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Abstract: Multi-angular remote sensing observation contains crucial information on forest structure
parameters. Here, our goal is to examine the ability of multi-angular indices, which are constructed
by the typical-angular reflectances in red and NIR bands from MODIS observations, for the retrieval
of forest biomass based on the field-measured above-ground biomass (AGB) data. Specifically, we
employed the updated version of the MCD43A1 BRDF parameter product as an input for BRDF
models to reconstruct the MODIS typical-angular reflectances. Furthermore, we evaluated the effects
of different configurations of BRDF models and solar zenith angles (SZA) on forest AGB estimation
using our developed multi-angular indices. The semivariogram analysis strategy combined with
Landsat ground-surface reflectance data was employed to determine the MODIS pixel heterogeneity;
the survey data from field sites of homogeneous pixels was used in our analysis and validation. The
results show that our developed multi-angular indices based on a hot-revised BRDF model, under a
SZA of 45◦, when combined with forest cover information, can account for up to 72% of the variation
forest AGB, with an RMSE = 45 Mg/ha. We also found that different kernels for the BRDF models
influenced the weight parameters of the biomass inversion equation but did not significantly affect
the estimated AGB. In conclusion, our method can enable the better usage of MODIS multi-angular
observations for forest AGB estimation.

Keywords: MODIS; typical-angular reflectances; multi-angular indices; BRDF models; forest
aboveground biomass

1. Introduction

Forest aboveground biomass (AGB) is closely related to the carbon sinks of forest
ecosystems and is important for greenhouse gas inventories and terrestrial carbon account-
ing [1,2]. Accurate, large-scale, wall-to-wall maps of forest AGB can help address the above

Forests 2024, 15, 541. https://doi.org/10.3390/f15030541 https://www.mdpi.com/journal/forests

https://doi.org/10.3390/f15030541
https://doi.org/10.3390/f15030541
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/forests
https://www.mdpi.com
https://orcid.org/0000-0001-9477-9155
https://orcid.org/0000-0003-3514-7590
https://orcid.org/0000-0002-1352-5143
https://orcid.org/0000-0002-2768-7960
https://orcid.org/0000-0002-1257-9449
https://doi.org/10.3390/f15030541
https://www.mdpi.com/journal/forests
https://www.mdpi.com/article/10.3390/f15030541?type=check_update&version=1


Forests 2024, 15, 541 2 of 18

issues [3]. Researchers widely used different types of remote sensing images for AGB
estimation and presented valuable results in this way [4,5]. However, most of these meth-
ods are inadequate because they lack explicit information on canopy three-dimensional
structures. Fortunately, multi-angular remote sensing technology, which has been proven
to be sensitive to forest 3D structures [6–8], provides a promising solution for inversing
high-quality and wall-to-wall forest AGB maps.

Multi-angular remote sensing involves capturing surface reflectance from various
view angles, including angles beyond the nadir, while also accounting for the sun’s position.
This observation technology enables the measurement of the anisotropic reflectance of the
land surface. Anisotropic surface reflectances, which can be indicated by the bidirectional
reflectance distribution function (BRDF), describe the uneven distribution of the forest
canopy on the surface [9,10]. In other words, BRDF information provided by multi-angular
satellite observation was considered to contain the 3D structure feature information of
ground targets in theory [11,12]. Therefore, BRDF information has the potential to inversion
vegetation structure parameters.

Recently, multi-angular remote sensing provided BRDF information that has been
employed on forest AGB estimation. Some estimation methods employed a multivariable
regression strategy to develop models based on MODIS data (red and near-infrared BRFs)
to retrieve AGB [13]. Multi-angular observations from Multi-angle Imaging Spectro Ra-
diometer (MISR) were also employed as input variables to develop regression relationships
with AGB, such as MISR red band bidirectional reflectances from different views [14,15];
a loge relationship was also found between MISR multi-angular surface reflectance data
and AGB estimates [16]. Some spectral vegetation indices developed from multi-angular
reflectances were used to estimate forest AGB, mainly through regression or the look-up
table strategy [17,18]. A recent study found that forest biomass structure information was
embedded in the typical directional multi-angular reflectance observed from the red and
NIR spectral bands [19], highlighting a promising new source for forest AGB inversion.

Prior research has showcased the efficacy of multi-angular measurements in estimating
forest AGB, especially concerning typical-angular reflectances. However, acquiring specific
multi-angular reflectances via satellite can be challenging, such as reflectances at the hotspot
and darkspot directions. Consequently, the retrieval relies on the BRDF models. Hence, the
accuracy of forest AGB estimation may be influenced by the selection of BRDF models, as
different models exhibit varying abilities to characterize specific BRDF features, particularly
reflectances at high solar zenith angles (SZAs) [20,21].

