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Abstract: Multispectral remote sensing (RS) data and synthetic aperture radar (SAR) data can provide
horizontal and vertical information about forest AGB under different stand conditions. With the
abundance of RS features extracted from multispectral and SAR datasets, a key point for accurate
forest AGB estimation is to use suitable feature optimization inversion algorithms. In this study,
feature optimization inversion algorithms including multiple linear stepwise regression (MLSR),
K-nearest neighbor with fast iterative feature selection (KNN-FIFS), and random forest (RF) were
explored, with a total of 93 RS features working as inversion model input for forest AGB inversion.
The results showed that KNN-FIFS with the combination of Sentinel-1 and Sentinel-2 performed best
at both test sites (R2 = 0.568 and RMSE = 15.05 t/hm2 for Puer and R2 = 0.511 and RMSE = 32.29 t/hm2

for Genhe). Among the three feature optimization inversion algorithms, RF performed worst for
forest AGB estimation with R2 = 0.348 and RMSE = 18.06 t/hm2 for Puer and R2 = 0.345 and
RMSE = 35.98 t/hm2 for Genhe using the feature combination of Sentinel-1 and Sentinel-2. The
results indicated that a combination of features extracted from Sentinel-1 and Sentinel-2 can improve
the inversion accuracy of forest AGB, and the KNN-FIFS algorithm has robustness and transferability
in forest AGB inversions.

Keywords: forest AGB; different feature optimizing algorithms; Sentinel-1; Sentinel-2; KNN-FIFS

1. Introduction

Forests are crucial for global terrestrial ecosystem carbon cycling and climate change
research [1]. Forest ecosystems are the largest and most important natural ecosystems in ter-
restrial ecosystems and play an important role in maintaining global ecological balance [2,3].
Forest AGB is an important variable in evaluating the capacity of carbon sequestration and
maintaining carbon balance. Accurate forest AGB estimation is significant for studying
carbon cycling in regional terrestrial ecosystems [4,5].

Currently, traditional field measurement and remote sensing (RS) inversion are the
two main ways of obtaining forest AGB. Although the field measurement method is the
most accurate way for forest AGB calculation, it is not feasible for regional or global-scale
forest AGB calculation. It is also time cost and labor cost [6]. RS, on the other hand,
is capable of measuring and monitoring forest AGB on a regional or global scale. As a
result, RS images acquired from various sensors, such as passive and active sensors, are
widely used for forest AGB estimation. Multispectral RS datasets have been widely used in
forest AGB estimation, and the correlation between forest AGB and RS features extracted
from multispectral RS images has been explored and established. Spectral reflectance,

Forests 2024, 15, 56. https://doi.org/10.3390/f15010056 https://www.mdpi.com/journal/forests

https://doi.org/10.3390/f15010056
https://doi.org/10.3390/f15010056
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/forests
https://www.mdpi.com
https://orcid.org/0000-0001-8012-4115
https://orcid.org/0000-0002-2147-5246
https://doi.org/10.3390/f15010056
https://www.mdpi.com/journal/forests
https://www.mdpi.com/article/10.3390/f15010056?type=check_update&version=1


Forests 2024, 15, 56 2 of 22

vegetation index, and texture characteristics show a good correlation with changes in
forest AGBs. However, multispectral RS datasets have poor vegetation canopy penetration,
which prevents the acquisition of accurate information on the vertical structure of forests
and then results in saturation problems, especially when forestry AGB densities are high.
Synthetic aperture radar (SAR), operated at microwave bands, can penetrate the vegetation
canopy and interact with the main biomass components, for example, trunks and branches,
showing great potential for increasing the accuracy of forest AGB estimation [7]. Meanwhile,
the penetration capability increases with the growing wavelength, which means that
a stronger correlation exists between forest AGB and SAR reflected signals at longer
microwave bands [8].

Relevant studies have pointed out that there are some limitations in the estimation of
forest AGB using a single SAR dataset or a single optical dataset, and the inversion accuracy
and efficiency can be improved when both are used jointly [9–11]. Shao et al. estimated
coniferous forest AGB using Radarsat-2 and Landsat-8 OLI in Genhe, Inner Mongolia, and
showed that combined optical and microwave information could estimate forest AGB more
accurately [12]. Li et al. found poor performance in forest AGB estimation when only
SAR backscatter coefficients were used. While the combination of Radarsat-2 and Landsat-
5 TM improved the estimation accuracy with R2 = 0.768 and RMSE = 19.14 t/hm2 [13],
Pan et al. estimated forest AGB using a combination of GF-3 PolSAR and Landsat-8 OLI
with KNN-SFS in Guangxi, and the results showed that the accuracy of the inversion
results was higher than that of the estimation using a single data source with R2 = 0.75 and
RMSE = 21.05 t/hm2 [14].

Although the combination of optical and SAR datasets can improve forest biomass,
there are still significant limitations in data access, and some of the data is not available to
the public, which results in certain costs. Sentinel-1 SAR data and Sentinel-2 multispectral
data are not only free of charge but also timely revisits in global coverage and provide new
opportunities for inversion and monitoring of forest AGBs at a regional or global scale.
Pan et al. used backscatter coefficients and texture features extracted from Sentinel-1 with
the multiple linear stepwise regression (MLSR) algorithm for forest AGB estimation at the
regional scale [15]. The study by Guo et al. showed that Sentinel-2 data can be better used
for regional forest AGB inversion [16]. David et al. combined Sentinel-1 and Sentinel-2 to
estimate forest AGB and achieved a good result with R2 = 0.95 and RMSE = 0.25 t/hm2 [17].
However, only a few studies have explored the potential of using a combination of Sentinel-
1 and Sentinel-2 to estimate forest AGBs.

Another key issue in forest AGB estimation is selecting suitable inversion models,
especially with the capability of feature optimization algorithms. Tian et al. classified the
estimation methods used in forest AGB into traditional estimation models and machine
learning models [7]. Traditional model estimation methods have been widely used for
forest AGB estimation, among which the MLSR algorithm has become a more commonly
used algorithm due to its simple principle and easy operation. MLSR has been used for
forest AGB estimation in tropical, subtropical, and temperate zones. Machine learning
algorithms can solve the problems of data nonlinearity and high dimensionality, signifi-
cantly improving the estimation accuracy of forest AGB. However, since the “black-box”
operation, machine learning algorithms find it difficult to reflect the mechanistic process
between RS features and forest AGB [15]. Exploring how to select an appropriate forest
AGB inversion model under the support of optimal RS feature selection algorithms in
different test sites, which aims to improve the estimation accuracy of forest AGB and the
generalization capability of the inversion model in different forest scenes, has become one
of the most hot research topics.

