northeastward in the first three periods and then moved northwestward in the last two peri-
ods. The five periods are 2000→2001–2005, 2001–2005→2006–2010, 2006–2010→2011–2015,
2011–2015, and 2016–2020→2021–2022. During 2006–2010 and 2011–2015, the migration dis-
tances were the largest, at 13.914 km, but the migration angle to the northeast was smaller,
indicating that the growth rate and increments of vegetation NPP in the northeast direction
were greater than those in the southwest direction during this period. During 2011–2015
and 2016–2020, the migration distances were the smallest, at 2.615 km. Overall, the gravity
centers of vegetation NPP in Southwest China moved to the northeast, indicating that in
the past 23 years, the increments of vegetation NPP in the northeast parts were greater than
those in the southwest parts.

Figure 7d shows that the migration trajectory of the gravity centers in Northwest
China was relatively complex. In 2001–2005, the vegetation NPP gravity center moved
to the northeast. During 2001–2005 and 2006–2010, the gravity centers moved to the
southeast, with the largest migration distance of 37.198 km, indicating that the vegetation
NPP increments in the southeast parts were more significant. During 2011–2015 and
2016–2020, the gravity centers shifted to the northwest, and the migration distance was the
shortest at 12.663 km, indicating that the increments and growth rate of vegetation NPP in
the northwest parts were larger than those of other regions. Overall, the vegetation NPP
gravity center moved to the southeast, indicating that the vegetation NPP increments and
growth rate in the southeast parts were greater than those in the northwest parts.
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Figure 7e shows that in 2001–2005, the gravity center of North China migrated to the
southeast, with the largest migration distance of 26.884 km, indicating that the vegetation
NPP increments in the southeast parts were higher than those in other parts. During
2001–2005 and 2006–2010, the gravity centers migrated to the southwest, with the smallest
migration distance of 2.261 km, indicating that the vegetation NPP increments in the
southwest parts during 2006–2010 were smaller than those in other years. Overall, the
gravity center of vegetation NPP in North China showed a trend of moving southward.

Figure 7f showed that the change in vegetation NPP in the central and southern regions
had a strong circuitry and complex change state. During 2000–2005, the gravity centers of
vegetation NPP migrated to the northeast, with the largest migration distance of 18.837 km,
and during 2001–2005 and 2006–2010, it moved to the northwest. During 2006–2010 and
2011–2015, 2011–2015 and 2016–2020, as well as 2016–2020 and 2021–2022, there was a
trend of circuitous change. During 2006–2010 and 2011–2015, the gravity centers moved to
the southwest, with the smallest migration distance of 1.488 km. During 2011–2015 and
2016–2020, the gravity center moved to the northwest. During 2016–2020 and 2021–2022,
the gravity centers continued to move to the southwest. During the period from 2000 to
2022, the migration trajectory of the gravity center showed a trend of northeast–northwest–
southwest–northwest–southwest. Overall, the vegetation NPP gravity center moved to
the northeast.

3.4. Quantitative Discrimination of Climate–Human Effect on Vegetation NPP

The combined effects of climate-human interactions on vegetation NPP are examined
through six scenarios. These six development scenarios were defined as areas with an
increase in vegetation NPP via climatic change, human activities, and combined effects, as
well as areas with a decrease in vegetation NPP via climatic change, human activities, and
combined effects (Tables 3 and 4; Appendix A Figure A6).

Table 4. The area proportion of zones affected by climate–human interactions on vegetation NPP.

Relative Action Zone Percentage (%)
2000–2010

Percentage (%)
2011–2022

NPP increased (climatic change) 23.87 36.03
NPP increased (human activities) 39.92 26.99
NPP increased (combined effects) 16.11 11.88
NPP decreased (climatic change) 12.89 9.09
NPP decreased (human activities) 5.00 14.29
NPP decreased (combined effects) 2.21 1.72

From 2000 to 2010, zones with human activities that promoted an increase in vegetation
NPP had the largest proportion, comprising 39.92%, which was mainly distributed in
Ningxia Hui Autonomous Region, Henan Province, and the junction of Heilongjiang
Province and eastern Jilin Province. Zones with a reduction in vegetation NPP caused by
combined effects had the smallest area, accounting for 2.21%, which was mainly distributed
at the junction of Guangdong Province, Zhejiang Province, and Anhui Province. Overall,
during 2000–2010, the proportion of areas with increased vegetation NPP was greater than
that of areas with decreased vegetation NPP. From 2011 to 2022, zones with climate-change-
promoted increases in vegetation NPP accounted for 36.03%, being mostly concentrated in
Heilongjiang Province, Yunnan Province, Gansu Province, and southern Qinghai Province.
Zones with a reduction in vegetation NPP caused by combined effects had the smallest
area, accounting for 1.72%.