The BRDF model is a semi-empirical linear model that typically comprises geometric
optics (GO) and volumetric scattering kernels. Various forms of these kernels have been
developed for different scenarios and objectives [22–24]. The RossThick (RT) kernel, based
on Radiative Transfer Theory, was the first volumetric kernel to be developed [22]. To
address scenarios with a small leaf area index (LAI), the RossThin (RTIN) kernel was
developed [23]. In terms of the GO kernel, the LiSparse (LS) and LiDense (LD) kernels
were deduced based on the GO theory developed by Li and Strahler [23,25]. These two
kernels describe the sparse and dense canopy structures, respectively. The LiSparseR (LSR)
and LiDenseR (LDR) GO kernels that satisfy the reciprocity principle are defined afterward
by considering that the reflection component varies with the SZA [24]. Aiming to enhance
the performance of the LSR kernel at large SZAs, the LiTransitR (LTR) kernel was proposed
by combining LSR and LDR kernels [25]. To enhance the kernel-driven BRDF model’s
accuracy in estimating hotspot reflectance, several approaches have been explored. For
example, researchers developed a RossThickChen (RTC) kernel, a volume-scattering kernel
revised specifically for hotspot correction [26], which has been successfully used to improve
the inversion accuracy of vegetation structure parameters [12,19].

Despite the advancement of various BRDF models, all these models are designed for
different scenes and purposes. Therefore, the selection of the most suitable BRDF model
to reconstruct multi-angular reflectances for vegetation structure parameter inversion,
such as forest AGB, needs further evaluation. This study aims to assess the influence
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of various configurations of BRDF models in estimating forest AGB using multi-angular
indices. Specifically, we developed three multi-angular indices, which were formulated by
the typical-angular reflectances in red and NIR spectral bands, combined with forest cover
information to build the forest AGB estimation equation. The typical-angular reflectances
were constructed by using the updated MCD43A1 MODIS parameter product (version 6.1),
which served as the input for the BRDF model. We selected seven widely used BRDF
models in our research; they are constructed by the volume-scattering kernels RT, RTIN,
and RTC, and GO kernels LSR, LDR, and LTR. A semivariance function was employed
to determine the homogeneous MODIS pixel, and the corresponding survey data of field-
measured sites was used to validate. We further assess the potential influence on the
MODIS–AGB relationship from factors such as forest cover density.

The novelties of this study are as follows: (i) the potential of multi-angular observations
to estimate forest AGB was assessed using MODIS data; (ii) the new multi-angular indices
were developed to estimate forest AGB; (iii) the robustness and generalization power of
the multi-angular indices were assessed, especially from the selection of BRDF models and
solar zenith angles; and (iv) the influence of pixel forest cover density and terrain on the
performance of multi-angular indices were assessed.

2. Materials
2.1. Study Sites

We used field measurements that were distributed at five New England environmental
forest stations, which are located on the eastern coast of three states in the United States.
The forests include the Bartlett Experimental Forest, Hubbard Brook Experimental Forest,
Howland Research Forest, Penobscot Experimental Forest, and Harvard Forest; the field
measurement sites in these forests can be found in Figure 1. The terrain of these research sites
includes flat areas, hills, and valleys with steep slopes. The climate in these sites has warm
summers and cold winters. Most of the sites’ mean annual precipitation is around 1000 mm.
These sites have differences in soil composition; most of the sites are predominantly a sandy
loam glacial till with moderate to good drainage. Forest species distributions in our study
areas are primarily shaped by climate, which is also influenced by altitude. The dominant
species include the northern white cedar (Thuja occidentalis), balsam fir (Abies balsamea), red
spruce (Picea rubens), and eastern hemlock (Tsuga canadensis). Detailed information about these
study sites can be found on NASA EARTHDATA’s official website [27].
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2.2. Field-Measured Biomass Data

We utilized field-measured biomass data as a benchmark to assess the efficacy of BRDF
information in estimating forest AGB. The field-measured biomass data used in this study
was sourced from the North American Carbon Program (NACP). All the biomass data
from field measurements were gathered within a plot measuring 50 m by 200 m. In each
plot, the tree with a diameter at breast height (DBH) of 10 cm or more (measured at 1.3 m)
was recorded. Furthermore, tree species and living conditions for the recorded trees were
recorded (Appendix A). We used forest biomass data calculated based on an allometric
equation from Young et al. 1980: ln (AGB) = B0 + B1 (ln(DBH)); B0 and B1 are provided by
a weight table for tree species [28]. The basic information about the field-measured biomass
data can be found in the NACP of NASA projects [27]; a total of 55 field-measured AGB
datasets were used in this study.