The north-eastern and south-western regions of China, as the main sources of timber
supply and forest products in China, have made an important contribution to China’s
timber industry and development [18,19]. Larch is one of the major afforestation species in
the Northeast, while Simao Pine is one of the major high-yielding resin harvesting species
in the Southwest, and turpentine is an important industrial raw material. Both species
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are the main species in the National Natural Forest Protection Project [20]. Therefore,
accurate estimation of the biomass of larch and Simao pine is not only beneficial to forest
resource management and conservation but can also accurately calculate carbon stock.
Currently, fewer studies are using Sentinel-1 SAR data and Sentinel-2 multispectral data
for the inversion of AGB in larch and Simao pine, and there are uncertainties in the
inversion results. In this study, two types of coniferous forests, Xing’an larch in Inner
Mongolia and Simao pine in Yunnan Province, were selected to explore the suitable RS
feature optimization inversion algorithms for their forest AGB estimation. RS features
extracted from Single Sentinel-1, Single Sentinel-2, and combinations of Sentinel-1 and
Sentinel-2 were input for the forest AGB inversion. The objective of this study is to explore
the advantages of coniferous forest AGB estimation in typical regions in China under
different combinations of the two RS data supported by different feature optimization
inversion algorithms. Meanwhile, explore the robustness and transferability of these
inversion algorithms to enhance monitoring and decision-making capabilities for forest
resource management.

2. Materials and Methods
2.1. A General Description of the Test Sites
2.1.1. Yunnan Puer Test Site

This test site is located at part of Wanzhang Mountain covered by the aerial flight flies
area (Figure 1). It is located in Puer City, Yunnan Province (100◦29′–101◦7′ E, 22◦33′–23◦1′ N).
In the test site, the forest-covered area is about 17,440 hm2, with an elevation ranging
from 570 m to 2010 m. The climate here is a low-latitude, mountainous, southern sub-
tropical plateau monsoon climate. The average annual temperature is 19.4 ◦C, and the
annual precipitation is 1340.9 mm. The main dominant tree species is Simao pine (Pinus
kesiya var. langbianensis). Among Simao pines, red cone (Castanopsis hystrix Miq), short-
slabbed quebracho (C. echidnocarpa), southwestern birch (Betula alnoides Buch), and so on
are sporadically distributed.
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2.1.2. Genhe Test Site in Inner Mongolia

The test site is located at the National Field Scientific Observatory for Forest Ecosys-
tems of the Greater Khingan Mountains in Genhe City, Inner Mongolia (121◦30′–121◦31′ E,
50◦49′–50◦51′ N; Figure 2). The area of the test site is around 10,200 hm2, and the elevation
ranges from 810 m to 1116 m. It is currently the highest latitude for a forest ecosystem field
scientific observatory in China. The test site has a temperate continental monsoon climate
with an annual average temperature of −5.3 ◦C and an annual temperature difference
of 47.4 ◦C. The test site is a typical area of high-latitude perennial permafrost and cold-
temperate forest ecosystems. About 75% of the area in the test site is covered by forest, and
the dominant tree species is Xing’an larch (Larix gmelinii), in which camphor pine (Pinus
sylvestris var. mongolica), white birch (Betula platyphylla), and Populus davidiana (Populus
davidiana) are sporadically distributed.
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Scientific Observatory Station.

2.2. Research Data Acquisition and Pre-Processing
2.2.1. Field Campaign Conducted in Puer

The ground survey was conducted in November and December 2020. A total of 27
pure Simao pine forest plots were collected. All of the sample plots are 20 m × 20 m in size
and were shaped as square plots. Differential GPS was used to locate the four corner points
and center coordinates of each sample plot during the field sample collection. The location
accuracy was controlled within 20 cm. Diameter at breast height (DBH), tree height, crown
spread, and crown coverage rate were recorded during the field campaign, and the trees
with DBH greater than 5 cm in each plot were recorded. The AGB of each tree in the sample
plots was calculated with Equation (1) [21], and the AGB value of each tree in each plot
was totaled to obtain the AGB of each plot, then the area of each sample plot (0.04 ha) was
divided to obtain the AGB of each plot.

W1 = 0.0582D2.1203H0.4668 (1)

where: D is the measured DBH, H is the measured tree height, and W1 is the AGB of
Simao pine.
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2.2.2. Field Campaign Conducted in Genhe

The field sample plots in Genhe were investigated from 31 July to 28 August 2016.
A total of 26 pure forest plots of Xing’an larch were collected. The sample plots were
45 m × 45 m and 30 m × 30 m. Differential GPS was used in the same way as the Puer test
site to locate plots. DBH, tree height, height under the first active branch, and crown spread
were recorded. The AGB of dominated tree species was calculated by (2), as proposed by
Chen and Zhu [22].

W2 = 0.0277D2.7930
BH (2)

where W2 is the above-ground biomass of Xing’an larch and DBH is the measured diameter
at breast height.

Figure 3a,b show the detailed information of the forest AGBs at the two test sites.
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2.2.3. RS Data Acquisition and Pre-Processing

(1) Sentinel-1 data acquisition and pre-processing

The Sentinel-1A data selected for this study were obtained from the European Space
Agency (ESA, http://www.esa.int/ESA). The Sentinel-1A is equipped with a C-band SAR
sensor operating at 5.4 GHz. SAR data are not significantly affected by cloudiness, so a
considerable number of complete images are available each month. However, SAR signals
can be affected by recent surface precipitation or wind, so images from a good weather
period close to the field collection date were selected for analysis [17,23]. Considering
the consistency with ground survey data from various test sites and the impact of soil
moisture, the Sentinel-1A image for Puer was acquired on 10 November 2020, and the
image for Genhe was acquired on 17 August 2016. Referring to the existing studies, the
data processing was carried out using SNAP software with the aid of resampled 10 m
DEM data to perform pre-processing steps such as radiometric correction, filtering, and
terrain correction.