In contrast, among areas with an increase in vegetation NPP, zones with climate-
change-promoted increases in vegetation NPP expanded significantly, while areas that
underwent human-activity-promoted increases in vegetation NPP decreased significantly.
These change areas were mainly distributed in Sichuan Province, Yunnan Province, Guizhou
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Province, and Heilongjiang Province. For areas with a reduction in vegetation NPP, the
proportion of zones with a reduction caused by human activities increased significantly.

We divided the climate-human contribution rate to the increase in vegetation NPP
in the study area into five equal intervals: 0%–20%, 20%–40%, 40%–60%, 60%–80%, and
80%–100%. Firstly, 0%–20% indicates that the change in vegetation NPP (increase or de-
crease) was almost unaffected by human activities or climate change. Secondly,
20%–40% indicates that the change in vegetation NPP was slightly affected by human
activities or climate change. Thirdly, 40%–60% indicates that the change in vegetation
NPP was moderately affected by climate change or human activities. Fourthly, 60%–80%
indicates that the change in vegetation NPP was strongly affected by climate change or
human activities. Finally, 80%–100% indicates that the change in vegetation NPP was
almost entirely affected by climate change or human activities (Appendix A Figure A7).

Figure 8 shows the region wherein climate change promoted an increase in vegetation
NPP in 2000–2010, which was mainly distributed in North China (Figure 8a,b). In terms
of climate change, the proportion of area with contribution rates greater than 80% was
the largest, comprising 67.57%, which was mainly distributed in Heilongjiang Province,
western Jilin Province, Shandong Province, Hebei Province, Anhui Province, eastern Qing-
hai Province, and northern Shanxi Province. Zones with a contribution rate between 20%
and 40% had the smallest area, accounting for only 7.84%. Figure 8b and Appendix A
Figure A7 showed that during 2000–2010, zones with an increase in vegetation NPP pro-
moted by human activities were mainly distributed in southern China, and zones with
contribution rates greater than 80% accounted for the highest proportion (77.29%), which
were mainly in Guizhou Province, Sichuan Province, Henan Province, Yunnan Nasheng,
Hubei Province, and eastern Inner Mongolia. Zones with contribution rates of 0%–20% and
60%–80% accounted for only 5.60%.
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Figure 8. The spatial distribution of the contribution rate of climate–human interactions to the
increase in vegetation NPP across different historical periods. (a) Climate change (2000–2010);
(b) human activities (2000–2010); (c) climate change (2011–2022); (d) human activities (2011–2022).
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From 2011 to 2022, climate change contributed 36.03% of the increase in vegetation
NPP (Figure 8c,d). In terms of climate (Figure 8c), zones with contribution rates of 80–100%
accounted for the largest proportion, comprising 79.78%, which were mainly distributed in
Heilongjiang, Yunnan, Guangdong, Jiangsu, and Ningxia. Zones with contribution rates of
0%–20% had the smallest area proportion, comprising 4.22%. In terms of human activities
(Figure 8d), zones with increases in vegetation NPP promoted by human activities were
distributed in inland China, such as the patch areas formed by Shandong Province, Fujian
Province, and Zhejiang Province; the Qinghai–Tibet Plateau; and the junction of Qinghai
Province and Ningxia Hui Autonomous Region. From the perspective of contribution
levels, zones with contribution rates of 80%–100% accounted for the largest proportion, at
74.65%, which were mainly located in each patch area, followed by zones with contribution
rates of 40%–60%, accounting for 7.12%, which were mainly distributed at the junction of
Shanxi Province and Inner Mongolia Autonomous Region.