2.3. MODIS BRDF Data

We utilized version 6.1 of the MODIS BRDF/Albedo Model Parameters Product
(MCD43A1) for the red and NIR spectral bands as input to the BRDF model for calculating
the typical-angular reflectances. The MCD43A1 dataset recorded the BRDF model weight-
ing parameters, including weights for isotropic, volumetric, and geometric parameters.
These weighting parameters describe the bidirectional reflectance properties of the land
surface across various spectral bands, each with a spatial resolution of 500 m. We employed
the version 6.1 dataset of the MCD43A1 product, which has been improved by various
calibration changes [29]. We prefer to use high-quality data from the MCD43A1 product in
this study. To address the absence of high-quality data resulting from cloud contamination
at certain times, we implemented a strategy to fill in missing data by incorporating high-
quality full inversion data (QA = 0) obtained from a month closely matching the timing of
field measurements. This approach assumes that the forest’s structure undergoes minimal
changes within a one-month period, thereby limiting the potential impact of our strategy
on the study results.

2.4. Landsat Surface Reflectance Data

Landsat surface reflectance data is a good option for delineating surface material
differences [30,31], making it a common choice for pixel heterogeneity analysis [32,33].
Consistent with prior studies, we utilized Landsat surface reflectance data to assess the
homogeneity of MODIS pixels. The following is the reason why we conducted pixel
homogeneity analysis: we utilized field-measured forest biomass as the reference for AGB
in the corresponding MODIS pixel. However, a potential concern arises regarding whether
the ground-observed data accurately represents the true conditions of the MODIS pixel. It
is generally assumed that for homogeneous pixels, ground observations can reasonably
reflect the characteristics of the pixel at a larger scale. To validate the representativeness
of the ground observation data for the actual conditions at the MODIS pixel scale, we
utilized 30 m of Landsat surface reflectance data under clear sky conditions as the input
for analyzing pixel heterogeneity using the semivariogram function. We strive to use
satellite data from the same month as the ground observations whenever possible. In some
cases, we resort to satellite data from months closely preceding or following the vegetation
growing season to obtain clear-sky data to avoid cloud interference.

2.5. SRTM Data

The terrain significantly impacts the use of satellite observations to invert forest
structure information. In this study, we utilized Shuttle Radar Topography Mission (SRTM)
elevation data to calculate the slope, which served as an indicator of terrain ruggedness. The
SRTM data is a valuable resource for understanding and analyzing the Earth’s topography,
which utilizes radar technology to detect the elevation of the land surface with exceptional
accuracy [34]. It provides elevation information at an approximate spatial resolution
of 30 m.
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3. Methods

To improve the ability of MODIS multi-angular observations on forest AGB estimation,
we aim to develop multi-angular indices based on typical-angular reflectances in red and
NIR spectral bands. The workflow of this study is shown in Figure 2. We first used the
semivariance function to conduct pixel homogeneity evaluation and selected the homoge-
neous pixels in our study area. Then, we set the BRDF models and SZAs to reconstruct the
typical-angular reflectances of homogeneous MODIS pixels (e.g., hotspot, nadir, and dark-
spot) based on the MCD43A1 product. Using reconstructed typical-angular reflectances,
we constructed multi-angular indices. Furthermore, we employed homogeneous MODIS
pixels corresponding to field-measured biomass and forest cover density information, and
we developed multi-angular indices to construct a forest AGB estimation equation. Finally,
we evaluated the factors that influence the performance of our developed multi-angular
indices, such as BRDF models, SZAs, terrain, and pixel forest cover density.
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equation constructed based on multi-angular indices and (ii) evaluating factors that affected the
performance of the multi-angular indices for forest AGB estimation.

The forest AGB estimation equation based on multi-angular indices is as follows:

AGB = a · hotspot_indice + b · nadir_indice + c · darkspot_indice + d · treec + e (1)

where a, b, c, and d are weight coefficients for multi-angular indices; e is the constant term;
treec is the pixel forest cover information we defined; and hotspot_indice, nadir_indice, and
darkspot_indice refer to three multi-angular indices, they are the ratio indices of the hotspot,
nadir, and darkspot reflectances in NIR and red spectral bands, respectively. For example,
the hotspot_indice was calculated by taking the hotspot reflectance in the NIR band as the
numerator and the corresponding red band reflectance as the denominator.