(2) Sentinel-2 data acquisition and pre-processing

The Sentinel-2 satellite is operated by ESA as well; it includes the A and B satellites,
which were launched in June 2015 and March 2017, respectively, and are now widely used
in global surface parameter inversion and disaster monitoring. Sentinel-2 has a similar data
format to Sentinel-1, also in a sun-synchronous orbit, at an altitude of 786 km, with a revisit
period of 10 days for a single star and 5 days for a double star. The Multi-spectral Image
(MSI) on board the Sentinel-2 satellite contains 13 spectral bands in the visible, near-infrared,
and short-wave infrared with spatial resolutions of 10, 20, and 60 m, respectively. In this
study, multi-spectral images were collected on 10 November 2020, for Puer and 28 August
2016 for Genhe. Level-2A products, which have been pre-processed before acquisition,
were applied in this study for subsequent RS feature extraction.

http://www.esa.int/ESA
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2.3. RS Features Extraction
2.3.1. Sentinel-1 RS Features Extraction

(1) Sentinel-1 backscattering coefficients. After pre-processing the Sentinel-1 data in
SNAP, the images were converted into sigma backscatter coefficient images in dB;
the formula used for conversion is shown as (3); the point targets of the images were
quantitatively measured and analyzed; and the resulted backscatter coefficient values
were used for AGB modeling.

dB = 10 ∗ log(P/P0) (3)

where P and P0 denote the target and reference quantities, respectively.

(2) Sentinel-1 texture features. Texture features are an important source of information
for high-resolution SAR data, and image texture has certain advantages in the identifi-
cation of stand structure, such as stand age, stand density, and leaf area index [24].
Texture, the fine structure of an image, refers to the frequency of tonal changes in
the image. Visually finer textures indicate less spatial variation in image luminance
values over regions [23,25]. Visually coarser textures have more drastic variations
in pixel values across regions [25]. Although texture parameters are used to classify
land-use types and vegetation, the relationship between image texture and forest AGB
has not been fully explored [15].

Firstly, the backward scattering coefficient image is converted to a normalized back-
ward scattering coefficient image as it can provide better dynamic range on low backward
scattering targets. Secondly, the Frost filtering process is performed to suppress speckle
noise [26]. Common texture features can be classified into first-order texture and second-
order texture; the first-order texture is the spectral statistics value in the neighborhood,
and the second-order texture characterizes the spatial distribution of image elements by
describing the interdependence between the image elements. The commonly used method
is the gray level co-occurrence matrix (GLCM) [27]. In this study, a total of 64 second-order
texture variables extracted based on the GLCM of the VV and VH polarization images of
the Sentinel-1 data were extracted using four window sizes of 3 × 3, 5 × 5, 7 × 7, and 9 × 9,
respectively [25]. Table 1 shows the detailed information on the extracted features.

Table 1. Sentinel-1 remote sensing features.

Types Features Descriptions

Texture variables
(window: 3 × 3,

5 × 5, 7 × 7, 9 × 9)

Mean_vv, Mean_vh Reflects the degree of uniformity in the distribution of pixel values,
and texture regularity is positively correlated with the mean value.

Variance_vv, Variance_vh Capable of reflecting the degree of change in the gray value of
remotely sensed images.

Entropy_vv, Entropy_vh

Indicates the amount of information contained in the remote
sensing image, which can indicate the complexity of the remote

sensing image; the larger the value, the higher the level of
complexity, and the greater the amount of information.

Contrast_vv, Contrast_vh Able to reflect the clarity of remotely sensed images.

Homogeneity_vv, Homogeneity _vh The magnitude of its value reflects, to some extent, the magnitude
of the local homogeneity of remotely sensed images.

Dissimilarity_vv, Dissimilarity_vh
Characterize the degree of similarity of texture information in

remotely sensed images; the higher the degree of dissimilarity, the
stronger the uniqueness of the texture information.

Correlation_vv, Correlation_vh Show the similarity of matrix elements in rows and columns on the
grayscale covariance matrix.

Angular second moment_vv, Angular
second moment_vh

Indicates the degree of gray scale distribution uniformity and
texture coarseness of the image; the larger the angular second-order

moments, the clearer the image texture.
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Table 1. Cont.

Types Features Descriptions

backward
scattering
coefficient
variables

VV Backward scattering coefficient for VV polarization mode.
VH Backward scattering coefficient for VH polarization mode.

(VH − VV)/(VH + VV) Standard dual-polarization rate
VV/VH Ratio of backward scattering coefficients.

2.3.2. Sentinel-2 RS Feature Extraction

(1) Sentinel-2 band information. The multi-spectral data acquired by the Sentinel-2
satellite contained 13 spectral bands, of which 4 bands have a resolution of 10 m,
6 bands have a resolution of 20 m, and 3 bands have a resolution of 60 m. Ten bands
with 10 m and 20 m resolution were selected for this study, and six bands with 20 m
resolution were resampled to 10 m resolution using the nearest neighborhood method.

(2) Sentinel-2 vegetation indices. A total of 15 vegetation indices were selected as in-
dependent variables in this study, and the ENVI software was used to extract each
vegetation index based on Sentinel-2 imagery [28,29]. The vegetation indices and their
calculation formulas are shown in Table 2.

Table 2. Sentinel-2 Vegetation indices features.

Types Remote Sensing Features Calculation Formula Description

Vegetation
indices

DVI B8 − B4
Difference Vegetation Index (DVI), which is very sensitive

to changes in soil and can be used to monitor the
environmental conditions of forest stands.

WDVI B8 − 0.5 × B4 Weighted difference vegetation index.

ARVI B8 − (2 × B4 − B2)/B8 +
(2 × B4 − B2) Atmospheric modification of vegetation index.

NDVI (B8 − B4)/(B8 + B4)

The Normalized Difference Vegetation Index (NDVI), which
effectively distinguishes between vegetation and other

objects, determines the relationship between vegetation and
other objects and monitors the vitality of vegetation.

GNDVI (B7 − B3)/(B7 + B3)

Green band normalized vegetation indices can be used to
identify different rates of chlorophyll concentration, and

chlorophyll concentration is strongly correlated with
nitrogen content.

IPVI B8/(B8 + B4) Infrared percent vegetation index

MCARI [(B5 − B4) − 0.2 × (B5 −
B3)] × (B5 − B4) Modified chlorophyll uptake ratio index.

MTCI (B6 − B5)/(B5 − B4) Medium-resolution terrestrial chlorophyll index.