Areas with a reduction in vegetation NPP caused by climate–human interaction are
less extensive than areas with an increase in vegetation NPP, accounting for only 20.1%
(Figure 9 and Appendix A Figure A8). In terms of climate change (Figure 9a), zones with
contribution rates of 80%–100% had the largest area proportion, comprising 88.17%, which
was mostly located in the southern part. The reduction in vegetation NPP caused by
human activities was mostly located in the middle of the study area, such as the junction
of Anhui Province and Zhejiang Province, southern Qinghai Province, and central and
western Tibet (Figure 9b). Zones with contribution rates of 80%–100% accounted for the
highest proportion, at 74.54%, which was mainly distributed in Guangdong and Guangxi.
Zones with vegetation NPP decreases induced by climate change had larger areas than
those caused by human activities. Our comprehensive analysis showed that the decrease in
vegetation NPP during 2000–2010 was mainly related to climate change.
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Areas with reduced vegetation NPP accounted for 25.1%, which was smaller than
areas with increased vegetation NPP (Figure 9c,d). In terms of climate change (Figure 9c),
zones with contribution rates of 80%–100% accounted for the largest proportion, at 86.81%,
being mostly located in the southern part of the study area, such as the Tibet Autonomous
Region, Jiangxi Province, and Hubei Province. Zones with contribution rates of 60%–80%
were mostly located in the northern parts, accounting for only 2.80%. In terms of human
activities (Figure 9d and Appendix A Figure A8), zones with contribution rates of 80%–100%
accounted for the largest proportion, at 92.05%, which were mainly distributed across all
provinces and cities. Zones with contribution rates of 0%–20% accounted for the smallest
proportion, comprising only 1.78%.

3.5. Dominant Factors Influencing the Evolution of Vegetation NPP in Different Sub-Regions with
Time Changes
3.5.1. Third-Order Partial Correlation Analysis

To further explore the correlations between vegetation NPP and climatic factors (ac-
cumulated temperature, sunshine, precipitation, and temperature) from 2000 to 2022, a
third-order partial correlation coefficient was used to explore the relationships between
vegetation NPP and climatic factors (Figure 10).
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Figure 10. A partial correlation analysis distribution map and a significance test distribution map of
vegetation NPP and climatic factors. (a) Vegetation NPP is partially correlated with accumulated tem-
perature; (b) a significance test of vegetation NPP and accumulated temperature; (c) vegetation NPP
is correlated with sunshine; (d) a significance test of vegetation NPP and sunshine; (e) vegetation NPP
is partially correlated with precipitation; (f) a significance test of vegetation NPP and precipitation;
(g) vegetation NPP is partially correlated with air temperature; (h) a significance test of vegetation
NPP and temperature.

The third-order partial correlation coefficient between vegetation NPP and accumu-
lated temperature ranged from −0.916 to 0.967. The positive correlation area accounts
for 56.93%, which was mainly distributed south of the Yellow River and north of the
Yangtze River, such as Henan Province, Shandong Province, and other regions (Figure 10a).
Zones with negative correlation accounted for 43.06%, being mainly distributed in Jilin,
Liaoning, and Tibet Autonomous Region. Figure 10c showed that the partial correlation
coefficient between vegetation NPP and sunshine ranged from −0.953 to 0.940, of which
the positive correlation area accounted for 47.76%, which was mostly concentrated in the
northern part, such as Inner Mongolia, Loess Plateau, and northern Heilongjiang Province.
Zones with negative correlation accounted for 52.24%, mainly concentrated in the southern
part, such as Hunan Province and Guizhou Province. As shown in Figure 10e, the partial
correlation coefficient between vegetation NPP and precipitation ranged from −0.954 to
0.974, of which the positive correlation area accounted for 71.67%, being mostly located in
the northern parts, such as Inner Mongolia Autonomous Region, Heilongjiang Province,
Shandong Province, and other regions. Zones with negative correlations accounted for
28.33%, which were mainly distributed in southern China, such as Fujian Province, Jiangxi
Province, Hunan Province, and Guizhou Province. Figure 10g showed that the partial
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correlation coefficient between vegetation NPP and temperature was between −0.962 and
0.922, of which the positive correlation area accounted for 64.45%, being mainly distributed
in the northern parts. Zones with negative correlations accounted for 35.55%, which
were mainly distributed in southern China, such as Anhui, Zhejiang, Jiangsu, Fujian, and
Hainan provinces.