3.1. Calculation of the Typical-Angular Reflectances

The BRDF model is expressed as a linear combination of isotropic, volumetric, and
GO scattering kernels, with the general form as follows:

R(θ, ϑ, φ, Λ) = fiso(Λ) + fvol(Λ)Kvol(θ, ϑ, φ) + fgeo(Λ)Kgeo(θ, ϑ, φ) (2)
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where fiso, fvol , and fgeo are the weight parameters that define the BRDF shape, reflecting
the proportions of the three scattering components. Kgeo and Kvol are the two functions
constructed by view zenith (ϑ), illumination zenith (θ), and relative azimuth (φ); they
describe the light scattering process within the canopy, that is, so-called the GO scattering
kernel and volumetric scattering kernel.

Usually, there are various options for Kgeo and Kvol, each designed to suit different
observed situations. Therefore, the BRDF model that utilizes different combinations of
kernels has a different spectral anisotropic reflectance. This situation indicates that the
choice of Kgeo and Kvol can have implications for its further application, such as the inversion
of vegetation structure parameters.

To investigate the different configurations of the BRDF model and their effect on our
method, we selected three different volume-scattering kernels and three GO kernels as the
configurations for the BRDF models. The volume-scattering kernels we adopted were the
RT kernel, RTN kernel, and RTC kernel; they are defined as follows:

KRossthick =

(
π
2 − ξ

)
cos ξ + sin ξ

cos θ + cos ϑ
− π

4
(3)

KRossthin =

(
π
2 − ξ

)
cos ξ + sin ξ

cos θ cos ϑ
− π

2
(4)

KRossthickChen =

(
π
2 − ξ

)
cos ξ + sin ξ

cos θ + cos ϑ
×

(
1 + C1e−

ξ
C2

)
− π

4
(5)

cos ξ = cos θ cos ϑ + sin θ sin ϑ cos φ (6)

where ξ, defined in Equation (6), represents the phase angle, and C1 and C2 are two
adjustable hotspot parameters; they are derived from POLDER observations [25]. The GO
kernels we used were the LSR, LDR, and LTR kernels; they are defined as follows:

KLiSparseR = o
(
θ′, ϑ′, ϕ

)
− sec θ′ − sec ϑ′ +

1
2
(
1 + cos ξ ′

)
sec ϑ′ sec ϑ′ (7)

KLiDenseR =
(1 + cos ξ ′) sec ϑ′ sec θ′

sec θ′ + sec ϑ′ − o(θ′, ϑ′, ϕ)
− 2 (8)

KLiTransitR =

{
KLiSparseR, B ≤ 2

KLiSparseR = 2
B KLiSparseR, B > 2

(9)

where O is the function describing the overlap between the shadows cast by the viewing
and illumination geometries.

o
(
θ′, ϑ′, ϕ

)
=

1
π
(t − sin t · cos t)

(
sec θ′ + sec ϑ′) (10)

In which the variables are defined as follows:

cos t =
h
b

√
D2 + (tan θ′ tan ϑ′ sin t)2

sec θ′ + sec ϑ′ (11)

D =
(

tan2 θ′ + tan2 ϑ′ − 2 tan θ′ tan ϑ′ cos ϕ
)1/2

(12)

cos ξ ′ = cos θ′ cos ϑ′ + sin θ′ sin ϑ′ cos ϕ (13)

θ′ = tan−1(b/r tan θ) (14)

ϑ′ = tan−1(b/r tan ϑ) (15)
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where h/b and b/r are the relative height and shape of the described canopy, respectively.
Furthermore, B in Equation (9) is defined as follows:

B = sec θ′ + sec ϑ′ − o
(
θ′, ϑ′, ϕ

)
(16)

Combining the volumetric scattering kernels and geometric-optical kernels mentioned
earlier, we formulated a set of BRDF models (Table 1); these BRDF models were used to
calculate MODIS typical-angular reflectances.

Table 1. BRDF models employed in this study.

Kvol

Kgeo LiSparseR LiDenseR LiTransitR

RossThick RTLSR RTLDR RTLTR
RossThin RTINLDR RTINLSR RTINLTR

RossThickChen RTCLSR

3.2. Definition of Forest Cover Information of the MODIS Pixel

Forest coverage information, such as the forest cover proportion/density, is a key
input for large-scale biomass mapping [35]. In other words, the accurate/calibrated forest
coverage information may increase the possibility of producing fine biomass results. Here,
we developed a strategy that combines pixel heterogeneity analysis and field-measured
information to define the MODIS pixel forest coverage information. Firstly, we calculated
the forest density of the sample plot based on the field survey data by dividing the forest
tree numbers of the survey plot by the site area. Then, we assessed the homogeneity of each
MODIS pixel using the semivariogram function. If the MODIS pixel was homogeneous,
the forest density of the site scale was considered as a representative value for the actual
forest coverage information of that MODIS pixel.