NDI45 (B5 − B4)/(B5 + B4) Optimized Normalized Vegetation Index (NDVI) with higher
linearity and higher saturation compared to the NDVI

PSSRa B7/B4 chlorophyll index.

REIP 700 + 40 × [(B4 + B7)/2 −
B5]/(B6 − B5)

Red-edge bending position index, which can be used for
biomass and nitrogen uptake measurement or

management in heterogeneous fields, and reflectance
around the red edge are sensitive to changes in

chlorophyll content, nitrogen content, vegetation cover,
and biomass of crops.

RVI B8/B4
Ratio Vegetation Index (RVI), which can reduce the

influence of soil background on vegetation indices and
improve confidence.

S2REP 705 + 35 × [(B4 + B7)/2 −
B5]/(B6 − B5)

Sentinel-2 red edge position index, based on linear
interpolation. Sentinel-2 has a key advantage in linear

interpolation methods, where the red edge is the inflection
point of strong red absorption on near-infrared reflection.
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Table 2. Cont.

Types Remote Sensing Features Calculation Formula Description

Vegetation
indices

TNDVI [(B8 − B4)/(B8 + B4) + 0.5]
1/2

Transformed Normalized Vegetation Index, an algorithm
interpreting the relationship between green biomass

found in pixels.

TSAVI 0.5 × (B8 − 0.5 × B4 −
0.5)/(0.5 × B8 + B4 − 0.15) Converted Soil Regulation Vegetation Index.

2.4. Research Methodology
2.4.1. MLSR

Linear regression analysis is one of the most commonly used methods to construct
relationships between forest AGB and RS features. To avoid data redundancy and deter-
mine the appropriate RS features, in this study we adopted MLSR as one of the feature
optimization inversion models to estimate forest AGB. MLSR is a commonly used feature
variable optimization method based mainly on the magnitude of the effect of the inde-
pendent variables on the regression equation. It alternately introduces and excludes the
variables under the set level of the F-test, selects the optimal features, and establishes the
corresponding regression equation [30]. The features were selected by choosing RS features
with a high correlation at a probability of significance P less than 0.05. The MLSR regression
model for the forest AGB estimation used in this study is as follows:

y = β0 + β1x1 + β2x2 + · · ·+ βixj (4)

where y is the forest AGB to be estimated; β0 is a constant term; β1, β2· · · · · · βi is the
coefficient; x1, x2· · · · · · xj is the remote sensing eigen-factor.

2.4.2. KNN-FIFS

The K-nearest neighbor (KNN) algorithm is a non-parametric method that can be
used to solve classification and regression problems and does not depend on a specific
function distribution. It is more flexible, explicit, and has a strong generalization ability in
forest AGB estimation, but when the RS feature dimensions are high, it may result in low
efficiency. To improve the shortcomings of KNN, like inefficient feature combination and
poor model estimation, in this study we adopt the KNN-FIFS method proposed by Han
et al. to estimate forest AGB using optical RS features using a fast iterative algorithm to
find out the best combination of RS features that are the most relevant for the forest AGB
estimation [31]. The basic principle of KNN-FIFS is shown in Figure 4:

For the KNN-FIFS method, when the distance metric is certain, the value of k will
have a certain impact on the estimation results, and the value of k is affected by the number
of sample plots, the geographic location of the sample plots, and the changes in forest AGB.
In this study, the range of k is set as 1~11, and the variation range of the RS extraction
window is also 1~11.

2.4.3. RF

RF is a machine learning algorithm proposed by Breiman Leo and Adele Cutler in
2001 for classification, regression, and survival analysis [32]. The basic principle is that the
sample set with the same sample capacity as the original training set is first extracted using
the bootstrap sampling method. Then, the same number of decision trees for each of the
K samples are separated, and each of the decision trees predicts each sample to obtain K
sets of predicted values. Then K sets of the predicted values are averaged and selected as
the predicted value of each record. This algorithm can be understood as calculating the
importance of features and ranking them in order of importance [33]. In this paper, the
algorithm is implemented in R software.
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2.4.4. Accuracy Evaluation Method

In this study, leave-one-out cross-validation (LOOCV) was used to evaluate model-
inversed results. The method is to take 1 sample from the total sample set sequentially
without repetition as validation, and the rest of the samples are used to build the model
and carry out the inversion of the forest AGB, and so on until all the sample plots are
used as a validation sample at one time, and finally take the mean value for the accuracy
evaluation of the inversion results. The validation indices used here include coefficient of
determination (R2, Equation (5)), root mean square error (RMSE, Equation (6)), relative
root mean square error (rRMSE, Equation (7)), and mean absolute percentage error (MAPE,
Equation (8)). The value of R2 ranges from 0 to 1, and the closer it is to 1, the higher the
accuracy of the inversion results, and vice versa, the lower the accuracy [34]. RMSE and
rRMSE indicate the difference between the estimated and measured values; the smaller
values indicate higher inversion accuracy.

R2 =

n
∑

i=1
(Yi − yi)

2

n
∑

i=1
(Yi − y)2

(5)

RMSE =

√√√√√ n
∑

i=1
(Yi − yi)

2

n
(6)

rRMSE =
RMSR

y
× 100% (7)

MAPE =
1
n

n

∑
i=1

∣∣∣∣Yi − yi
Yi

∣∣∣∣× 100% (8)

where Yi is the measured value of forest AGB in the sample site, yi is the inverted value of
forest AGB in the sample site, n is the total number of sample sites, and y is the average
value of measured forest AGB.
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3. Results and Analysis
3.1. Inversion Modeling of Forest AGB

RS features and ground-truth sample plots under three combinations of single Sentinel-
1, single Sentinel-2, and joint Sentinel-1 and Sentinel-2 at Puer and Genhe were inputted
into the MLSR, KNN-FIFS, and RF models as the independent variables and dependent
variables, respectively, to estimate forest AGBs. The inversion results of the models were
validated by four statistical parameters, and the estimation accuracies of the models were
compared at two different test sites.