Areas with extremely significant positive correlations between vegetation NPP and
accumulated temperature accounted for 3.34%, and most of these areas were located in the
Three-River Source Region. Areas with significant positive correlations accounted for 6.47%,
most of which were located in the surrounding areas with significant positive correlations
(Figure 10b). Zones with extremely significant negative correlations (p < 0.01, R < 0)
accounted for only 1.15%, being mostly concentrated in the central and eastern parts of Inner
Mongolia. Zones with significant negative correlations (p < 0.05, R < 0) accounted for 4.16%,
which were mostly distributed in the Sichuan Basin, Qinghai–Tibet Plateau, and Songhua
River–Nenjiang–Mudanjiang River Basin. According to Figure 10d, zones with extremely
significant positive correlations in the partial correlation coefficient between vegetation
NPP and sunshine accounted for 2.21%, which were mainly concentrated in Inner Mongolia.
Zones with significant positive correlations accounted for 5.63%, and surrounding areas
had extremely significant positive correlations. Zones with extremely significant negative
correlation (p < 0.01, R < 0) had the smallest area proportion, at 1.97%, which were mainly
distributed in internal areas with significant negative correlations. Zones with extremely
significant positive correlation between vegetation NPP and precipitation partial correlation
coefficient accounted for the largest proportion, comprising 16.94% in the significance level
test (Figure 10f), being mainly distributed in North China, such as eastern Inner Mongolia,
Loess Plateau, the Songhua River–Nenjiang River Basin, northern Hebei, and northwestern
Shanxi. Zones with significant positive correlations accounted for 12.64%, mostly located
in the surrounding areas with extremely significant positive correlations. Areas with
significant negative correlations (p < 0.05, R < 0) accounted for 2.63%, which were scattered
in southern China. Zones with extremely significant negative correlations (p < 0.05, R < 0)
had the smallest area, accounting for only 0.96%. The zones with extremely significant
positive correlations between vegetation NPP and temperature partial correlation coefficient
accounted for 2.32% (Figure 10h), being widely distributed in northern Inner Mongolia,
eastern Heilongjiang, Sichuan Basin, and the junction of Tibet Autonomous Region and
Qinghai Province. Zones with significant positive correlations accounted for 7.74% and
were distributed in the surrounding areas with extremely significant positive correlations.
Zones with significant negative correlations (p < 0.05, R < 0) accounted for 2.04% and
were scattered.

3.5.2. Dominant Factor Analysis
Single Factor

Factor detection can quantitatively determine the contribution rate of geographic
factors on the spatial distribution difference of an index value. A factor detector of a
geographic detector is used to analyze the q-value of each factor to obtain a single factor
weight table.

As shown in Appendix A Figure A9a and Table 5, precipitation, soil type, and land use
played a dominant role in vegetation NPP change in Northeast China in 2000, with q-values
of 0.515, 0.461, and 0.443, respectively. The explanatory power of population density and
GDP on vegetation NPP was smaller, with both less than 0.02. Appendix A Figure A9b and
Table 5 show that, compared with 2000, the explanatory power changed to a certain extent.
The dominant factors were land use, soil type, and altitude, with q-values of 0.456, 0.435,
and 0.412, respectively. The influences of GDP and population density on vegetation NPP
increased to a certain extent. However, the explanatory power of vegetation NPP was still
small, with a q-value of no more than 0.1. Appendix A Figure A9c and Table 5 showed that
land use, soil type, and slope were the dominant factors of vegetation NPP in Northeast
China in 2022, with q-values of 0.440, 0.409, and 0.373, respectively. GDP and population
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density were the two factors with the smallest influence on vegetation NPP in Northeast
China, with q-values of less than 0.3. It can be concluded that land use and soil type were
the main factors affecting the changes in vegetation NPP in Northeast China.

Table 5. Q values for different regions in 2000, 2010, and 2020.

Region Year TEM PRE POP GDP ELE GRA LAND SOIL

NEC
2000 0.181 0.515 0.007 0.018 0.439 0.346 0.443 0.461
2010 0.102 0.205 0.011 0.071 0.412 0.384 0.456 0.435
2020 0.097 0.281 0.02 0.029 0.332 0.373 0.44 0.409

NC
2000 0.485 0.584 0.005 0.004 0.160 0.237 0.580 0.714
2010 0.43 0.705 0.005 0.011 0.19 0.249 0.649 0.736
2020 0.344 0.673 0.004 0.015 0.175 0.265 0.621 0.732

EC
2000 0.441 0.372 0.094 0.053 0.341 0.303 0.347 0.39
2010 0.393 0.256 0.08 0.164 0.307 0.276 0.349 0.347
2020 0.356 0.237 0.056 0.058 0.298 0.273 0.326 0.323