For the evaluation of the homogeneity of the MODIS pixel, we adopted the method-
ology from a prior study, using a clear-sky Landsat surface reflectance product that cor-
responds to each MODIS pixel as input for the semivariogram function. If the results
indicated a sill value lower than 5.0 × 10−4 [32], we concluded that the land cover of the
MODIS pixel was homogeneous. As an example (Figure 3), the sill value corresponding
to the pixel with a 500 m spatial resolution is 0.95 × 10−4, which is less than 5.0 × 10−4.
Therefore, the land cover of this MODIS pixel is homogeneous.
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take the MODIS pixel with a sill value (i.e., c + c0) of less than 5.0 × 10−4 as the homogeneous pixel.

3.3. Accuracy Validation

We employed the ordinary least squares regression (OLS) strategy to determine the co-
efficients of the biomass equation in Equation (1). Furthermore, we used the determination
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coefficient (R2) and root mean square error (RMSE) of these two indicators to validate the
accuracy of our method:

R2 =

n
∑

i=1

(
Ti − T

)2 −
n
∑

i=1

(
Ti − Ti

)2

n
∑
1

(
Ti − T

)2
(17)

RMSE =

√√√√√ n
∑

i=1

(
Ti − Ti

)2

n
(18)

where Ti is the estimated results, Ti is the field-measured results, and n is the total
data counts.

4. Results
4.1. Influence of Pixel Homogeneity and Terrain on Using MODIS Multi-Angular Indices for
Forest AGB Estimation

We first examined the performance of our method on forest AGB estimation under an
SZA equal to 45◦ (Figure 4). According to the results, we can note that no matter what kind
of BRDF models were employed, the multi-angular indices cannot describe the variation of
forest AGB well. The worst result explained only 29% of the variation in biomass, which,
based on the RTCLSR BRDF model; results using other BRDF models can explain about 45%
of the biomass variations, with RMSE around 66 Mg/ha. The following are some factors
that may influence the ability of multi-angular indices to explain biomass variations, such
as pixel heterogeneity and terrain factors. When we consider these two factors and filter
out unsuitable sites (18 sites), the accuracy of using our constructed multi-angular indices
to explain biomass was significantly improved. For example, using the RTCLSR BRDF
model reconstructed typical-angular reflectances to construct multi-angular indices and
then the estimated biomass, the accuracy increased from 29% to 72%, with an improved
RMSE from 75 Mg/ha to 48 Mg/ha.

The pixel heterogeneity problem in using remote sensing data to estimate forest struc-
ture should be noted. In this study, we used field-measured biomass data from a 200 × 50 m
plot as the ground truth for a 500 m MODIS pixel; there was a significant resolution dis-
parity between these two datasets. As shown in Figure 5a, some field-measured plots
corresponding to MODIS pixels display heterogeneity attributed to the presence of water
bodies, bare land, and urban areas. In other words, these field-measured biomass data
cannot represent the true situation of 500 m pixels well. Due to the above reason, we first
filtered out sites that could not represent MODIS pixels according to the evaluation results
from the semivariogram function. Additionally, there is extensive literature documenting
the effect of rugged terrain on the BRDF anisotropic reflectances [36,37], which in turn
should have a certain effect on its further application, such as forest structure estimation.
We counted the slopes for each site; it could be noted that rugged terrain slopes had already
happened (Figure 5b). To minimize the influence of rugged terrain on using BRDF data
to estimate forest AGB in our study, we also filtered out sites with rugged slopes, such as
those greater than 8 degrees.
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4.2. Influence of BRDF Models on Using MODIS Multi-Angular Indices for Forest
AGB Estimation

We examined how the use of different BRDF models under an SZA of 45◦ affected
the accuracy of our method for estimating forest AGB. The ground survey data used were
located in homogeneous MODIS pixels with gentle terrain, involving a total of 37 sites
(Appendix A). Most of the employed BRDF models did not show much difference in
the accuracy of the biomass estimation; the difference was approximately an R2 of 0.03
and a RMSE of 3 Mg/ha. The result based on a hot-revised BRDF model RTCLSR has a
more eye-catching performance, with R2 = 0.72 and RMSE = 48 Mg/ha. Furthermore, it
can be noted that the weight parameters of the biomass prediction equations are quite
different when employing different BRDF models, which happened in the condition when
all these equations passed the F-test (Table 2). The above results indicate that the selection
of different BRDF models potentially affects multi-angular indices’ interpretation degree
for biomass to a certain extent.

Table 2. The regression coefficients and Root Mean Square Error: AGB = a × hotspot_indices +
b × nadir_indice + c × darkspot_indice + d × treec + e, where e is the intercept of the linear model.