3.1.1. Construction of the MLSR

When the multi-source RS data are three combinations of single Sentinel-1, single
Sentinel-2, and joint Sentinel-1&Sentinel-2, different types of RS features from different
regions are inputted into the MLSR model, and optimizing is performed to derive the
following features and form the optimal model. The optimized RS feature and related
constructed models are shown in Table 3. The MTCI parameter was selected in both test
sites and suggested that this parameter is more relevant and sensitive to forest AGB. This is
because the red and red-edge bands were strongly absorbed by vegetation and are highly
sensitive to the health status and physicochemical parameters of vegetation. In the other
feature optimized in the test site of Genhe, the vh_me3 parameter was selected both in the
single Sentinel-1 and combination of Sentinel-1 and Sentinel-2 data. The results suggested
that the mean value matches the forest-reflecting pattern within the image element. It is
because the mean value reflects the pixel texture pattern, and larger values indicate that
the texture pattern is more obvious and easier to describe.

Table 3. MLSR model equations and feature optimization results.

Data Source Model Parameter

Puer
Sentinel-1 y = 362.954 − 70.900x1 − 213.408x2 en_vv7, JHL
Sentinel-2 y = 81.461 + 35.335x1 + 0.035x2 MTCI, DVI

Sentinel-1&Sentinel-2 y = 161.639 + 763.706x1 − 0.641x2 sm_vv9, B2

Genhe
Sentinel-1 y = 2591.421 − 48.832x1 − 39.001x2 vh_me3, vv_cor3
Sentinel-2 y = −121.999 + 80.406x1 MTCI

Sentinel-1&Sentinel-2 y = 1735.196 − 34.738x1 + 15.221x2 − 47.440x3 vh_me3, S2REP, vh_en9

3.1.2. Construction of KNN-FIFS

The optimal model parameters for the KNN-FIFS algorithm are shown in Table 4. In
Puer, B6 and S2REP parameters were selected from a single Sentinel-2 and combinations of
Sentinel-1 and Sentinel-2. The results indicated that the red-edge bands and short-wave
infrared bands of Sentinel-2 are more sensitive to forest AGB and more significant than
other RS features in forest AGB estimation. Among the many vegetation factors, the factors
involved in the calculation of the red-edge band have the strongest correlation with the
forest AGBs. The reason is that they can effectively relieve the signal saturation problem
corresponding to the high biomass value and the dense canopy. In addition, the selected
features in the Puer and Genhe are mostly divided into features with windows of 7 and 9,
indicating that the size of the window has a significant impact on the correlations between
RS features and forest AGB.
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Table 4. KNN-FIFS model parameters and feature optimization results.

Test Site Data Source K Size of
the Window Feature Selection

Puer
Sentinel-1 2 9 × 9 sm_vv3, cor_vv3, JHL, sm_vv9, hom_vh5, con_vv9,

cor_vv7, en_vv9
Sentinel-2 2 1 × 1 B6, S2REP, NDVI, IPVI

Sentinel-1&Sentinel-2 1 1 × 1 B6, S2REP, B5, va_vv9, va_vv7

Genhe
Sentinel-1 3 3 × 3 con7_vv, va5_vh
Sentinel-2 5 5 × 5 IPVI, B4, TNDVI, TSAVI

Sentinel-1&Sentinel-2 1 5 × 5 sm7_vh, RVI, va7_vh, cor9_vv, sm5_vh, vh, dis9_vv

3.1.3. Construction of the RF

There are two important parameters, mtry and ntree, in the RF. ntree is the number
of decision trees, mtry is the number of random features, and its size is usually set to
one-third of the total number of variables by default in regression problems [35]. In order
to determine the size of the parameter ntree, the plot function in the RF package is used
to draw the trend graph of the regression error with the change of the number of decision
trees, and it can be seen from Figure 5 that the regression error tends to be stable when the
number of decision trees reaches 1000. In order to ensure the credibility of the results and
the efficiency of the operation, the value of 1000 for ntree was selected.
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RS features are determined by two metrics in the RF parameters, named the incre-
mental model MSE (%IncMSE) and the node purity of the model tree (IncNodePurity).
When the independent variable is used as out-of-bag data, the larger the parameter values
of these two metrics, the more important the feature. The importance of the features was
calculated by the important function in the RF package, and each RS feature was ranked
in descending order according to the model MSE increment. According to the ordering
of RF feature importance, variables with variable ordering in the top 10 were selected for
inversion model training and validation [31,36]. The importance ranks of the RS variables
used in the two test sites are shown in Figure 5.

The results of feature optimization for RF algorithms are summarized in Table 5. For
using a single Sentinel-1 data source, entropy, non-similarity, and contrast are selected
as the optimized features. Among them, entropy indicates the degree of complexity of
the reflected RS characterization; the bigger the entropy value, the higher the complexity,
and the larger the amount of information it contains. The non-similarity reflects the fact
that the greater the gray scale difference within the image element, the clearer the visual
effect of the image is. The results indicated that the vegetation cover portion of the image
element has a high degree of fractional anisotropy, which can better improve the model
inversion accuracy. As for the single Sentinel-2 data, S2REP, B5, and NDI45 were selected
to participate in the modeling of the combination of features at the two test sites. Red-edge
band information, including S2REP, B5, and NDI45, responds to the small changes in the
structure of vegetation canopies. For the combination of Sentinel-1 and Sentinel-2, entropy
and S2REP were selected as optimized RS features in both of the two test sites. From the
perspective of window size, the texture features extracted at window sizes of 9 × 9 and
3 × 3 were ranked relatively high in the single data and the combination of Sentinel-1
and Sentinel-2. The results indicated that the small window texture has a strong ability to
explain the changes of the forest AGBs and has certain advantages in their inversion.

3.2. Forest AGB Inversion Results

Tables 6 and 7 show the results of the three forest AGB estimation models in the two
test sites, and the results of the estimation accuracy are as follows: In subtropical coniferous
forests in Puer, the KNN-FIFS model for single Sentinel-1 data performed better than the
MLSR and RF models. The R2 differences between KNN-FIFS and MLSR are 0.10, the value
between KNN-FIFS and RF is 0.40, and the differences in RMSE values are 2.44 t/hm2 and
5.25 t/hm2, respectively. In the cold-temperate coniferous forests at Genhe, the KNN-FIFS
model performed best for single Sentinel-1 data. However, here RF performed better than
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the MLSR model, with R2 differences of 0.09 and 0.20 and RMSE differences of 2.84 t/hm2

and 1.61 t/hm2, respectively. In subtropical coniferous forests in Puer, the KNN-FIFS model
with single Sentinel-2 data performed better than the MLSR; the worst performance was
RF, with a difference in R2 of 0.14 and 0.23 and a difference in RMSE of 3.01 t/hm2 and
3.12 t/hm2. In Genhe, the KNN-FIFS model outperformed the MLSR, while the MLSR
outperformed the RF with a difference in R2 of 0.07 and 0.20 and a difference in RMSE of
2.79 t/hm2 and 4.65 t/hm2. In both test sites, the inversion accuracies of the three models
using a combination of Sentinel-1 and Sentinel-2 are higher than using single data sources.
A higher inversion accuracy was obtained in Puer. The inversion accuracy of the three
models in the two test sites had small differences, with R2 differences of 0.11 and 0.22 and
RMSE differences of 2.0 t/hm2 and 19.11 t/hm2 in Puer and R2 differences of 0.06 and 0.24
and RMSE differences of 1.14 t/hm2 and 3.69 t/hm2 in Genhe.