NWC
2000 0.206 0.648 0.013 0.038 0.058 0.136 0.528 0.763
2010 0.173 0.691 0.014 0.152 0.05 0.118 0.55 0.783
2020 0.156 0.682 0.011 0.203 0.056 0.111 0.535 0.798

SWC
2000 0.719 0.776 0.137 0.011 0.713 0.03 0.454 0.753
2010 0.729 0.706 0.003 0.099 0.736 0.029 0.486 0.773
2020 0.766 0.744 0.002 0.078 0.77 0.023 0.508 0.801

CSC
2000 0.397 0.321 0.03 0.125 0.164 0.177 0.27 0.378
2010 0.35 0.233 0.128 0.121 0.172 0.179 0.29 0.347
2020 0.317 0.255 0.111 0.09 0.174 0.171 0.27 0.313

NEC—Northeast China; NC—North China; EC—East China; NWC—Northwest China; SWC—Southwest China;
CSC—Central South China; TEM—temperature; PRE—precipitation; POP—population density; ELE—elevation;
GRA—gradient; LAND—land utilization; SOIL—soil type.

Precipitation, land use, and soil type were the dominant factors affecting changes in
vegetation NPP in North China in 2000, with q-values of 0.714, 0.584, and 0.580, respec-
tively (Appendix A Figure A9a and Table 5). Slope and altitude exhibited little influence
on changes in vegetation NPP, with q-values of 0.237 and 0.160, respectively. Similarly,
population density and GDP showed little influence on vegetation NPP, with q-values
less than 0.01. Appendix A Figure A9b and Table 5 showed that the dominant factors in
2010 were still soil type, precipitation, and land use, with q-values of 0.736, 0.705, and
0.649, respectively. Compared with 2000, the explanatory power of the dominant factors
increased. The influence of altitude on vegetation NPP was insignificant, with a q-value
of 0.190. The contribution rate of GDP and population density on vegetation NPP was
still small, with q-values of 0.011 and 0.005, respectively. Appendix A Figure A9c and
Table 5 showed that, compared with 2010, the dominant factors in 2022 did not change. The
influence of altitude on vegetation NPP was still insignificant, with a q-value of 0.175. The
influence of GDP and population density on vegetation NPP was still insignificant, with
q-values of 0.015 and 0.004, respectively. We can conclude that soil type was the dominant
factor affecting changes in vegetation NPP in North China.

The temperature in 2000, 2010, and 2022 was the main factor affecting changes in veg-
etation NPP, with q-values of 0.441, 0.393, and 0.356, respectively (Appendix A Figure A9).
Compared with 2010, the explanatory power of precipitation decreased significantly, with
a q-value reduction from 0.372 to 0.256. In 2020, the q-values of each factor decreased to
varying degrees. The q-values of land use and soil types were roughly the same, with
both around 0.32. GDP and population density had little impact on changes in vegetation
NPP, with q-values less than 0.06. Temperature was the dominant factor influencing the
variations in vegetation NPP in East China.

The dominant factor in 2000, 2010, and 2022 was soil type, with q-values of 0.763,
0.783, and 0.798, respectively (Appendix A Figure A9a and Table 5). The q-values of GDP
increased significantly, indicating that human activities gradually became the dominant
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factors influencing vegetation NPP. Soil type, precipitation, and land use were the dominant
factors influencing changes in vegetation NPP in Northwest China.

In 2000, the q-values of precipitation, soil type, temperature, and altitude affecting the
changes in vegetation NPP were greater than 0.7 in Southwest China (Appendix A Figure A9a
and Table 5). The q-values of slope and GDP were the smallest at 0.030 and 0.011, respectively,
indicating an insignificant influence on vegetation NPP. Appendix A Figure A9b and Table 5
show that the dominant factors were soil type, altitude, temperature, and precipitation.
Appendix A Figure A9c and Table 5 showed that the dominant factor did not change compared
with 2010, and the q-values of the dominant factors increased to 0.801, 0.770, 0.766, and 0.744.
The explanatory power of population density on the change in vegetation NPP was still the
smallest, with a q-value of only 0.002. Soil type, altitude, temperature, and precipitation were
the dominant factors influencing changes in vegetation NPP in Southwest China.