BRDF Model

Regression Coefficients

F-Test R2
RMSE

(Mg/ha)Hotspot
Indice

Nadir
Indice

Darkspot
Indice Tree Cover Constant

Term

RTLSR 8.31 −6.74 7.14 0.12 −9.73 0 0.65 53
RTLDR 18.44 −52.40 43.18 0.12 −11.36 0 0.62 55
RTLTR 16.93 −44.66 37.17 0.12 −12.05 0 0.62 56

RTINLDR −12.13 9.05 9.85 0.12 3.21 0 0.65 54
RTINLSR −9.76 13.55 2.60 0.12 4.00 0 0.65 53
RTINLTR −12.95 7.8 11.74 0.12 4.20 0 0.65 54
RTCLSR 12.24 4.65 4.56 0.12 −195.61 0 0.72 48

We draw the performance of different BRDF models for the reconstructed reflectances
at the principal and cross-principal plane using a MODIS observation corresponding to a
field-measured plot site (Figure 6). It can be noted that the reconstructed reflectance by us-
ing different BRDF models shows differences under the same SZA, such as typical-angular
reflectances, which in turn influenced multi-angular indices. Therefore, the variation of
the weight parameters is potentially caused by the differences in the factors and scenarios
considered in the design of each kernel for BRDF models. For example, the GO kernel
describes the shadow parts of the canopy, and this shadow information is also highly
sensitive to variations of vegetation structure [38], such as the darkspot reflectance. We
used the BRDF model involving the GO kernel LSR, which is designed for sparse canopies
and ignores the shadow shading phenomenon between canopies. Therefore, the darkspot
reflectance reconstructed from the BRDF model using the LSR kernel may show some
difference in performance regarding weight parameters.

Furthermore, the forest coverage information plays a key role in our method (Figure 7a);
the biomass inversion model can improve the accuracy by about 10% when considering
the forest cover of the pixel. Additionally, the choice of different BRDF models has little
effect on the importance of forest coverage information in our biomass inversion model.
The above results also provide additional evidence for the importance of forest coverage
information in retrieving biomass based on our multi-angular indices. The impact of
field measurements on the validation accuracy of our method has already been noted. By
analyzing the field-measured data and incorporating the validation results (Figure 7b), we
found that some outliers in the validation results are located at the sites where there are a
large number of dead trees. For example, approximately 900 trees were counted in site 4,
with 179 dead trees in this site. In this study, nearly all sites included dead trees, and we
did not exclude them when estimating the field biomass data. There is a large gap in the
spectral characteristics between living trees and dead trees, and our method relies on the
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spectral information of forests to estimate biomass. Therefore, we can reasonably consider
that these dead trees have a certain effect on the validation of our method. In other words,
the reliability of our method may be higher than our validation results.
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Figure 7. (a) The assessment results of the impact of choosing different BRDF models on the inversion
of forest AGB by our method; (b) the linear regression results for estimating forest AGB based on the
RTLSR model. Some obvious outliers may be caused by the dead trees counted in the field-observed
sites, such as site 4.

4.3. Influence of Solar Zenith Angle on Using MODIS Multi-Angular Indices for Forest AGB
Estimation

As shown in Figure 8, the BRDF shape shows differences under different SZAs; the
reconstructed MODIS reflectances contain differences when the SZA is different, such as
hotspot, nadir, and darkspot reflectances. The above differences will cause variations in
the multi-angular indices and then affect the biomass estimation. Taking the RTCLSR
BRDF model as an example, it can be seen that there will be a relatively obvious hotspot
effect when the observation is conducted at a relatively mid-angle, such as 45◦. Hotspot
reflectance plays an important role in explaining forest structure information, such as
canopy height and clumping index, and has been reported in many studies. Our results
further prove the importance of hotspot observations; the coefficient of hotspot_indice has a
significant weight in the biomass estimation equation (Table 2). However, the hotspot effect
does not perform strongly at a larger viewing angle, such as 60◦, which in turn should be
limited in forest structure inversion. Furthermore, it can be noted that although the hotspot
effect is obvious at low observation angles, such as when the SZA equals 30◦, the ranges of
BRFs in the hemispheric space are small. The small range of BRFs will have a small range
of multi-angular indices, which may be limitations in the ability to interpret ranges in forest
structure information, such as biomass.
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Figure 8. The MODIS observed 3D BRDF shapes reconstructed based on the RTCLSR BRDF model
under SZA at 30◦, 40◦, 45◦, 50◦, and 60◦.