Table 5. Optimal feature selection results under the RF algorithm.

Test Site Data Source Major Parameter

Puer
Sentinel-1 en_vv9, dis_vv3, dis_vv5, sm_vv5 en_vv5, en_vv3, en_vv7, sm_vv9 con_vv3,

sm_vv7
Sentinel-2 MCARI, S2REP, B2, B5, B3, REIP, WDVI, MTCI, NDI45, DVI

Sentinel-1&Sentinel-2 MCARI, S2REP, dis_vv3, dis_vv5 en_vv9, en_vv5, sm_vv5, en_vv3 GNDVI,
sm_vv9

Genhe
Sentinel-1 cor_vh5, me_vh3, me_vh5, cor_vh7, dis_vh5, en_vh3, me_vh7, con_vh3,

en_vh5, dis_vv9
Sentinel-2 S2REP, REIP, MTCI, B5, PSSRa, NDI45, IPVI, TNDVI, B4, GNDVI

Sentinel-1&Sentinel-2 S2REP, REIP, MTCI, vh_cor5, vh_va7, B5, vh_en9, vv_me3, vh_va5, RVI

Table 6. The accuracy indicators of forest AGB inversion using three models in Puer.

Test Site Inversion
Model Data Source

Fitting Result

R2 RMSE (t/hm2)

Puer

MLSR
Sentinel-1 0.414 17.78
Sentinel-2 0.345 18.79

Sentinel-1&Sentinel-2 0.461 17.04

KNN-FIFS
Sentinel-1 0.512 15.34
Sentinel-2 0.480 15.78

Sentinel-1&Sentinel-2 0.568 15.04

RF
Sentinel-1 0.116 20.59
Sentinel-2 0.255 18.90

Sentinel-1&Sentinel-2 0.348 18.06

Table 7. The accuracy indicators of forest AGB inversion using three models in Genhe.

Test Site Inversion
Model Data Source

Fitting Result

R2 RMSE (t/hm2)

Genhe

MLSR
Sentinel-1 0.380 35.38
Sentinel-2 0.320 36.20

Sentinel-1&Sentinel-2 0.446 33.43

KNN-FIFS
Sentinel-1 0.470 32.54
Sentinel-2 0.390 33.41

Sentinel-1&Sentinel-2 0.511 32.29

RF
Sentinel-1 0.274 34.15
Sentinel-2 0.188 38.06

Sentinel-1&Sentinel-2 0.345 35.98
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The analysis of the above inversion results shows that MLSR, RF, and KNN-FIFS
models constructed by combining Sentinel-1 and Sentinel-2 data sources have achieved
the highest accuracy in forest AGB inversion, which indicates that the combination of SAR
data and multi-spectral RS data can play its advantages in characterizing different levels of
forest structure, thus improving the accuracy of forest AGB inversion and its accuracy in
the two test sites. The three models can effectively remove RS features with poor sensitivity
and low correlation with the forest AGB by performing feature optimization with different
algorithms during the establishment of the model, which can effectively improve forest
AGB inversion accuracy. KNN-FIFS had the most robust forest AGB estimation among
the three feature-optimizing methods and was also the most effective method. Under
three different RS data sources, the MLSR and the KNN-FIFS models showed similar
performance both in subtropical Simao Pine forests and cold-temperate Xing’an Larch
forests. While MLSR performed slightly better than RF, the overall inversion accuracy was
higher in subtropical coniferous forests than in cold-temperate coniferous forests.

From the scatter plot (Figure 6) analysis, it seems that the MLSR, RF, and KNN-FIFS
models show different degrees of overestimation of low values and underestimation of high
values under the three combinations of the two single data sources. When a single Sentinel-
1 data source is used in Puer, the inversion results of the model show the phenomena
of low-value overestimation and high-value underestimation, while when the two data
sources are combined, the inversion results are closer to the 1:1 line, and the phenomena
of high-value underestimation and low-value overestimation are not obvious. This may
result from the fact that the penetration ability of Sentinel-1 SAR data are better than that
of multi-spectral data on forests, and it can represent the canopy information of forests in a
vertical structure in a more visual way, while the spectral signals of multi-spectral images
can only reflect the canopy information of forests in a horizontal direction. The main reason
is that Sentinel-1 SAR data can penetrate the forest better than multi-spectral data and can
more intuitively represent the information on the vertical structure of the forest canopy.
When a single Sentinel-2 data source is used, then the overestimation phenomenon is more
obvious in the RF model, while the overestimation phenomenon is significantly reduced in
the KNN-FIFS model, probably because KNN-FIFS can make better use of the correlation
and select the feature factor that has a higher correlation with the forest AGB. When the
two data sources are combined, the correlation between measured and predicted values
performs well with the three models. Probably because there is a complementary nature
to the data sources when multi-spectral and SAR data are combined, and they can better
represent both the horizontal and vertical structure of the forest.

Analysis of the scatterplot (Figure 7) shows that the three models exhibit different
degrees of overestimation of low values and underestimation of high values for the three
combinations of the two data sources. Using single Sentinel-1 data source in the MLSR,
RF, and KNN-FIFS models shows a more discrete state. The results from the RF model
(Figure 7a,d,g) show a more obvious overestimation of the low values and an underesti-
mation of the high values, and there is a certain degree of saturation phenomenon, which
may be due to the fact that the Sentinel-1 C-band SAR features are more sensitive to the
changes in scattering from the forest canopy. Forest AGB estimated results showed a more
obvious saturation at around 85 t/hm2 using single Sentinel-2 data (Figure 7e) and the RF
algorithm. When combined Sentinel-1 and Sentinel-2 data sources were used, the overall
fit was higher than the results when only a single data source was used, especially in the
inversion of the KNN-FIFS model. The best performance of KNN-FIFS may result from
the fact that the estimated parameters are only related to the neighboring K samples in
the KNN-FIFS fitting method, and the weighted summation of the number of measured
sample points reduces the problem of the imbalance of the sample points [37].