According to Appendix A Figure A9a and Table 5, temperature, soil type, and precip-
itation were the dominant factors in 2000 in central and southern regions, with q-values
of 0.397, 0.378, and 0.321, respectively. Population density had the smallest explanatory
power for vegetation NPP change, with a q-value of 0.03. Appendix A Figure A9b and
Table 5 showed that, in 2010, the dominant factors were temperature and soil type, with
q-values of 0.350 and 0.347, respectively. Appendix A Figure A9c and Table 5 showed that
the dominant factors in 2022 were temperature and soil type, with q-values of 0.31, 0.317,
and 0.313. Therefore, temperature and soil type were the dominant factors influencing
changes in vegetation NPP in central and southern regions.

Interactive Factor

Interactive detection is a kind of geographical detector. The interaction between
factors can be calculated using Formula (9). Interaction factor detection can be utilized to
analyze the influence of interactions between different factors on changes in vegetation
NPP (Figure 11). Using the origin to draw a color-scale diagram, the higher the value, the
stronger the interaction between the representative factors, and vice versa.
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Figure 11(a1–a3) shows that the interaction between the two factors in Northeast 
China is mostly mutually reinforcing. In 2000, the dominant interactive factor was tem-
perature ∩ precipitation (0.710), while in 2010, land use ∩ soil type (0.592) became the 
dominant factor. In 2022, the dominant interactive factor was precipitation ∩ land use 
(0.582). As shown in Figure 11(b1–b3), in 2000 and 2010, the dominant interaction factor 
was precipitation ∩ soil type (0.806 and 0.832). In 2022, the dominant interactive factor 
was land use ∩ soil type (0.830). As shown in Figure 11(c1–c3), in 2000, 2010, and 2022, the 
dominant interactive factor was temperature ∩ land use (0.577, 0.576, and 0.511, respec-
tively). As shown in Figure 11(d1–d3), in 2000, 2010, and 2022, the dominant interactive 
factor was precipitation ∩ soil type (0.836, 0.860, and 0.866, respectively). In general, the 
interaction between precipitation and soil type was the main factor affecting the change 
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periods. (a1) Northeast China (2000). (a2) Northeast China (2010). (a3) Northeast China (2022).
(b1) North China (2000). (b2) North China (2010). (b3) North China (2022). (c1) East China (2000).
(c2) East China (2010). (c3) East China (2022). (d1) Northwest China (2000). (d2) Northwest China
(2010). (d3) Northwest China (2022). (e1) Southwest China (2000). (e2) Southwest China (2010).
(e3) Southwest China (2022). (f1) Central South China (2000). (f2) Central South China (2010).
(f3) Central South China (2022).

Figure 11(a1–a3) shows that the interaction between the two factors in Northeast
China is mostly mutually reinforcing. In 2000, the dominant interactive factor was
temperature ∩ precipitation (0.710), while in 2010, land use ∩ soil type (0.592) became the
dominant factor. In 2022, the dominant interactive factor was precipitation ∩ land use
(0.582). As shown in Figure 11(b1–b3), in 2000 and 2010, the dominant interaction factor was
precipitation ∩ soil type (0.806 and 0.832). In 2022, the dominant interactive factor was land
use ∩ soil type (0.830). As shown in Figure 11(c1–c3), in 2000, 2010, and 2022, the dominant
interactive factor was temperature ∩ land use (0.577, 0.576, and 0.511, respectively). As
shown in Figure 11(d1–d3), in 2000, 2010, and 2022, the dominant interactive factor was
precipitation ∩ soil type (0.836, 0.860, and 0.866, respectively). In general, the interaction
between precipitation and soil type was the main factor affecting the change in vegetation
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NPP in Northwest China. Figure 11(e1–e3) showed that in 2000, the dominant interactive
factor was precipitation ∩ elevation (0.836). The dominant interactive factor in 2010 was
precipitation ∩ soil (0.829), which changed significantly compared with that in 2000. The
dominant interactive factor in 2022 was altitude ∩ soil type (0.848). Overall, the change in
vegetation NPP in Southwest China was greatly affected by the interaction between altitude
and precipitation, as well as other factors. As shown in Figure 9(f1–f3), in 2000, 2010, and
2022, the dominant interactive factor was temperature ∩ land use (0.603, 0.572, and 0.527,
respectively). The interaction between GDP, population density, land use, and other factors
showed a trend of strengthening first and then weakening. Overall, the interaction between
temperature and other factors was the dominant factor affecting the change in vegetation
NPP, and the influence of human activities on the change in vegetation NPP showed a
trend of increasing first and then decreasing.