Here, we examined the SZA effects on using MODIS multi-angular indices to estimate
forest AGB. Figure 9 compares the validation results of using multi-angular indices that were
constructed based on different BRDF models and SZA values. Among all the results, our
method has the best performance based on the RTCLSR BRDF model under an SZA of around
45◦ (R2 ≈ 0.72, RMSE ≈ 48 Mg/ha). In terms of the remaining BRDF models, it can be noted
that constructed multi-angular indices at SZA = 45◦ showed a relatively better performance
for biomass estimation compared to results under other SZAs. There are two reasons for the
above results: (i) The performance of the BRDF model is unstable at large SZAs. For example,
the LSR kernel is intended to describe sparse canopies and shadow conditions, which can lead
to its physical mechanism being less suitable for larger SZAs. When a model loses its physical
meaning, it generates unreasonable modeling results, which subsequently hinders its practical
application. (ii) At small SZAs, the multi-angle reflectances, such as darkspot reflectance,
exhibit a relatively weak shadow effect. However, the shadow information contains certain
vegetation structure information. Therefore, losing part of the shadow information may affect
the accuracy of biomass inversion based on multi-angular indices.
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5. Discussion

We have examined the capability of using MODIS multi-angular indices we developed
to explain the variation of forest AGB; we also discussed the influence of using different
BRDF models and SZAs. Although our experimental results can be used as evidence to
choose a suitable BRDF model and SZA to construct MODIS multi-angular indices to
estimate forest AGB, some uncertainties or limitations can be improved in further studies.

In terms of the BRDF model selection, ideally, we should choose volumetric scattering
kernels and GO kernels for the BRDF model according to the observed scenario. This is
because it can make the physical conditions on which the kernels in the BRDF model are
based fully valid, allowing for a more accurate reconstruction of reflectance information.
For example, the GO kernel LiSparse is suitable for sparse canopy structures [8,23,24], while
LiDense is suitable for dense canopy structures [23]. Some research has also found some
limitations on the use of BRDF models, such as the fact that the RT kernel does not perform
optimally on the hotspot [26]. This is because the RT kernel is derived from a horizontally
homogeneous canopy and does not consider the relationship between the incident and
observation geometry. The RTCLSR BRDF model improves hotspot accuracy by improving
the volume scattering kernel Rossthick by adding a hotspot factor function [26]. Hotspot
reflectance has been proven to be closely related to vegetation structure [12,21,39]. Our
results also prove the above conclusion that using constructed multi-angular indices based
on the RTCLSR model has the best performance in estimating forest biomass among the
BRDF models we used. Although we have explored the influence of BRDF models on
the inversion of forest biomass based on the MODIS data, the limited available ground
observations restrict exploration of the differences in BRDF model selection for different
canopy conditions regarding biomass inversion.

The SZA varies at different latitudes, which results in differences in the observation
directions of hotspot or darkspot at different latitudes. In other words, due to variations in
the SZA, the constructed multi-angular indices will be varied. Therefore, the significant
differences in the SZA are likely to propagate the use of multi-angular indices for further
applications, such as the inversion of forest AGB information. Considering the reasons
mentioned above, we believe it is necessary to discuss and determine the most suitable
solar incidence angles for estimating forest structure parameters when using multi-angular
indices under different latitudes. However, as there was a lack of field-measured data in
this study, we did not explore this aspect.

We utilized field-measured data as the ground truth for MODIS pixels, such as tree
cover and forest biomass information. However, there is a gap in resolution between
the field-measured plot and the MODIS pixel (50 m × 200 m vs. 500 m × 500 m). Field-
measured plots provide valuable ground-level data, but their ability to accurately represent
an entire pixel varies. The accuracy depends on factors such as plot size, placement, and
the spatial heterogeneity of the area being studied [40,41]. While field plots can provide
detailed information about specific locations, their ability to represent an entire pixel’s
characteristics may be limited. Therefore, there are uncertainties in using smaller-scale
ground observations to represent coarser resolution MODIS pixels [42–44]. In order to
minimize the above uncertainties, we employed the semivariance function using Landsat
surface reflectance data to evaluate the homogeneity of MODIS pixels; only homogeneous
MODIS pixels were employed for experiment analysis. Although this strategy can greatly
improve the reliability of ground observations representing the true state of pixels [21,45],
it is obvious that relying solely on the spectral information from Landsat images proves in-
adequate in accurately distinguishing certain elements on the Earth’s surface. For instance,
the spectral properties of grass and canopy are strikingly similar, resulting in significant
uncertainty when estimating biomass in our research. High-resolution airborne lidar equip-
ment provides the opportunity for obtaining the accurate 3D structure of the forest canopy,
which should be a good option to replace ground-based observations in future studies.
Nearly continuous observation can avoid the problem of pixel representativeness to a
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certain extent as the true value for larger-scale pixels, thereby improving experimental
accuracy.