Forests 2024, 15, 56 16 of 22

Forests 2024, 15, x FOR PEER REVIEW 18 of 25 
 

 

 

   

(a) Sentinel-1 (MLSR) (b) Sentinel-2 (MLSR) (c) Sentinel-1&Sentinel-2 (MLSR) 

   

(d) Sentinel-1 (RF) (e) Sentinel-2 (RF) (f) Sentinel-1&Sentinel-2 (RF) 

   

(g) Sentinel-1 (KNN-FIFS) (h) Sentinel-2 (KNN-FIFS) (i) Sentinel-1&Sentinel-2 (KNN-FIFS) 

Figure 6. Forest AGB cross-validation results of MLSR, RF, and KNN-FIFS are inverted in Puer. 

Analysis of the scatterplot (Figure 7) shows that the three models exhibit different 
degrees of overestimation of low values and underestimation of high values for the three 
combinations of the two data sources. Using single Sentinel-1 data source in the MLSR, 
RF, and KNN-FIFS models shows a more discrete state. The results from the RF model 
(Figure 7a,d,g) show a more obvious overestimation of the low values and an underesti-
mation of the high values, and there is a certain degree of saturation phenomenon, which 
may be due to the fact that the Sentinel-1 C-band SAR features are more sensitive to the 
changes in scattering from the forest canopy. Forest AGB estimated results showed a more 

Figure 6. Forest AGB cross-validation results of MLSR, RF, and KNN-FIFS are inverted in Puer.



Forests 2024, 15, 56 17 of 22

Forests 2024, 15, x FOR PEER REVIEW 19 of 25 
 

 

obvious saturation at around 85 t/hm2 using single Sentinel-2 data (Figure 7e) and the RF 
algorithm. When combined Sentinel-1 and Sentinel-2 data sources were used, the overall 
fit was higher than the results when only a single data source was used, especially in the 
inversion of the KNN-FIFS model. The best performance of KNN-FIFS may result from 
the fact that the estimated parameters are only related to the neighboring K samples in the 
KNN-FIFS fitting method, and the weighted summation of the number of measured sam-
ple points reduces the problem of the imbalance of the sample points [37]. 

   
(a) Sentinel-1(MLSR) (b) Sentinel-2(MLSR) (c) Sentinel-1&Sentinel-2(MLSR) 

   
(d) Sentinel-1(RF) (e) Sentinel-2(RF) (f) Sentinel-1&Sentinel-2(RF) 

   
(g) Sentinel-1(KNN-FIFS) (h) Sentinel-2(KNN-FIFS) (i) Sentinel-1&Sentinel-2(KNN-FIFS) 

Figure 7. Forest AGB cross-validation results of MLSR, RF, and KNN-FIFS are inverted in Genhe. 

3.3. Comparative Analysis of Three Data Sources with Different Features Optimization 
Algorithms 

Using the four indicators of R2, RMSE, rRMSE, and MAPE, the performance of the 
MLSR, KNN-FIFS, and RF models was compared and analyzed in Figure 8. According to 
Figure 8, we found that under the data combination forms in both study areas, the R2 

values for the 3 models range from 0.116 to 0.568. Among them, the R value for KNN-FIFS 

Figure 7. Forest AGB cross-validation results of MLSR, RF, and KNN-FIFS are inverted in Genhe.

3.3. Comparative Analysis of Three Data Sources with Different Features Optimization Algorithms

Using the four indicators of R2, RMSE, rRMSE, and MAPE, the performance of the
MLSR, KNN-FIFS, and RF models was compared and analyzed in Figure 8. According
to Figure 8, we found that under the data combination forms in both study areas, the R2

values for the 3 models range from 0.116 to 0.568. Among them, the R value for KNN-FIFS
is the highest, and the R value for RF is the lowest. In Puer, under the combination of
Sentinel-1 and Sentinel-2, the RMSE from KNN-FIFS is the lowest (15.04 t/hm2). The
estimation results from KNN-FIFS have the lowest RMSE values, and the estimation results
from RF have the highest RMSE values. But in the case of using single Sentinel-1 data in
Genhe, the RMSE value from MLSR is the highest (35.38 t/hm2). The values of rRMSE also
confirmed the best performance of KNN-FIFS, with the lowest value of 12.4%. The analysis
from MAPE showed the lowest value obtained from KNN-FIFS and the highest accuracy
in Puer. However, the performance of KNN-FIFS in Genhe is not stable, with large errors,
although the error of MLSR is relatively small. Overall, in two study areas and three data
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combinations, KNN-FIFS generally showed the highest accuracy, indicating the robustness
of feature optimization in this algorithm.
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4. Discussion

(1) Estimation of forest AGB with single Sentinel-1 and Sentinel-2 data under different
feature optimizing methods.

Single Sentinel-1 and single Sentinel-2 data have different estimated potentials in
coniferous forest AGB estimation under different feature-optimizing approaches. The R2

of the inversion results of the MLSR, RF, and KNN-FIFS models using single Sentinel-1
data were 0.414, 0.116, and 0.512 in Puer, whereas those of the inversion results from Genhe
were 0.380, 0.274, and 0.470. Pan et al. used Sentinel-1 as the RS data source and took the
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fir forest in Jiangle County as the test sample, and the highest precision R2 of the inversion
results was 0.636, which was slightly higher than the results of this study. Probably due to
differences in texture factors across different study areas, the accuracy of this study area is
slightly lower [15]. In the study of Shi et al., GF-1 and GF-3 were selected as the data sources
for the inversion study of the total biomass of forest AGB and component AGB, in which
the results of the Yunnan pine forest inversion study of the total AGB of a single GF-3 data
were slightly lower than those of Puer in this study and, at the same time, slightly higher
than those of Genhe in this study, with an R2 of 0.500. The better performance may result
from the quad-polarization information from GF-3. Quad-polarization information can
better characterize forest structure than the dual-polarization sentinel data in this study [38].
In addition, Xu et al. used Sentinel-1, Landsat-8 OLI, and continuous forest inventory data
as the main data sources and took subtropical evergreen broadleaf forests in Guidong to
explore the performance of forest AGB inversion using single RS data sources. In this study,
the R2 for the inversion result using single Sentinel-1 data were 0.49, which was slightly
lower than our results. The reason may be that SAR data has stronger peroration capability
in coniferous forests than in broadleaf forests [39].