4. Discussion
4.1. The Reasons for the Spatio-Temporal Changes in Vegetation NPP

The spatial distribution of vegetation NPP during 2000–2022 was roughly the same
as that in 2000–2010 and 2011–2022, showing a decreasing trend from south to north and
from east to west, which is consistent with the research results of Shi et al. [39]. From the
north to the south, the climate in southern China was hot and humid, and the precipitation
was higher, which is conducive to vegetation growth. In the northern region, the climate
type is mainly temperate continental. It was hot and rainy in summer and cold and
dry in winter, and the vegetation growth environment was worse than that in the south,
thus forming a spatial distribution pattern of high in the south and low in the north [18].
The western region of China was dominated by deserts and plateaus. The Taklimakan
Desert and other regions had high temperatures all year round, scarce precipitation, and
almost no vegetation coverage. Moreover, the Qinghai–Tibet plateau, with many glaciers
and permafrost, had high altitude, low temperature, and scarce precipitation [16]. The
vegetation type was dominated by alpine meadows, resulting in low levels of vegetation
NPP. The eastern region was close to the Pacific and Indian Oceans. Due to the influence of
ocean currents, the precipitation was richer than in the western region, and the vegetation
types were more abundant. There were a small number of high-value areas in the northeast
region and the southeast of the Qinghai–Tibet Plateau, which is consistent with the research
results of Xue et al. [40]. Specifically, Northeast China had rich forest resources, high-quality
black soil, and organic matter, which is conducive to the accumulation of vegetation NPP.
At the same time, in 1998, China implemented the “Natural Forest Resource Protection
Project”, which further helped to improve vegetation NPP, resulting in a small number of
high-value NPP areas in Northeast China. The southeast of the Qinghai–Tibet Plateau, with
more precipitation than other parts, was affected by a Pacific monsoon, and its vegetation
types were diverse.

In terms of time transfer from different grades, the transfer area from low to high
accounts for a large proportion, and vegetation NPP showed an increasing trend, which
is consistent with the research results obtained by Xu et al. [41] and Lou et al. [42]. This
may be related to China’s implementation of returning farmland to forest and grassland
as part of its protection policy for ecological areas. NPP is a key factor in determining the
ecological process of regulating carbon sources within ecosystems. It plays an important
role in global change and carbon balance, providing insights for scientific decision-making
in ecological management and climate change mitigation.

4.2. The Changes in Dominant Factors Influencing the Evolution of Vegetation NPP

Precipitation affects spatio-temporal changes of vegetation NPP in both dry and wet
environments, temperature affects the rates of evaporation, and the synchronization of
water and heat affects the growth state of the vegetation itself, thus affecting vegetation
NPP. Compared with 2000–2010, human activities led to an obvious increase in areas
with less vegetation NPP and a significant decrease in areas that promoted increases in
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vegetation NPP in 2011–2022 compared with 2000–2010. This might be due to the increase in
human activities, including vegetation deforestation, corresponding with an improvement
in living standards [39]. From the perspective of partial correlation, precipitation was
mainly positively correlated in the north and negatively correlated in the south, which is
related to the good hydrothermal conditions in the south and the cold and dry environment
in the north. This is consistent with the research results of Guo et al. [26], which found
a positive relationship between NPP and precipitation in Northeast China. In terms of
temperature, zones with positive correlations were mainly located in the Qinghai–Tibet
Plateau and Northeast China. Liu et al. [25] found that vegetation NPP of the Qinghai-
Tibet Plateau was significantly positively affected by climate. Warm and humid climate
change is an important driving force for the significant increase in vegetation NPP, which
is consistent with the results of this study. Zones with negative correlations were mainly
concentrated in the south, which is mainly related to the high latitude in Northeast China
and the high altitude in the Qinghai–Tibet Plateau with low temperatures. An increase in
temperature is conducive to plant photosynthesis and promotes the increase in vegetation
NPP. In addition, precipitation and land use were the main factors affecting vegetation
NPP in Northeast China, which is related to the high latitude and low precipitation in
local areas. Due to the different research periods and driving factors, this is different from
the research results obtained by Mao et al. [43]. In North China and Northwest China,
precipitation and soil type were the main factors affecting vegetation NPP (the maximum
q-values were 0.832 and 0.866, respectively). The main reason is that the soil type in North
China is dominated by the river alluvial yellow dry farming type, which is consistent with
the research results of Huang et al. [44]. The northwest region was mainly dominated by
desertification, and precipitation was scarce, which was not suitable for vegetation growth.
Precipitation became the dominant factor of changes in vegetation NPP in the northwest
region. This is consistent with the research conclusion of Tong et al. [45]. The imbalance
and uncertainty of the spatial and temporal distribution of water resources will lead to the
contradiction between the ecological environment and economic development in the arid
area of Northwest China.