Overall, this study has proved the feasibility of using MODIS multi-angular indices
we developed for the inversion of forest biomass and has provided insights into the impact
of BRDF model selection and SZA settings on forest AGB inversion. However, there are
limitations in the experiments due to the constraints of ground observation data, such as
mentioned above. They should further improve when sufficient field-measured or airborne-
observed data are available. The supplementation can further solidify the theoretical basis
for the production of large-scale forest biomass products using MODIS BRDF data.

6. Conclusions

In this study, we explored the effectiveness of using MODIS multi-angular observations
for forest AGB estimation. The developed multi-angular indices based on typical-angular
reflectances in red and NIR bands demonstrate the capacity to explain the variation of
forest AGB. Incorporating the pixel forest cover information in the biomass estimation
equation can increase the prediction accuracy by about 10%. Furthermore, we evaluated
the impact of using different BRDF configurations, such as the selection of kernels and SZA
values, on the accuracy of our method. The results indicate that the selection of different
kernels for the BRDF model influences the weight parameters of the biomass inversion
equation; however, it has little effect on the estimated biomass. An optimal stability and
performance for our method can be achieved by setting the SZA to around 45◦. Overall, the
integration of developed multi-angular indices and accurate pixel forest cover information
is reliable for forest AGB estimation. Such an approach holds promise as a valuable choice
for producing global forest AGB products.
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Appendix A

Table A1. The detailed information of field-measured sites, including location information, measured
biomass, measured time, and the composition of measured biomass.

Forest
Location

Time
Composition of Biomass

Biomass
(Mg ha−1)Latitude (◦) Longitude (◦) Dead Tree

Counts
Live Tree
Counts

Barttle 44.053185 −71.310543 11 July 2009 75 648 200.59
Barttle 44.054021 −71.300303 13 July 2009 17 648 229.44
Barttle 44.054162 −71.289812 12 July 2009 82 800 255.46

Harvard 42.534074 −72.182013 25 June 2009 179 936 305.44
Harvard 42.536547 −72.175841 24 July 2009 55 785 139.03
Harvard 42.538096 −72.177597 27 July 2009 63 753 208.88
Harvard 42.536557 −72.172724 23 July 2009 24 475 256.43
Harvard 42.536516 −72.179817 14 July 2009 27 551 271.89
Harvard 42.540983 −72.170486 28 July 2009 66 702 219.34
Harvard 42.540467 −72.183034 16 July 2009 61 817 127.38
Harvard 42.539223 −72.187066 17 July 2009 70 834 282.08
Harvard 42.551416 −72.176897 26 July 2009 22 359 145.36
Harvard 42.480697 −72.174601 25 July 2009 83 763 206.87
Harvard 42.508234 −72.250973 27 July 2009 77 612 309.28
Harvard 42.512857 −72.205741 25 July 2009 20 520 236.60
Howland 45.22755 −68.725911 20 August 2009 12 242 26.83
Howland 45.225188 −68.724381 24 August 2009 26 629 34.39
Howland 45.222658 −68.716496 25 August 2009 42 571 91.87
Howland 45.214881 −68.735791 24 August 2009 18 432 57.80
Howland 45.214646 −68.709366 26 August 2009 0 148 18.65
Howland 45.210844 −68.737554 19 August 2009 14 541 105.80
Howland 45.203327 −68.741371 19 August 2009 76 1212 167.57
Howland 45.152076 −68.735178 27 August 2009 35 687 131.73
Howland 45.147732 −68.718229 27 August 2009 30 677 122.98

Hubbard Brook 43.936143 −71.741518 22 July 2009 52 614 267.26
Hubbard Brook 43.940344 −71.778636 20 July 2009 57 833 261.25
Hubbard Brook 43.945148 −71.709622 27 July 2009 97 850 257.82
Hubbard Brook 43.941246 −71.703841 18 July 2009 63 628 246.54
Hubbard Brook 43.947527 −71.704189 24 July 2009 60 618 213.38

Penobscot 44.871236 −68.626076 25 August 2009 97 687 233.43
Penobscot 44.858001 −68.620421 24 August 2009 12 886 44.76
Penobscot 44.851611 −68.618074 18 August 2009 17 484 124.65
Penobscot 44.850592 −68.613788 19 August 2009 29 604 51.60
Penobscot 44.848417 −68.615501 19 August 2009 13 491 122.27
Penobscot 44.84406 −68.619475 20 August 2009 19 672 120.84
Penobscot 44.844779 −68.614519 20 August 2009 10 549 93.37
Penobscot 44.835663 −68.599269 26 August 2009 94 994 199.65
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