The R2 of the inversion results of the MLSR, RF, and KNN-FIFS models using single
Sentinel-2 data in Puer were 0.345, 0.255, and 0.480, while those values of the inversion
results in Genhe were 0.320, 0.188, and 0.390. Wang et al. selected Sentinel-2, Landsat-8
OLI, and GF-1 as data sources to estimate forest AGB and found Sentinel-2 data had the
best results with an R2 = 0.60 and an RMSE = 21.40 t/hm2. The results also indicated
that the red-edge band has a strong sensitivity to forest AGB and has great potential for
quantitative inversion studies [40]. Guo et al. used Sentinel-2 data as a data source and
constructed an MLSR model to invert coniferous forest AGB in Inner Mongolia. The R2 of
the inversion results was 0.765, and the RMSE was 39.49 t/hm2 [16]. The results are slightly
higher than those in our study. It may be due to the influence of topographic factors, which
affect forest diversity to a large extent, distribution, and local heterogeneity, thus directly
affecting forest productivity and structure. Lopez-Serrano et al. used Landsat-8 to study
temperate coniferous forests in Mexico. Band indices, vegetation indices, texture indices,
and topographic and climatic variables were extracted and used for forest AGB estimation
through the RF and support vector regression (SVR) algorithms. They found that SVR
performed better in coniferous forest AGB inversion with R2 = 0.8 and RMSE = 8.20 t/hm2.
The results revealed that considering climatic variables helps to improve the inversion
accuracy of forest AGB with RS features since climatic characteristics are one of the most
important factors affecting the distribution and growth of forest species [41].

(2) Estimation of forest AGB for a combination of Sentinel-1 and Sentinel-2 data under
different feature optimizing methods.

The R2 of the inversion results of the MLSR, RF, and KNN-FIFS models using a
combination of Sentinel-1 and Sentinel-2 data in Puer were 0.461, 0.348, and 0.568, while
those values in Genhe were 0.446, 0.345, and 0.511. Pan et al. used Sentinel-1 and Sentinel-2
to estimate coniferous forest AGB in subtropical regions, and the inversion result of R2

was 0.575, which was similar to that of the subtropical coniferous forests in Puer in this
study. However, the values were slightly higher than those obtained in the cold-temperate
coniferous forests in Genhe in our study [14]. In the study of Liu et al., the combination of
Sentinel-1 and Sentinel-2 was used as the data source for forest AGB estimation as well,
but in this study, the effects of topographic factors on forest AGB were considered. In this
study, with the comparison of the performance of the MLSR, BP neural network, and SVR
models, the best performance for forest AGB estimation was acquired by the BP neural
network model with an R2 of 0.821 and an RMSE of 32.39 t/hm2. The results of the study
are higher than the results of our study. The results of the study showed the potential of a
combination of optical data and SAR data for improving the inversion accuracy of forest
AGB [42]. Forkuor et al. used Sentinel-1, Sentinel-2, and RF for forest AGB estimation in
West African dryland forests and showed that the joint Sentinel-1 and Sentinel data could
be better for inversion of forest AGB with R2 = 0.90 and RMSE = 54.5 t/hm2 [43].
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(3) The advantages of Forest AGB estimation using the KNN-FIFS algorithm.

KNN-FIFS shows the most robustness in forest AGB inversion in both test sites;
moreover, KNN-FIFS achieved superior inversion results in forest AGB inversion both
using different data sources and at different test sites. Shi et al. used the KNN-FIFS
model and GF-3 data for forest AGB estimation in Yiliang and also confirmed its better
performance with R2 = 0.500 and RMSE = 14.11 t/hm2, which is slightly lower than the
inversion results of our study accuracy with R2 = 0.512 and RMSE = 15.34 t/hm2 [38]. Han
et al. also used KNN-FIFS, Landsat-8 OLI, and the airborne SAR P-band for forest AGB
inversion. The results from them were slightly higher than the results of our study, with
R2 = 0.770 and RMSE = 22.74 t/hm2. The higher R2 value and lower RMSE value may
result from the involved P-band SAR features, which have better penetration capability in
forests and can interact with the large branches and trunks that account for the main AGB
in forests [30]. Ji et al. used ALOS-1 PALSAR-1 and ALOS-2 PALSAR as data sources and
KNN-FIFS as an inversion model to estimate forest AGB in Genhe. The inversion accuracy
of KNN-FIFS was outperformed by RF and KNN, and its R2 was 0.37, which was lower
than the value obtained in this study. The lower R2 values in their study may be due to
the incomplete coverage of RS images in the study area [44]. The study confirmed the
robustness of KNN-FIFS and the best performance of combined Sentinel-1and Sentinel-2 in
forest AGB estimations.

5. Conclusions

In this study, we investigated the potential of a feature optimization inversion model
for forest AGB estimation using Sentinel-1 SAR data, Sentinel-2 multispectral data, and a
combination of them. Larch pure forests in northeastern China and Simao pine pure forests
in southwestern China are investigated in this study. Through this study, we concluded
that: (1) Combining Sentinel-1 and Sentinel-2 data allows a certain degree of information
complementarity and higher estimation accuracy than only using Sentinel-1 and Sentinel-2
alone. (2) Comparative analyses of the two test sites in two typical coniferous forests with
three combinations of two data sources showed that tree species or AGB levels may result
in the effect of forest AGB estimation accuracy. (3) All of MLSR, RF, and KNN-FIFS were
subjected to feature optimization during the forest AGB modeling; among them, KNN-FIFS
showed the best suitability and promotability in different forest scenes and different test
sites. However, due to the limitations of field data collection, only 26 larch pure forest
sample plots and 27 Simao pine pure forest sample plots were used for modeling analysis in
this study. Although the results are convincing, more different observations, such as LiDAR
data, UAV data, and L- and P-band SAR data with longer wavelengths, are needed to be
explored and validated in the future [7,45,46]. In addition, only one forest type, like pure
coniferous forest, was used in this study, and other different forest types, such as broadleaf
forest and mixed coniferous forest, need to be further studied in the future [7,11,45].
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