The dominant factors in Southwest China were altitude and precipitation (the max-
imum q-value was 0.836). Xu et al. [30] found that precipitation had a strong enhancing
effect on NPP in Southwest China, which is consistent with the results of this study. The
local plateau area accounted for a large proportion, with high altitude, cold and dry climate,
and mainly alpine meadow vegetation. The photosynthesis of vegetation was weak, which
is not conducive to increases in NPP [46,47]. In Central South and East China, temperature
and land use were dominant (the maximum q-values were 0.577 and 0.603, respectively).
Although local precipitation and temperature levels were high, the temperature could not
reach the dynamic balance of temperature and precipitation during vegetation photosyn-
thesis, resulting in temperature being the dominant factor of vegetation NPP in Central
South and East China.

From analyzing the impact of human activities, we determined that land use had
more obvious impacts on changes in vegetation NPP in East China, Central and South
China, and North China than other factors (the maximum q-values were 0.349, 0.290,
and 0.649, respectively). In East China and Central South China, the rapid expansion of
the population and urbanization had a great influence on the change in vegetation NPP.
In North China, due to overgrazing, zones dominated by grassland were reduced, and
desertification was aggravated, which is not conducive to an increase in vegetation NPP.
Human activities had negative effects on vegetation NPP changes. Soil type had the greatest
impact on the northwest region (the maximum q-value was 0.798). This region has the
largest desert in China, which is not suitable for an increase in vegetation NPP [48–50]. The
increase in human activities was conducive to the change in soil types and the increase
in vegetation NPP. The influence of land use and population density on the change in
vegetation NPP in Northeast China gradually increased. As the primary heavy industrial
base in Northeast China, the region experienced rapid economic development, and human
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activities had negative effects on changes in vegetation NPP. Mao et al. [24] found that
NPP changed greatly with the change in land use in Northeast China, which indicates that
human activities have a significant influence on NPP. This is consistent with the results of
this study. The influence of land use, GDP, and population density on changes in vegetation
NPP in Southwest China was low (the maximum q-values were 0.508, 0.099, and 0.137,
respectively), which was mainly due to the weak local economic foundations and the
influence of human activities on vegetation NPP [51,52].

5. Conclusions

In this study, Geodetector, a gravity center model, and third-order partial correlation
analysis methods were used to analyze the change patterns of vegetation NPP and its
driving mechanisms in different sub-regions of China from a partition perspective.

(1) Vegetation NPP in China showed a decreasing trend from southeast to northwest.
The gravity centers of Northeast, Northwest, and North China showed a trend of
southward migration, indicating that the increments of vegetation NPP in the south
of the corresponding region were greater than those in the north. The gravity centers
of Southwest, Central South, and East China showed a trend of northward migration,
indicating that the increments of vegetation NPP in the north of the corresponding
region were greater than those in the south.

(2) During 2000–2010, human activities contributed greatly to the vegetation NPP increase
and during 2011–2022, climate change was the dominant factor for the increase in
vegetation NPP.

(3) Zones with significant positive correlations between vegetation NPP and accumulated
temperature were mostly located in the southern part of Qinghai Province. Zones
with significant positive correlations with precipitation were mostly concentrated in
Inner Mongolia and other regions. Zones with significant positive correlations with
temperature were widely distributed in the junction of Tibet and Qinghai Province
and the northeast region. Zones with significant positive correlations with sunshine
were mainly distributed in the central and eastern regions of Inner Mongolia.

(4) Precipitation and land use were the dominant factors influencing changes in vegeta-
tion NPP in Northeast China, while precipitation and soil types played an important
role in the vegetation NPP changes in North China. Temperature was the dominant
factor influencing the change in vegetation NPP in East China, while precipitation
and soil types were the main factors affecting the vegetation NPP changes in North-
west China. The explanatory power of human activities on the change in vegetation
NPP in Northwest China gradually increased. Altitude and precipitation contributed
considerably to the change in vegetation NPP in Southwest China. Provided that
urbanization is ensured, reducing land use can effectively promote an increase in local
vegetation NPP.
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